2018-05-15 17:01:38 +00:00
{- # LANGUAGE BangPatterns # -}
2018-06-08 00:16:17 +00:00
{- # LANGUAGE OverloadedStrings # -}
2018-05-01 15:09:25 +00:00
module Main where
2018-05-02 21:39:22 +00:00
import Text.Printf
import Control.Monad.Reader
2018-06-19 22:14:24 +00:00
import qualified Numeric.LinearAlgebra as LA
2018-05-02 21:39:22 +00:00
import Data.List
import System.Random
import Control.Concurrent
2018-05-15 17:01:38 +00:00
import Control.Parallel.Strategies
2018-06-19 22:14:24 +00:00
import Control.Monad.Writer ( tell )
2018-05-02 21:39:22 +00:00
import qualified Debug.Trace as Debug
2018-06-08 00:16:17 +00:00
import qualified Control.Foldl as F
2018-05-02 21:39:22 +00:00
import System.IO
2018-06-19 22:14:24 +00:00
import System.Environment
2018-06-08 00:16:17 +00:00
import Data.Aeson
import qualified Data.ByteString as BS
2018-06-21 14:15:43 +00:00
import qualified Data.ByteString.Lazy as LBS
2018-06-19 22:14:24 +00:00
import Options.Applicative
import Data.Semigroup ( ( <> ) )
2018-05-02 21:39:22 +00:00
2018-05-06 22:44:12 +00:00
import ArbitraryEnzymeTree
import Environment
2018-06-03 23:37:58 +00:00
import Evaluation
2018-05-02 21:39:22 +00:00
-- Example definitions
-- -------------------
-- Enzymes
2018-06-03 23:37:58 +00:00
-- pps :: Enzyme -- uses Phosphor from Substrate to produce PP
-- pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
--
-- fpps :: Enzyme -- PP -> FPP
-- fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
2018-05-02 21:39:22 +00:00
-- Environment
2018-05-15 17:01:38 +00:00
exampleEnvironment :: Int -> [ Enzyme ] -> [ ( Predator , Probability ) ] -> [ ( Compound , Amount ) ] -> Environment
exampleEnvironment addedC es pred tox =
2018-05-02 21:39:22 +00:00
Environment
2018-06-03 23:37:58 +00:00
{ soil = [ ( PPM , 10 )
2018-05-02 21:39:22 +00:00
]
2018-05-15 17:01:38 +00:00
, predators = pred -- [ (greenfly, 0.1) ]
2018-05-02 21:39:22 +00:00
, metabolismIteration = 100
2018-05-06 22:44:12 +00:00
, maxCompound = maxCompoundWithoutGeneric + addedC
2018-05-15 17:01:38 +00:00
, toxicCompounds = tox --[(Produced FPP,0.1)] ++ tox
, possibleEnzymes = es -- [pps,fpps] ++ es
2018-06-08 00:16:17 +00:00
, settings = Settings { automimicry = False
2018-06-21 14:15:43 +00:00
, predatorBehaviour = AttackInterval 10
2018-06-08 00:16:17 +00:00
, numPlants = 50
2018-06-19 22:14:24 +00:00
, logEveryNIterations = 10
2018-06-22 05:11:10 +00:00
, mutationRate = 0.01
, deletionDuplicationRate = 0.05
, geneAddRate = 0.005
, activationNoiseIntensity = 0.01
, staticEnzymeCost = 0.01
, nutrientImpact = 0.01
2018-06-03 14:17:31 +00:00
}
2018-05-02 21:39:22 +00:00
}
-- Plants
2018-06-03 23:37:58 +00:00
-- examplePlants :: [Plant]
-- examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
-- where
-- enzymes = [pps, fpps]
-- quantity = [1,2] :: [Quantity]
-- activation = [0.7, 0.9, 1]
--
-- genomes = do
-- e <- permutations enzymes
-- e' <- subsequences e
-- q <- quantity
-- a <- activation
-- return $ (,,) <$> e' <*> [q] <*> [a]
--
-- defaultAbsorption = fmap ( limit Phosphor 2
-- . limit Nitrate 1
-- . limit Sulfur 0
2018-06-08 00:16:17 +00:00
-- ) <$> fromEnv soil
2018-06-03 23:37:58 +00:00
-- -- custom absorbtion with helper-function:
-- limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
-- limit n a (n', a')
-- | n == n' = (n, min a a') -- if we should limit, then we do ;)
