3.0 KiB
B-Spline Volumes
B-Spline Volumes are a simple extension of B-Splines to 3 Dimensions. This is a straightforward adaption of the 2-Dimensional version.
Nomenclature
x,y,z
denote space-coordinates,
u,v,w
denote spline-coordinates (Between 0-1),
P_{ijk}
denote the control-Points on the control-Polygon,
N_{i,d,\tau}(u)
denote the value of the underlying Basis-Functions at value
u
using the $i$-th Basis-Function of degree d
in range \tau
.
For our case we only care about degree-3 splines, so we omit the d furtheron.
\tau
is defined statically (in each direction) with each P
as Position on the whole surface/volume and within [0,1].
For a regular Control-Grid this defaults to \tau_i = i/n
Given n,m,o
control points in $x,y,z$-direction each Point on the curve is
defined by
C(u,v,w) = \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} P_{ijk} N_{i}(u) N_j(v) N_k(w)
Calculate u, v, w
Given a target-point \textbf{p}^*
and an initial guess \textbf{p}=C(u,v,w)
we
define the error-function as:
Err(u,v,w,\textbf{p}^{*}) = \textbf{p}^{*} - C(u,v,w)
Err_x(u,v,w,\textbf{p}^{*}) = p^{*}_x - \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N_{i}(u) N_j(v) N_k(w)
To solve this we derive:
\begin{array}{rl}
\displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N_{i}(u) N_j(v) N_k(w) \\
= & \displaystyle - \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N'_{i}(u) N_j(v) N_k(w)
\end{array}
The other partial derivatives follow the same pattern yiedling the Jacobian:
J(Err(u,v,w)) =
\left(
\begin{array}{ccc}
\frac{\partial Err_x}{\partial u} & \frac{\partial Err_x}{\partial v} & \frac{\partial Err_x}{\partial w} \\
\frac{\partial Err_y}{\partial u} & \frac{\partial Err_y}{\partial v} & \frac{\partial Err_y}{\partial w} \\
\frac{\partial Err_z}{\partial u} & \frac{\partial Err_z}{\partial v} & \frac{\partial Err_z}{\partial w}
\end{array}
\right)
Iterate with
J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)
using Cramers rule for solving the SLE.
Basis-Splines and Derivatives
The previously mentioned N_{i,d,\tau}
are defined recursively:
N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[ \\ 0, & \mbox{otherwise} \end{cases}
and
N_{i,d,\tau}(u) = \frac{u-\tau_i}{\tau_{i+d}} N_{i,d-1,\tau}(u) + \frac{\tau_{i+d+1} - u}{\tau_{i+d+1}-\tau_{i+1}} N_{i+1,d-1,\tau}(u)
This fact can be exploited to get the derivative for an arbitrary N
:
\frac{d}{du} N_{i,d,r}(u) = \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u)
Warning: in the case of d=1
the recursion-formula yields a 0
denominator, but N
is also 0
. The right solution for this case is a derivative of 0