Haddock in DCB, unnötiges Argument in 'preprocess' entfern (density) und Haddock in Utils korrigiert

This commit is contained in:
tpajenka 2013-12-03 01:06:56 +01:00
parent 03a34eac8e
commit 52c3afa427
3 changed files with 71 additions and 33 deletions

View File

@ -30,24 +30,31 @@ import Data.Int
import qualified Data.Vector.Unboxed as V
import Debug.Trace
-- | a one-dimensional array
type Vector r e = Array r DIM1 e
-- | a two-dimensional array
type Matrix r e = Array r DIM2 e
-- | A 'Matrix' of attribute values assigned to a graphs nodes.
-- Each row contains the corresponding nodes attribute values.
type Attr = Matrix A.U Double
-- | Adjacency-Matrix
type Adj = Matrix A.U Int16
-- | Matrix of constraints
--TODO: Haddoc!
-- | Matrix storing the extent of a 'Graph's constraints fulfillment.
-- It stores the minimum (zeroth column) and maximum (first column) value of all
-- the 'Graph's nodes per attribute.
-- The 'Vector' stores values of @1@ if the bounds are within the allowed range
-- ragarding the corresponding attribute, or @0@ if not.
type Constraints = (Vector A.U Int16, Matrix A.U Double)
-- | A vector of weights indicating how much divergence is allowed in which dimension
-- | A 'Vector' of weights indicating how much divergence is allowed in which dimension.
-- Each dimension represents an attribute.
type MaxDivergence = Vector A.U Double
-- | Make this special Scalar explicitly visible
-- | A graphs density.
type Density = Double
-- | consists of a Vector denoting which columns of the matrix represents which originating
-- column in the global adjancency-matrix, a matrix of constraints and a scalar denoting the density
-- | consists of a 'Vector' denoting which columns of the 'Matrix' represents which originating
-- column in the global adjancency-matrix, a 'Matrix' of 'Constraints' and a scalar denoting the graphs 'Density'
type Graph = (Vector A.U Int, Constraints, Density)
instance Ord Graph where
@ -84,10 +91,17 @@ testReq = 3 ::Int
expand :: Adj -> Attr -> Graph -> [Graph]
expand adj attr g = undefined -- addablePoints -> for each: addPoint -> filterLayer
--TODO: Haddoc!
--Was macht der Int?
preprocess :: Adj -> Attr -> Density -> MaxDivergence -> Int -> (Adj, [Graph])
preprocess adj attr d div req =
-- | Creates an adjacency matrix from the given adjacency matrix where all
-- edges are removed whose belonging nodes cannot fulfill the passed constraints.
-- Additionally, all pairs of connected nodes that satisfy the constraints are
-- returned as a 'Graph'.
preprocess :: Adj -- ^ original adjacency matrix
-> Attr -- ^ table of the nodes attributes
-> MaxDivergence -- ^ maximum allowed ranges of the nodes attribute
-- values to be considered as consistent
-> Int -- ^ required number of consistent attributes
-> (Adj, [Graph])
preprocess adj attr div req =
let
(Z:.nNodes:._) = A.extent adj
results = map (initGraph attr div req) [(i, j) | i <- [0..(nNodes-1)], j <- [(i+1)..(nNodes-1)], adj!(ix2 i j) /= 0]
@ -98,9 +112,13 @@ preprocess adj attr d div req =
adj' = A.computeS $A.fromFunction (A.extent adj) (\sh -> if mask!sh then 0 else adj!sh)
in (adj', finalGraphs)
-- | initializes a seed graph if it fulfills the constraints
-- assumption: given nodes i, j are connected
initGraph :: Attr -> MaxDivergence -> Int -> (Int, Int) -> Either Graph (Int, Int)
-- | Initializes a seed 'Graph' if it fulfills the constraints, returns the input nodes
-- otherwise. It is assumed that the given nodes are connected.
initGraph :: Attr -- ^ table of all nodes attributes
-> MaxDivergence
-> Int -- ^ required number of consistent attributes
-> (Int, Int) -- ^ nodes to create a seed 'Graph' of
-> Either Graph (Int, Int)
initGraph attr div req (i, j) =
let
constr = constraintInit attr div req i j
@ -108,8 +126,12 @@ initGraph attr div req (i, j) =
Nothing -> Right (i, j)
Just c -> Left (A.fromListUnboxed (ix1 2) [i,j], c, 1)
-- | checks constraints of an initializing seed
constraintInit :: Attr -> MaxDivergence -> Int -> Int -> Int -> Maybe Constraints
-- | checks constraints of an initializing seed and creates 'Constraints' matrix if the
-- check is positive
constraintInit :: Attr -> MaxDivergence -> Int -- ^ required number of consistent attributes
-> Int -- ^ first node to test
-> Int -- ^ second node to test first node against
-> Maybe Constraints
constraintInit attr div req i j =
let
(Z:._:.nAttr) = A.extent attr
@ -129,9 +151,13 @@ constraintInit attr div req i j =
filterLayer :: Vector A.U Graph -> Vector A.U Graph
filterLayer gs = undefined -- TODO
-- | gets a Graph and an Attribute-Matrix and yields true, if the Graph still fulfills
-- all constraints defined via the Attribute-Matrix.
constraint :: Attr -> MaxDivergence -> Int -> Graph -> Int -> Maybe Constraints
-- | Checks whether a given base 'Graph' can be extended by a single node and
-- the resulting 'Graph' still satisfies the given attribute constraints.
-- In case of a successful expansion the updated 'Constraints' matrix is returned.
constraint :: Attr -> MaxDivergence -> Int -- ^ required number of consistent attributes
-> Graph -- ^ base graph
-> Int -- ^ node to extend base graph by
-> Maybe Constraints
constraint attr div req (_, (fulfill, constr), _) newNode =
let
updateConstr :: (DIM2 -> Double) -> DIM2 -> Double
@ -145,8 +171,12 @@ constraint attr div req (_, (fulfill, constr), _) newNode =
nrHit = A.foldAllS (+) (0::Int) $A.map fromIntegral fulfillNew
in if nrHit >= req then Just (A.computeS fulfillNew, constrNew) else Nothing
updateDensity :: Adj -> Vector A.U Int -> Int -> Density -> Density
-- updates the density of a graph extended by a single node
updateDensity :: Adj -- ^ global adjacency matrix of all nodes
-> Vector A.U Int -- ^ nodes of the base graph
-> Int -- ^ node to extend the graph by
-> Density -- ^ current density of base graph
-> Density -- ^ new density of expanded graph
updateDensity adj nodes newNode dens =
let
neighbours = A.foldAllS (+) (0::Int)
@ -155,9 +185,17 @@ updateDensity adj nodes newNode dens =
n = fromIntegral n'
in (dens * (n*(n+1)) / 2 + fromIntegral neighbours) * 2 / ((n+1)*(n+2))
-- | gets a graph and a tuple of an adjecancy-Vector with an int wich column of the
-- Adjacency-Matrix the Vector should represent to generate further Graphs
addPoint :: Adj -> Attr -> Density -> MaxDivergence -> Int -> Graph -> Int -> Maybe Graph
-- | Checks a 'Graph' expansion with a single node regarding both the attribute constraints
-- and a minimum density. If it passes the test the extended graph is returned.
addPoint :: Adj -- ^ global adjacency matrix of all nodes
-> Attr -- ^ global attribute matrix
-> Density -- ^ required minimum graphs density
-> MaxDivergence -- ^ allowed divergence per attribute
-> Int -- ^ equired number of consistent attributes
-> Graph -- ^ base graph
-> Int -- ^ node to extend base graph by
-> Maybe Graph
addPoint adj attr d div req g@(nodes, _, dens) n =
let
constr = constraint attr div req g n

