htrace/src/Scene/Renderer.hs
2014-10-24 22:47:01 +02:00

118 lines
4.8 KiB
Haskell

{-# LANGUAGE OverloadedStrings #-}
module Scene.Renderer (render) where
import Control.Applicative
import Control.Arrow
import Codec.Picture.Png
import Codec.Picture.Types
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as B8
import Data.Vector hiding ((++),map, foldl, filter, foldl1)
import Data.Word (Word8)
import Data.Maybe
import Linear
import Scene.Parser
import Scene.Types
import Debug.Trace
data Ray = Ray (V3 Float) (V3 Float)
-- | Collision position normal distance object
data Collision = Collision (V3 Float) (V3 Float) Float Collidable
deriving (Eq)
instance Ord Collision where
compare (Collision _ _ a _) (Collision _ _ b _) = compare a b
render :: Int -> Int -> Scene -> Int -> PixelRGB8
render w h s index = PixelRGB8 (ci cr) (ci cg) (ci cb)
where
(V3 cr cg cb) =
case raytrace ray s of
Nothing -> bgColor $ sceneBackground s
Just c@(Collision pos _ _ obj) ->
-- ambient lighting
((*) <$> (ambColor . ambientLight $ s) <*> (materialAmbience . getMaterial $ obj))
-- + diffuse lighting
^+^ (foldl1 (^+^) $ (diffuse c s) <$> sceneLights s)
-- + reflections - TODO
ray = camRay x y (sceneCamera s)
y = fromIntegral $ index `mod` w
x = fromIntegral $ index `div` w
ci = floor . (clamp 0 255) . (*255)
--wrong format:
--Ray (eye cam) $ rotCam x y w h (center cam ^-^ eye cam) (up cam) (fovy cam)
--cam = sceneCamera s
diffuse :: Collision -> Scene -> Light -> V3 Float
diffuse (Collision pos n _ obj) s (Light lpos color int) =
case blocked of
Nothing -> ill
Just (Collision _ _ dist _) -> if dist < norm lightdir
then
V3 0 0 0 --light is blocked -> no lighting from here.
else
ill
where
-- angle of light * (color * material)
ill = (*) (dot n $ normalize lightdir) <$> ((*) <$> color ^* i <*> materialDiffuse mat)
mat = getMaterial obj
blocked = raytrace (Ray pos lightdir) s
lightdir = (lpos ^-^ pos)
i = case int of
Nothing -> 1
Just a -> a
clamp :: Ord a => a -> a -> a -> a
clamp min max x
| x < min = min
| x > max = max
| otherwise = x
raytrace :: Ray -> Scene -> Maybe Collision
raytrace r s = case possibleCollisions of
[] -> Nothing
_ -> Just $ foldl1 min possibleCollisions
where
possibleCollisions :: [Collision]
possibleCollisions = map fromJust $ filter isJust $ (intersect r) <$> (sceneObjects s)
camRay :: Float -> Float -> Camera -> Ray
camRay x y c = Ray (eye c) (lowerLeft c ^+^ x *^ xDir c ^+^ y *^ yDir c ^-^ eye c)
rotateDegAx :: Float -> V3 Float -> V3 Float -> V3 Float
rotateDegAx phi axis = rotate q
where
q = axisAngle axis phi
intersect :: Ray -> Collidable -> Maybe Collision
intersect (Ray ro rd) s@(S (Sphere sc sr _)) = if (d > 0 && int > 0) then
Just (Collision pos (normalize $ pos ^-^ sc) int s)
else
Nothing
where
a = dot rd rd
b = 2 * dot rd oc
c = dot oc oc - sr*sr
d = b * b - 4 * a * c
oc = ro ^-^ sc
pos = ro ^+^ (rd ^* int)
int = case ints of
[] -> 0
a -> foldl1 min a
ints = filter (uncurry (&&).(&&&) (>0.00001) (not.isNaN)) [(-b-(sqrt d))/(2*a),(-b+(sqrt d))/(2*a)]
intersect _ _ = undefined
-- deprecated - wrong calculation of rays.
rotCam :: Float -> Float -> Int -> Int -> V3 Float -> V3 Float -> Float -> V3 Float
rotCam x y w h dir up fovy = rotxy
where
rotxy = rotateDegAx (rad $ fovy*dy) (cross up roty) roty
roty = rotateDegAx (rad $ fovy*dx*(-1)) up dir
dx = (x - (fromIntegral w) / 2)/(fromIntegral w)
dy = (y - (fromIntegral h) / 2)/(fromIntegral h)
rad = (*pi).(/180)