Rechtschreibfehler

This commit is contained in:
tpajenka 2014-04-18 12:08:40 +02:00
parent 8c324c4a19
commit c790343a31
2 changed files with 1 additions and 1 deletions

Binary file not shown.

View File

@ -233,7 +233,7 @@ Der rekursive Funktionsaufruf findet in Zeile~14 statt. Hier werden iterativ all
\medskip \medskip
Anschließend partitionieren wir die expandierten Graphen in maximal erweiterte und in weiter expandierbare (Z.~10). Letztere filtern wir noch (Z.~11) nach Duplikaten, um redundante Weiterberechnung (und damit einen erhöhten Rechenaufwand) zu vermeiden. Zurückgeliefert werden somit alle Graphen, die maximal expandiert sind. \par Anschließend partitionieren wir die expandierten Graphen in maximal erweiterte und in weiter expandierbare (Z.~10). Letztere filtern wir noch (Z.~11) nach Duplikaten, um redundante Weiterberechnung (und damit einen erhöhten Rechenaufwand) zu vermeiden. Zurückgeliefert werden somit alle Graphen, die maximal expandiert sind. \par
\medskip \medskip
Die Funktion \texttt{expand} wird letztendlich für jeden Graphen genau einmal aufgerufen. Der Rechenaufwand der $m$-ten Expansionsstufe mit $s$ Graphen ist zusammen mit der Filterung doppelter Graphen $\mathcal{O}(s m \cdot (n (k+m)+ \log s))$, für schwach vernetzte Eingabegraphen eher $\mathcal{O}(s m \cdot (n k + \log s))$. $k$ ist die Anzahl an Attributen und $n$ die Größe der Adjazenzmatrix. Allerdings wächst die Anzahl der Graphen pro Iteration im ungünstigsten Fall exponentiell an, woraus sich die Schwierigkeit des Problem als NP-schwer ergibt. In schwach vernetzten Eingabegraphen ist jedoch zu erwarten, dass die anfänglichen Seed-Graphen kaum erweitertbar sind, wodurch sich der gesamte Rechenaufwand stark reduziert. Dennoch besteht viel Potential zur Parallelisierung der Berechnung zur Verkürzung der Rechenzeit. Die Funktion \texttt{expand} wird letztendlich für jeden Graphen genau einmal aufgerufen. Der Rechenaufwand der $m$-ten Expansionsstufe mit $s$ Graphen ist zusammen mit der Filterung doppelter Graphen $\mathcal{O}(s m \cdot (n (k+m)+ \log s))$, für schwach vernetzte Eingabegraphen eher $\mathcal{O}(s m \cdot (n k + \log s))$. $k$ ist die Anzahl an Attributen und $n$ die Größe der Adjazenzmatrix. Allerdings wächst die Anzahl der Graphen pro Iteration im ungünstigsten Fall exponentiell an, woraus sich die Schwierigkeit des Problem als NP-schwer ergibt. In schwach vernetzten Eingabegraphen ist jedoch zu erwarten, dass die anfänglichen Seed-Graphen kaum erweiterbar sind, wodurch sich der gesamte Rechenaufwand stark reduziert. Dennoch besteht viel Potential zur Parallelisierung der Berechnung zur Verkürzung der Rechenzeit.
\section{Ausführung und Auswertung} \section{Ausführung und Auswertung}
%TODO %TODO