converted to XeLaTeX & more Intro

This commit is contained in:
Nicole Dresselhaus 2017-10-08 01:07:37 +02:00
parent 8b87f599ec
commit 95c55e3c15
Signed by: Drezil
GPG Key ID: 057D94F356F41E25
9 changed files with 174 additions and 61 deletions

View File

@ -1,11 +1,11 @@
all: ma.md bibma.bib template.tex settings/abkuerzungen.tex settings/commands.tex settings/environments.tex settings/hyphenation.tex settings/packages.tex files/titlepage.tex files/erklaerung.tex
pandoc -s -N --template=template.tex ma.md -o ma.tex
rm -f ma.pdf ma.aux ma.idx ma.lof ma.log ma.lot ma.out ma.tdo ma.toc ma.bbl ma.blg ma.loa
pdflatex -interaction batchmode ma.tex || true
xelatex -interaction batchmode ma.tex || true
bibtexu ma
pdflatex -interaction batchmode ma.tex || true
xelatex -interaction batchmode ma.tex || true
while test `cat ma.log | grep -e "\(Rerun to get citations correct\)" | wc -l` -gt 0 ; do \
rm ma.log && (pdflatex -interaction batchmode ma.tex || true) \
rm ma.log && (xelatex -interaction batchmode ma.tex || true) \
done
rm -f ma.aux ma.idx ma.lof ma.lot ma.out ma.tdo ma.toc ma.bbl ma.blg ma.loa
# rm -f ma.log

View File

@ -1,6 +1,9 @@
10x10x10 3x variablität errechnen
- variablität soll sich unterscheiden -> Plot
- Punkte in der Mitte tragen nichts zur Parametrisierung bei, da zu weit weg
4x5x4, 4x4x7 100x rechnen + plotten
4x4x5, 7x4x4 100x rechnen + plotten
- 1. done, 2. rechnet
1D-Fall noch 7x4, 4x7 und 7x7 als hochauflösendes.
- done

View File

@ -87,3 +87,31 @@ doi = {10.1137/0111030},
URL = {https://doi.org/10.1137/0111030},
eprint = {https://doi.org/10.1137/0111030}
}
@article{minai2006complex,
title={Complex engineered systems: A new paradigm},
author={Minai, Ali A and Braha, Dan and Bar-Yam, Yaneer},
journal={Complex engineered systems: Science meets technology},
pages={1--21},
year={2006},
publisher={Springer},
url={https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf}
}
@article{wagner1996complex,
title={COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY},
author={WAGNER, GUNTER P and ALTENBERG23, LEE},
journal={Evolution},
volume={50},
number={3},
pages={967--976},
year={1996},
url={http://arep.med.harvard.edu/pdf/Wagner96.pdf},
}
@inproceedings{richter2015evolvability,
title={Evolvability of representations in complex system engineering: a survey},
author={Richter, Andreas and Botsch, Mario and Menzel, Stefan},
booktitle={Evolutionary Computation (CEC), 2015 IEEE Congress on},
pages={1327--1335},
year={2015},
organization={IEEE},
url={http://www.graphics.uni-bielefeld.de/publications/cec15.pdf}
}

View File

@ -2,11 +2,10 @@
\thispagestyle{empty}
\vspace*{\stretch{1}}
\noindent
{\huge Erklärung}\\[1cm]
{\huge Declaration of own work(?)}\\[1cm]
I hereby declare that this thesis is my own work and effort. Where other sources of information have been used, they have been acknowledged.
blah blah
\\[2cm]
\improvement[inline]{write proper declaration..}
%\\[2cm]
Bielefeld, den \today\hspace{\fill}
\parbox[t]{5cm}{\dotfill\\ \centering Stefan Dresselhaus}
\vspace*{\stretch{3}}

