diff --git a/doc/ausarbeitung/hgraph_doc.pdf b/doc/ausarbeitung/hgraph_doc.pdf index ef7e82e..f032c42 100644 Binary files a/doc/ausarbeitung/hgraph_doc.pdf and b/doc/ausarbeitung/hgraph_doc.pdf differ diff --git a/doc/ausarbeitung/hgraph_doc.tex b/doc/ausarbeitung/hgraph_doc.tex index 89c06df..225bd55 100644 --- a/doc/ausarbeitung/hgraph_doc.tex +++ b/doc/ausarbeitung/hgraph_doc.tex @@ -233,7 +233,7 @@ Der rekursive Funktionsaufruf findet in Zeile~14 statt. Hier werden iterativ all \medskip Anschließend partitionieren wir die expandierten Graphen in maximal erweiterte und in weiter expandierbare (Z.~10). Letztere filtern wir noch (Z.~11) nach Duplikaten, um redundante Weiterberechnung (und damit einen erhöhten Rechenaufwand) zu vermeiden. Zurückgeliefert werden somit alle Graphen, die maximal expandiert sind. \par \medskip -Die Funktion \texttt{expand} wird letztendlich für jeden Graphen genau einmal aufgerufen. Der Rechenaufwand der $m$-ten Expansionsstufe mit $s$ Graphen ist zusammen mit der Filterung doppelter Graphen $\mathcal{O}(s m \cdot (n (k+m)+ \log s))$, für schwach vernetzte Eingabegraphen eher $\mathcal{O}(s m \cdot (n k + \log s))$. $k$ ist die Anzahl an Attributen und $n$ die Größe der Adjazenzmatrix. Allerdings wächst die Anzahl der Graphen pro Iteration im ungünstigsten Fall exponentiell an, woraus sich die Schwierigkeit des Problem als NP-schwer ergibt. In schwach vernetzten Eingabegraphen ist jedoch zu erwarten, dass die anfänglichen Seed-Graphen kaum erweitertbar sind, wodurch sich der gesamte Rechenaufwand stark reduziert. Dennoch besteht viel Potential zur Parallelisierung der Berechnung zur Verkürzung der Rechenzeit. +Die Funktion \texttt{expand} wird letztendlich für jeden Graphen genau einmal aufgerufen. Der Rechenaufwand der $m$-ten Expansionsstufe mit $s$ Graphen ist zusammen mit der Filterung doppelter Graphen $\mathcal{O}(s m \cdot (n (k+m)+ \log s))$, für schwach vernetzte Eingabegraphen eher $\mathcal{O}(s m \cdot (n k + \log s))$. $k$ ist die Anzahl an Attributen und $n$ die Größe der Adjazenzmatrix. Allerdings wächst die Anzahl der Graphen pro Iteration im ungünstigsten Fall exponentiell an, woraus sich die Schwierigkeit des Problem als NP-schwer ergibt. In schwach vernetzten Eingabegraphen ist jedoch zu erwarten, dass die anfänglichen Seed-Graphen kaum erweiterbar sind, wodurch sich der gesamte Rechenaufwand stark reduziert. Dennoch besteht viel Potential zur Parallelisierung der Berechnung zur Verkürzung der Rechenzeit. \section{Ausführung und Auswertung} %TODO