-- | otherwise = (n', a')
2018-05-02 21:39:22 +00:00
-- Running the simulation
-- ----------------------
2018-06-21 14:15:43 +00:00
loop :: Int -> [ Plant ] -> Simulation -> CLIOptions -> IO ()
loop loopAmount ps env opts = loop' loopAmount 0 ps env
2018-05-02 21:39:22 +00:00
where
2018-06-03 14:17:31 +00:00
-- cache enzyme colorful-strings
stringe :: [ ( Enzyme , String ) ]
stringe = ( \ e -> case Data . List . find ( \ ( t , _ ) -> ( t == ) . fst . snd . synthesis $ e ) toxins of
Just ( _ , toxicity ) -> ( e , " \ ESC [38;5; " ++ show ( 16 + 36 * 5 + 6 * floor ( 5 * ( 1 - toxicity ) ) + 0 ) ++ " m " -- yellow -> red rainbow for tocixity 0 -> 1
++ padded 50 ( show ( enzymeName e ) ) ++ " \ ESC [0m " )
Nothing -> ( e , padded 50 ( show ( enzymeName e ) ) )
2018-06-08 00:16:17 +00:00
) <$> possibleEnzymes ( snd env )
2018-06-03 14:17:31 +00:00
toxins :: [ ( Compound , Amount ) ]
2018-06-08 00:16:17 +00:00
toxins = toxicCompounds ( snd env )
2018-06-21 14:15:43 +00:00
printEverything = verbose opts
2018-06-03 14:17:31 +00:00
padded i str = take i $ str ++ repeat ' '
2018-06-03 23:37:58 +00:00
printEvery = 10
2018-06-08 00:16:17 +00:00
loop' :: Int -> Int -> [ Plant ] -> Simulation -> IO ()
loop' loopAmount curLoop plants s = unless ( loopAmount + 1 == curLoop ) $ do
2018-06-19 22:14:24 +00:00
when ( printEverything && curLoop ` mod ` printEvery == 0 ) $ do
2018-06-03 14:17:31 +00:00
putStr " \ ESC [2J \ ESC [H "
2018-06-08 00:16:17 +00:00
printEnvironment ( snd env )
2018-06-03 14:17:31 +00:00
putStrLn " "
putStrLn $ " Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ " : "
2018-06-08 00:16:17 +00:00
newPlants <- simulate s $ do
2018-06-21 14:15:43 +00:00
when ( curLoop == 0 ) $ do
preds <- length <$> fromEnv predators
--- generates "pred1,pred2,pred3,.....predN"
let additionalHeader = intercalate " , " $ ( " pred " ++ ) . show <$> [ 1 .. preds ]
tell $ " num_iter "
++ " ,c_sum_mu,c_sum_sigma "
++ " ,c_d_mu,c_d_sigma "
++ " ,e_d_mu,e_d_sigma "
++ " ,fitness_mean,fitness_sigma "
++ " ,percent_toxic_mean,percent_toxic_sigma "
++ " , " ++ additionalHeader
2018-06-19 22:14:24 +00:00
logIter <- fromEnv $ logEveryNIterations . settings
2018-06-21 14:15:43 +00:00
( ! fs , cs ) <- unzip <$> fitness curLoop plants
2018-06-14 10:25:31 +00:00
txns <- fmap ( fromEnum . fst ) <$> fromEnv toxicCompounds -- [Int] of id's of toxic compounds
2018-05-02 21:39:22 +00:00
let fps = zip plants fs -- gives us plants & their fitness in a tuple
sumFitness = sum fs
2018-06-19 22:14:24 +00:00
es = genomeToEnzymeAmount . genome <$> plants
genomeToEnzymeAmount :: Genome -> LA . Vector Double
genomeToEnzymeAmount g = LA . accum ( LA . konst 0 ( maxCompound . snd $ env ) ) ( + ) $ ( \ ( e , q , a ) -> ( ( fromEnum . fst . snd . synthesis $ e ) - 1 , fromIntegral q * a ) ) <$> g
2018-06-14 09:56:28 +00:00
-- $C_{\Sigma,mu}$: Durchschnittliche Menge an produzierten Stoffen
-- $C_{\Sigma,sigma}$: Durchschnittliche Varianz an produzierten Stoffen
2018-06-14 10:25:31 +00:00
( c_sum_mu , c_sum_sigma ) = meanAndVar ` from ` sumProducedCompounds $ cs
2018-06-14 09:56:28 +00:00
-- - $C_{i,\mu}$: Durchschnittliche Anzahl produzierter Komponenten
-- - $C_{i,\sigma}$: Zusätzlich: Betrachtung der Varianz dieser Komponenten innerhalb der Population