View File

@ -24,20 +24,54 @@ Unless otherwise noted the following holds:
# Introduction
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline
Wieso untersuchen wir das überhaupt?\newline
Wieso untersuchen wir das überhaupt? \cmark \newline
Aufbau der Arbeit? \xmark \newline
Mehr Bilder}
In this Master Thesis we try to extend a previously proposed concept of
predicting the evolvability of \acf{FFD} given a
Deformation-Matrix\cite{anrichterEvol}. In the original publication the author
used random sampled points weighted with \acf{RBF} to deform the mesh and
defined three different criteria that can be calculated prior to using an
evolutional optimization algorithm to asses the quality and potential of such
optimization.
Many modern industrial design processes require advanced optimization methods
do to the increased complexity. These designs have to adhere to more and more
degrees of freedom as methods refine and/or other methods are used. Examples for
this are physical domains like aerodynamic (i.e. drag), fluid dynamics (i.e.
throughput of liquid) -- where the complexity increases with the temporal and
spatial resolution of the simulation -- or known hard algorithmic problems in
informatics (i.e. layouting of circuit boards or stacking of 3D-objects).
Moreover these are typically not static environments but requirements shift over
time or from case to case.
Evolutional algorithms cope especially well with these problem domains while
addressing all the issues at hand\cite{minai2006complex}. One of the main
concerns in these algorithms is the formulation of the problems in terms of a
genome and a fitness function. While one can typically use an arbitrary
cost-function for the fitness-functions (i.e. amount of drag, amount of space,
etc.), the translation of the problem-domain into a simple parametric
representation can be challenging.
The quality of such a representation in biological evolution is called
*evolvability*\cite{wagner1996complex} and is at the core of this thesis.
However, there is no consensus on how *evolvability* is defined and the meaning
varies from context to context\cite{richter2015evolvability}.
As we transfer the results of Richter et al.\cite{anrichterEvol} from using
\acf{RBF} as a representation to manipulate a geometric mesh to the use of
\acf{FFD} we will use the same definition for evolvability the original author
used, namely *regularity*, *variability*, and *improvement potential*. We
introduce these term in detail in Chapter \ref{sec:intro:rvi}.
In the original publication the author used random sampled points weighted with
\acf{RBF} to deform the mesh and showed that the mentioned criteria of
*regularity*, *variability*, and *improvement potential* correlate with the quality
and potential of such optimization.
We will replicate the same setup on the same meshes but use \acf{FFD} instead of
\acf{RBF} to create a deformation and evaluate if the evolution-criteria still
work as a predictor given the different deformation scheme.
\acf{RBF} to create a local deformation near the control points and evaluate if
the evolution-criteria still work as a predictor given the different deformation
scheme, as suspected in \cite{anrichterEvol}.
## Outline of this thesis
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?}
# Background
## What is \acf{FFD}?
\label{sec:intro:ffd}
@ -150,6 +184,7 @@ optimization has one more advantage as you get bad solutions fast, which refine
over time.
## Criteria for the evolvability of linear deformations
\label{sec:intro:rvi}
### Variability
@ -286,7 +321,7 @@ To solve this we derive partially, like before:
$$
\begin{array}{rl}
\displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x \\
= & \displaystyle - \sum_i \sum_j \sum_k N'_i(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x
= & \displaystyle - \sum_i \sum_j \sum_k N'_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x
\end{array}
$$
@ -302,10 +337,17 @@ J(Err(u,v,w)) =
\end{array}
\right)
$$
\unsure[inline]{Should I add an informal complete derivative?\newline
Like leaving out Sums & $i,j,k$-Indices to make obvious what derivative belongs
where in what case?}
$$
\scriptsize
=
\left(
\begin{array}{ccc}
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_x \\
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_y \\
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_z
\end{array}
\right)
$$
With the Gauss-Newton algorithm we iterate via the formula
$$J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)$$
@ -319,6 +361,9 @@ linear equations.
- Deformation ist um einen Kontrollpunkt viel direkter zu steuern.
- => DM-FFD?
# Scenarios for testing evolvability criteria using \acf{FFD}
## Test Scenario: 1D Function Approximation
### Optimierungszenario

Binary file not shown.