View File

@ -117,7 +117,7 @@ emptyLine a
-- TODO: implement calculation
--doCalculation :: Matrix Int -> B.ByteString
doCalculation adj attr =
let (adj_, graph_) = preprocess adj attr 0.8 (A.fromListUnboxed (ix1 3) [0.5,0.5,0.5]) 2 in
let (adj_, graph_) = preprocess adj attr {--0.8--} (A.fromListUnboxed (ix1 3) [0.5,0.5,0.5]) 2 in
B.concat $
[
outputArray $ trace ("After: "++ show (sumAllS adj_)++"\n") adj_,

View File

@ -21,34 +21,34 @@ flip4 f d a b c = f a b c d
flipto1 :: (a -> b) -> (a -> b)
flipto1 = id
-- | Move second argument to last place ('flip' synonym for style uniformity)
-- | Move first argument to last (second) place ('flip' synonym for style uniformity)
flipto2 :: (a -> b -> c) -> (b -> a -> c)
flipto2 = flip
-- | Move third argument to last place
-- | Move first argument to last (third) place
flipto3 :: (a -> b -> c -> d) -> b -> c -> a -> d
flipto3 fun b c a = fun a b c
-- | Move forth argument to last place
-- | Move first argument to last (forth) place
flipto4 :: (a -> b -> c -> d -> e) -> b -> c -> d -> a -> e
flipto4 fun b c d a = fun a b c d
-- | Move fifth argument to last place
-- | Move first argument to last (fifth) place
flipto5 :: (a -> b -> c -> d -> e -> f) -> b -> c -> d -> e -> a -> f
flipto5 fun b c d e a = fun a b c d e
-- | Move sixth argument to last place
-- | Move first argument to last (sixth) place
flipto6 :: (a -> b -> c -> d -> e -> f -> g) -> b -> c -> d -> e -> f-> a -> g
flipto6 fun b c d e f a = fun a b c d e f
-- | Move seventh argument to last place
-- | Move first argument to last (seventh) place
flipto7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> b -> c -> d -> e -> f -> g -> a -> h
flipto7 fun b c d e f g a = fun a b c d e f g
-- | Move eights argument to last place
-- | Move first argument to last (eights) place
flipto8 :: (a -> b -> c -> d -> e -> f -> g -> h -> i) -> b -> c -> d -> e -> f -> g -> h -> a -> i
flipto8 fun b c d e f g h a = fun a b c d e f g h
-- | Move ninth argument to last place
-- | Move first argument to last (ninth) place
flipto9 :: (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> b -> c -> d -> e -> f -> g -> h -> i -> a -> j
flipto9 fun b c d e f g h i a = fun a b c d e f g h i