-- (Z.B. Stoff A wird immer mit $0.5$ produziert, hat also keine Varianz,
-- wogegen Stoff B *im Schnitt* mit $0.5$ produziert wird, aber dies eine extreme
-- Varianz auslöst)
( c_i_mu , c_i_sigma ) = unzip $ meanAndVar ` from ` id <$> byProducts cs
-- - $C_{\sigma,\{\mu/\sigma\}}$: Mittelwert/Varianz von $\C_{i,\sigma}$
( c_sigma_mu , c_sigma_sigma ) = meanAndVar ` from ` id $ c_i_sigma
2018-06-19 22:14:24 +00:00
-- - $C_d$: Durchschnittliche Anzahl distinkter Produzierter Stoffe (sprich
-- nicht-endemisch, $#i | C_{i,\mu} < \epsilon$ )
isNotEndemicCompound :: LA . Vector Bool
isNotEndemicCompound = LA . fromList $ ( < 0.1 ) <$> c_i_mu
( c_d_mu , c_d_sigma ) = meanAndVar ` from ` countWith isNotEndemicCompound ( > 0.1 ) $ cs
-- - $E_{i,\mu}$: Durchschnittliche Anzahl produzierbarer Komponenten (falls ausgangsstoff verfügbar)
-- - $E_{i,\sigma}$: Zusätzlich: Betrachtung der Varianz dieser Komponenten innerhalb der Population
-- analog zu $C_{i,\mu/\sigma}$
( e_i_mu , e_i_sigma ) = unzip $ meanAndVar ` from ` id <$> byCompound es
-- - $E_d$: Durchschnittliche Anzahl distinkter Produzierter Stoffe (sprich
-- nicht-endemisch, $#i | E_{i,\mu} < \epsilon$ )
isNotEndemicEnzyme :: LA . Vector Bool
isNotEndemicEnzyme = LA . fromList $ ( < 0.5 ) <$> e_i_mu
( e_d_mu , e_d_sigma ) = meanAndVar ` from ` countWith isNotEndemicEnzyme ( > 0.5 ) $ es
2018-06-14 09:56:28 +00:00
-- - $\mathbf{E}[C_{\Sigma,plant} - C_{\Sigma,mu}]$: Durchschnittliche Abweichung der produzierten
-- Stoffe gegenüber dem Schnitt der Gesamtpopulation
e_hash_plant = F . mean ` from ` numDistinctCompounds $ cs
-- mean and variance of fitness
2018-06-08 00:16:17 +00:00
fns = meanAndVar ` from ` id $ fs
2018-06-14 09:56:28 +00:00
-- - $P_\{\mu,\sigma\}$ Mittelwert/Varianz der Anteile der Stoffe in Pflanze i, die giftig sind
2018-06-14 10:25:31 +00:00
toxs = meanAndVar ` from ` percentagePoisonous txns $ cs
2018-06-19 22:14:24 +00:00
when ( printEverything && curLoop ` mod ` printEvery == 0 ) $ liftIO $ do
printPopulation isNotEndemicEnzyme stringe ( zip3 plants fs cs )
2018-06-08 00:16:17 +00:00
putStrLn $ " Population statistics (mean,variance): "
2018-06-19 22:14:24 +00:00
putStrLn $ " Amount of Components produced = " ++ show ( c_sum_mu , c_sum_sigma )
putStrLn $ " Number of distinct Components = " ++ show ( c_d_mu , c_d_sigma )
putStrLn $ " Number of distinct Enzymes = " ++ show ( e_d_mu , e_d_sigma )
putStrLn $ " Fitness = " ++ show fns
putStrLn $ " Percentage of toxins in Cmpnds= " ++ show toxs
2018-06-03 23:37:58 +00:00
hFlush stdout
2018-06-08 00:16:17 +00:00
threadDelay $ 10 * 1000 -- sleep x*1000ns (=x ~ ms)
2018-06-21 14:15:43 +00:00
when ( curLoop ` mod ` logIter == 0 ) $ do
preds <- fmap fst <$> fromEnv predators
let numPlantsCanRepel = ( \ ir -> sum $ ( \ p -> if sum ( ( p LA .! ) <$> ir ) > 0 then 1 else 0 ) <$> cs ) . fmap fromEnum . irresistance <$> preds
addedData = intercalate " , " $ show <$> numPlantsCanRepel
2018-06-19 22:14:24 +00:00
tell $ show curLoop
++ " , " ++ show c_sum_mu ++ " , " ++ show c_sum_sigma
++ " , " ++ show c_d_mu ++ " , " ++ show c_d_sigma
++ " , " ++ show e_d_mu ++ " , " ++ show e_d_sigma
++ " , " ++ show ( fst fns ) ++ " , " ++ show ( snd fns )
++ " , " ++ show ( fst toxs ) ++ " , " ++ show ( snd toxs )
2018-06-21 14:15:43 +00:00
++ " , " ++ addedData
2018-06-03 14:17:31 +00:00
-- generate x new plants.