View File

@ -148,18 +148,60 @@ Unless otherwise noted the following holds:
\chapter{Introduction}\label{introduction}
In this Master Thesis we try to extend a previously proposed concept of
predicting the evolvability of \acf{FFD} given a
Deformation-Matrix\cite{anrichterEvol}. In the original publication the
author used random sampled points weighted with \acf{RBF} to deform the
mesh and defined three different criteria that can be calculated prior
to using an evolutional optimization algorithm to asses the quality and
potential of such optimization.
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline
Wieso untersuchen wir das überhaupt? \cmark \newline
Aufbau der Arbeit? \xmark \newline
Mehr Bilder}
Many modern industrial design processes require advanced optimization
methods do to the increased complexity. These designs have to adhere to
more and more degrees of freedom as methods refine and/or other methods
are used. Examples for this are physical domains like aerodynamic
(i.e.~drag), fluid dynamics (i.e.~throughput of liquid) -- where the
complexity increases with the temporal and spatial resolution of the
simulation -- or known hard algorithmic problems in informatics
(i.e.~layouting of circuit boards or stacking of 3D-objects). Moreover
these are typically not static environments but requirements shift over
time or from case to case.
Evolutional algorithms cope especially well with these problem domains
while addressing all the issues at hand\cite{minai2006complex}. One of
the main concerns in these algorithms is the formulation of the problems
in terms of a genome and a fitness function. While one can typically use
an arbitrary cost-function for the fitness-functions (i.e.~amount of
drag, amount of space, etc.), the translation of the problem-domain into
a simple parametric representation can be challenging.
The quality of such a representation in biological evolution is called
\emph{evolvability}\cite{wagner1996complex} and is at the core of this
thesis. However, there is no consensus on how \emph{evolvability} is
defined and the meaning varies from context to
context\cite{richter2015evolvability}.
As we transfer the results of Richter et al.\cite{anrichterEvol} from
using \acf{RBF} as a representation to manipulate a geometric mesh to
the use of \acf{FFD} we will use the same definition for evolvability
the original author used, namely \emph{regularity}, \emph{variability},
and \emph{improvement potential}. We introduce these term in detail in
Chapter \ref{sec:intro:rvi}.
In the original publication the author used random sampled points
weighted with \acf{RBF} to deform the mesh and showed that the mentioned
criteria of \emph{regularity}, \emph{variability}, and \emph{improvement
potential} correlate with the quality and potential of such
optimization.
We will replicate the same setup on the same meshes but use \acf{FFD}
instead of \acf{RBF} to create a deformation and evaluate if the
evolution-criteria still work as a predictor given the different
deformation scheme.
instead of \acf{RBF} to create a local deformation near the control
points and evaluate if the evolution-criteria still work as a predictor
given the different deformation scheme, as suspected in
\cite{anrichterEvol}.
\section{Outline of this thesis}\label{outline-of-this-thesis}
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?}
\chapter{Background}\label{background}
\section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is}
@ -281,6 +323,8 @@ you get bad solutions fast, which refine over time.
\section{Criteria for the evolvability of linear
deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
\label{sec:intro:rvi}
\subsection{Variability}\label{variability}
In \cite{anrichterEvol} variability is defined as
@ -424,7 +468,7 @@ To solve this we derive partially, like before:
\[
\begin{array}{rl}
\displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x \\
= & \displaystyle - \sum_i \sum_j \sum_k N'_i(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x
= & \displaystyle - \sum_i \sum_j \sum_k N'_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x
\end{array}
\]
@ -440,12 +484,18 @@ J(Err(u,v,w)) =
\frac{\partial Err_z}{\partial u} & \frac{\partial Err_z}{\partial v} & \frac{\partial Err_z}{\partial w}
\end{array}
\right)
\] \[
\scriptsize
=
\left(
\begin{array}{ccc}
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_x \\
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_y \\
- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_z
\end{array}
\right)
\]
\unsure[inline]{Should I add an informal complete derivative?\newline
Like leaving out Sums & $i,j,k$-Indices to make obvious what derivative belongs
where in what case?}
With the Gauss-Newton algorithm we iterate via the formula
\[J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)\]
and use Cramers rule for inverting the small Jacobian and solving this
@ -463,6 +513,10 @@ system of linear equations.
=\textgreater{} DM-FFD?
\end{itemize}
\chapter{\texorpdfstring{Scenarios for testing evolvability criteria
using
\acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
\section{Test Scenario: 1D Function
Approximation}\label{test-scenario-1d-function-approximation}