2018-06-08 00:16:17 +00:00
np <- fromEnv ( numPlants . settings )
2018-06-03 14:17:31 +00:00
sequence . flip fmap [ 1 .. np ] $ \ _ -> do
2018-05-02 21:39:22 +00:00
parent' <- liftIO $ randomRIO ( 0 , sumFitness )
let
-- if we only have one parent in our list, take it.
findParent :: Double -> [ ( Plant , Double ) ] -> Plant
findParent _ [ ( last , _ ) ] = last
-- otherwise count down x to find the parent in the list
findParent x ( ( p , f ) : ps )
| x < f = p
| otherwise = findParent ( x - f ) ps
parent = findParent parent' fps
haploMate parent
2018-06-08 00:16:17 +00:00
loop' loopAmount ( curLoop + 1 ) newPlants s
2018-05-01 15:09:25 +00:00
2018-06-19 22:14:24 +00:00
data CLIOptions = CLIOptions
2018-06-22 05:35:47 +00:00
{ environment :: Maybe FilePath
, logfile :: FilePath
, verbose :: Bool
, dumpEnvironment :: Bool
2018-06-19 22:14:24 +00:00
}
cliOptParser :: Parser CLIOptions
cliOptParser = CLIOptions
<$> optional ( strOption
( long " environment "
<> short 'e'
<> metavar " ENV "
<> help " Environment to load "
) )
<*> option str
( long " logfile "
<> short 'l'
<> metavar " LOG "
<> showDefault
<> value " simulation.log "
<> help " Name for the logfile "
)
2018-06-21 14:15:43 +00:00
<*> switch
( long " verbose "
<> short 'v'
<> help " show 'gui' during process "
)
2018-06-22 05:35:47 +00:00
<*> switch
( long " write-environment "
<> short 'w'
<> help " write environment used to $PWD/environment.json "
)
2018-06-19 22:14:24 +00:00
cliopts = info ( cliOptParser <**> helper )
( fullDesc
<> progDesc " Simulation of Biological Systems "
<> header " Chemodiversity made easy ;) "
)
2018-05-01 15:09:25 +00:00
main :: IO ()
2018-05-02 21:39:22 +00:00
main = do
2018-06-19 22:14:24 +00:00
opts <- execParser cliopts
2018-05-02 21:39:22 +00:00
hSetBuffering stdin NoBuffering
2018-06-19 22:14:24 +00:00
hSetBuffering stdout NoBuffering
2018-06-08 00:16:17 +00:00
randomCompounds <- makeHead ( Substrate PPM ) <$> generateTreeFromList 30 ( toEnum <$> [ ( maxCompoundWithoutGeneric + 1 ) .. ] :: [ Compound ] ) -- generate roughly x compounds
2018-05-15 17:01:38 +00:00
ds <- randoms <$> newStdGen
2018-06-19 22:14:24 +00:00
probs <- randomRs ( 0.2 , 0.7 ) <$> newStdGen
2018-06-03 14:17:31 +00:00
let poisonedTree = poisonTree ds randomCompounds
2018-06-08 10:10:28 +00:00
poisonCompounds = foldMap ( \ ( a , b ) -> [ ( b , a ) | a > 0 ] ) poisonedTree
predators <- generatePredators 0.0 poisonedTree
let poisonCompounds' = pruneCompounds poisonCompounds predators
pruneCompounds cs ps = filter ( ( ` elem ` usedPoisons ) . fst ) cs
where usedPoisons = concat $ irresistance <$> ps
2018-06-19 22:14:24 +00:00
( Just env ) <- case environment opts of
Nothing -> return . Just $ exampleEnvironment ( getTreeSize randomCompounds ) ( generateEnzymeFromTree randomCompounds ) ( zip predators probs ) poisonCompounds'
Just file -> do
putStrLn $ " reading environment: " ++ file
decodeStrict' <$> BS . readFile file
2018-06-08 00:16:17 +00:00
let emptyPlants = replicate ( numPlants . settings $ env ) emptyPlant
2018-06-21 14:15:43 +00:00
printEverything = verbose opts
2018-06-03 23:37:58 +00:00
enzs <- randomRs ( 0 , length ( possibleEnzymes env ) - 1 ) <$> newStdGen
2018-06-22 05:11:10 +00:00
let startPlants = randomGenome 2 enzs ( possibleEnzymes env ) emptyPlants
2018-06-19 22:14:24 +00:00
--writeFile "poison.twopi" $ generateDotFromPoisonTree "poison" 0.5 poisonedTree
2018-06-22 05:35:47 +00:00
when ( dumpEnvironment opts ) $ LBS . writeFile " environment.json " . encode $ env
2018-06-19 22:14:24 +00:00
when printEverything $ putStr " \ ESC [?1049h "
loghandle <- openFile ( logfile opts ) WriteMode
putStrLn $ " logging to: " ++ logfile opts
2018-06-21 14:15:43 +00:00
loop 2000 startPlants ( loghandle , env ) opts
2018-06-21 12:55:52 +00:00
hClose loghandle
2018-06-19 22:14:24 +00:00
when printEverything $ do
putStrLn " Simulation ended. Press key to exit. "
_ <- getChar
putStr " \ ESC [?1049l "
2018-05-02 21:39:22 +00:00
2018-06-03 23:37:58 +00:00
randomGenome :: Int -> [ Int ] -> [ Enzyme ] -> [ Plant ] -> [ Plant ]
randomGenome num inds enzs [] = []
randomGenome num inds enzs ( p : ps ) = p { genome = genes } : randomGenome num r enzs ps
where
i' = take num inds
r = drop num inds
enzymes = ( enzs !! ) <$> i'
2018-06-22 05:11:10 +00:00
genes = ( \ e -> ( e , 1 , 0.5 ) ) <$> enzymes
2018-06-03 23:37:58 +00:00
2018-05-15 17:01:38 +00:00
generatePredators :: Double -> EnzymeTree s ( Double , Compound ) -> IO [ Predator ]
generatePredators threshold t = do
ps <- mapM generatePredators' $ getSubTrees t
2018-05-23 11:07:34 +00:00
return $ filter ( ( /= [] ) . irresistance ) $ concat ps -- filter out predators that are resistant to everything because this does not make sense in our model.
2018-05-15 17:01:38 +00:00
where
2018-05-23 11:13:20 +00:00
generatePredators' :: EnzymeTree s ( Double , Compound ) -> IO [ Predator ]
2018-05-15 17:01:38 +00:00
generatePredators' t = do -- not fully resistant to t, but fully resistant to everything in ts
2018-05-23 11:13:20 +00:00
let comps = foldMap ( \ ( a , b ) -> [ ( a , b ) | a > threshold ] ) t
2018-05-15 17:01:38 +00:00
amount <- randomRIO ( 0 , length comps + 1 ) :: IO Int
forM [ 1 .. amount ] $ \ _ -> do
2018-06-03 23:37:58 +00:00
impact <- randomRIO ( 0.2 , 0.7 )
2018-05-15 17:01:38 +00:00
rands <- randoms <$> newStdGen
2018-05-23 11:13:20 +00:00
let unresists = foldMap ( \ ( ( a , b ) , r ) -> [ b | r * 2 < a ] ) $ zip comps rands
2018-06-03 14:17:31 +00:00
return $ Predator unresists impact 1
2018-05-15 17:01:38 +00:00
2018-05-02 21:39:22 +00:00
printEnvironment :: Environment -> IO ()
2018-06-03 14:17:31 +00:00
printEnvironment ( Environment soil pred metaIter maxComp toxic possEnz settings ) =
2018-05-02 21:39:22 +00:00