View File

@ -131,25 +131,6 @@
\newcommand{\myquote}[1]{\glqq{}#1\grqq{}} % richtige Anfuehrungszeichen: ,, Bla ''
% \newcommand{\str}[1]{{\tt{}#1}} % einheitliche formatierung fuer zeichenketten
% ##### draft #####
\newcommand{\ignore}[1]{}
\newcommand\info[1]{\marginpar{\begin{center}#1\end{center}}}
\newcommand\note{\marginpar{\begin{center}$\longleftarrow$\end{center}}}
\newcommand\picmis[1]{$$\boxed{\mbox{\ttfamily picture #1}}$$}
%Todo am Rand notieren
\begin{comment}
% DONE WITH \usepackage{todo}
\newcommand{\todo}[1]{%
\ensuremath{\bigstar}%
\marginpar{%
\begin{flushleft}%
\vspace{-1.5\baselineskip}%
{\small TODO\ \ensuremath{\bigstar}\\#1}%
\end{flushleft}%
}%
}%
\end{comment}
\newcommand\opdown[2]{\lower0.75em\hbox{$\stackrel{\displaystyle#1}{\scriptstyle#2}$}}
\newcommand\toconv[2]{\;\lower0.5em\hbox{$\stackrel{\longrightarrow}{\scriptstyle#1\to#2}$}}
\newcommand\wildcard[1]{\fbox{\ttfamily Platzhalter: #1}}
@ -179,3 +160,6 @@
\newcommandx{\info}[2][1=]{\todo[linecolor=OliveGreen,backgroundcolor=OliveGreen!25,bordercolor=OliveGreen,#1]{\textbf{Info:} #2}}
\newcommandx{\improvement}[2][1=]{\todo[linecolor=violet,backgroundcolor=violet!25,bordercolor=violet,#1]{\textbf{Improvement:} #2}}
\newcommandx{\thiswillnotshow}[2][1=]{\todo[disable,#1]{#2}}
\renewcommand\cmark{\textcolor{OliveGreen}{\ding{51}}}
\renewcommand\xmark{\textcolor{Maroon}{\ding{55}}}

View File

@ -1,3 +1,4 @@
\usepackage[dvipsnames]{xcolor}
\usepackage{acronym} % acronym list and writing acronyms full length exactly once
% \usepackage{amsfonts}
\usepackage{amsmath} %\align
@ -15,7 +16,7 @@
\usepackage{color} %\colorbox
\usepackage{dsfont} %\mathds
\usepackage{draftwatermark}
\SetWatermarkLightness{0.95} % default: 0.8
\SetWatermarkLightness{0.9} % default: 0.8
\usepackage{epigraph}
% \usepackage{euler} % euler: uni, eucal: baake, ohne: standard
\usepackage{eucal} % euler calligraphy
@ -36,11 +37,11 @@
\usepackage{mathtools}
\usepackage{multirow}
\usepackage{nicefrac}
\usepackage[numbers,square,sort=none]{natbib}
\newcommand*{\refname}{References}
\usepackage[numbers,square,sort]{natbib}
\usepackage{patchcmd}
%\usepackage[draft]{pdfpages}
\usepackage{pdfpages}
\usepackage{pifont}
%\usepackage{pst-all} % PSTricks-Grafikerstellung
%\usepackage{pstricks}
%\usepackage{qtree} % baum
@ -62,7 +63,6 @@
\usepackage{verbatim} % \begin{comment} \end{comment}
\usepackage{wrapfig}
% \usepackage{wasysym}
\usepackage[pdftex,dvipsnames]{xcolor}
\usepackage{xspace} % intelligent \makro_ whitespace
\usepackage{xargs} % use more than one optional parameter in new commands