do
putStrLn " Environment: "
putStrLn $ " Soil: " ++ show soil
putStrLn $ " Predators: " ++ show pred
putStrLn $ " PSM Iters: " ++ show metaIter
putStrLn $ " Compounds: " ++ show ( ( toEnum <$> [ 0 .. maxComp ] ) :: [ Compound ] )
putStrLn $ " Toxic: " ++ show toxic
2018-06-03 14:17:31 +00:00
putStrLn $ " Settings: " ++ show settings
2018-05-02 21:39:22 +00:00
2018-06-19 22:14:24 +00:00
printPopulation :: LA . Vector Bool -> [ ( Enzyme , String ) ] -> [ ( Plant , Double , LA . Vector Amount ) ] -> IO ()
printPopulation endemic es ps = do
2018-05-02 21:39:22 +00:00
let padded i str = take i $ str ++ repeat ' '
2018-06-08 00:16:17 +00:00
n = length ps
fitnesses = ( \ ( _ , f , _ ) -> f ) <$> ps
meanFitness = sum fitnesses / fromIntegral n
maxFitness = maximum fitnesses
2018-06-22 05:11:10 +00:00
putStr $ padded 50 ( " Population: (fitness: mean " ++ padded 5 ( show meanFitness ) ++ " , max: " ++ padded 5 ( show maxFitness ) ++ " ) " )
2018-06-08 00:16:17 +00:00
forM_ ps $ \ ( _ , f , _ ) -> putStr ( printColor ( f / maxFitness ) '█' )
2018-05-02 21:39:22 +00:00
putStrLn colorOff
2018-06-19 22:14:24 +00:00
forM_ es $ \ ( e , s ) -> do
let enzymeProductNum = fromEnum . fst . snd . synthesis $ e
if LA . toList endemic !! ( enzymeProductNum - 1 ) then putStr " > " else putStr " "
2018-06-03 14:17:31 +00:00
putStr s
2018-06-03 23:37:58 +00:00
forM_ ps $ \ ( Plant g _ , _ , cs ) -> do
2018-05-15 17:01:38 +00:00
let curE = sum $ map ( \ ( _ , q , a ) -> fromIntegral q * a )
2018-05-02 21:39:22 +00:00
. filter ( \ ( e' , _ , _ ) -> e == e' )
$ g
plot x
2018-06-03 23:37:58 +00:00
| x > 2 = 'O'
| x > 1 = '+'
| x > 0.7 = 'ö'
| x > 0.5 = 'o'
| x > 0 = '.'
| otherwise = '_'
2018-06-19 22:14:24 +00:00
amount = min 2 $ cs LA .! fromEnum ( fst . snd . synthesis $ e )
2018-06-03 23:37:58 +00:00
putStr $ printColor ( amount / 2 ) ( plot curE )
putStrLn colorOff
2018-05-02 21:39:22 +00:00
printColor :: Double -> Char -> String
printColor x c
2018-06-08 00:16:17 +00:00
| x > 1 = " Error: " ++ show x
2018-05-04 22:23:40 +00:00
| x * x < 0.5 = " \ ESC [38;5; " ++ show ( 16 + 36 * 5 + 6 * floor ( 5 * 2 * x' ) + 0 ) ++ " m " ++ [ c ] ++ " "
| otherwise = " \ ESC [38;5; " ++ show ( 16 + 36 * floor ( 5 * 2 * ( 1 - x' ) ) + 6 * 5 + 0 ) ++ " m " ++ [ c ] ++ " "
2018-05-02 21:39:22 +00:00
-- 32 bit
-- | x*x < 0.5 = "\ESC[38;2;255;" ++ (show . floor $ 255*2*x') ++ ";0m" ++ [c] ++ ""
-- | otherwise = "\ESC[38;2;" ++ (show . floor $ 255*2*(1-x')) ++ ";255;0m" ++ [c] ++ ""
where x' = x * x
colorOff :: String
colorOff = " \ ESC [0m "
2018-05-06 22:44:12 +00:00
generateEnzymeFromTree :: EnzymeTree s Compound -> [ Enzyme ]
generateEnzymeFromTree t = ( makeSimpleEnzyme c . getElement <$> sts )
++ concatMap generateEnzymeFromTree sts
where
c = getElement t
sts = getSubTrees t
2018-06-07 10:56:05 +00:00
stepDebug a = liftIO $ print a >> void getChar