nub -> ordNub (O(n^2) -> O(n log n))
- included submodule with different approaches to perform nub in various surroundings. DOES NOT NEED TO BE COMPILED - copied nubOrdBy to Util
This commit is contained in:
parent
daf87fd737
commit
07d2d37bb6
@ -22,7 +22,8 @@ executable hgraph
|
|||||||
text -any,
|
text -any,
|
||||||
transformers >=0.3.0,
|
transformers >=0.3.0,
|
||||||
vector >=0.7,
|
vector >=0.7,
|
||||||
mtl >=2.1 && <3
|
mtl >=2.1 && <3,
|
||||||
|
containers >=0.5.0 && <0.6
|
||||||
main-is: Main.hs
|
main-is: Main.hs
|
||||||
buildable: True
|
buildable: True
|
||||||
hs-source-dirs: src
|
hs-source-dirs: src
|
||||||
@ -37,9 +38,11 @@ executable hgraph
|
|||||||
DoAndIfThenElse
|
DoAndIfThenElse
|
||||||
|
|
||||||
test-suite test-hgraph
|
test-suite test-hgraph
|
||||||
build-depends: QuickCheck -any, Stream -any, accelerate -any,
|
build-depends:
|
||||||
|
QuickCheck -any, Stream -any, accelerate -any,
|
||||||
base -any, bytestring -any, deepseq -any, ghc -any,
|
base -any, bytestring -any, deepseq -any, ghc -any,
|
||||||
monad-par >=0.3.4, parallel -any, repa >=3.2, text -any
|
monad-par >=0.3.4, parallel -any, repa >=3.2, text -any,
|
||||||
|
containers >=0.5.0 && <0.6
|
||||||
type: exitcode-stdio-1.0
|
type: exitcode-stdio-1.0
|
||||||
main-is: Main.hs
|
main-is: Main.hs
|
||||||
buildable: True
|
buildable: True
|
||||||
|
@ -25,7 +25,7 @@ import Prelude hiding ((++))
|
|||||||
import qualified Prelude as P ((++))
|
import qualified Prelude as P ((++))
|
||||||
|
|
||||||
import Control.Monad.Par
|
import Control.Monad.Par
|
||||||
import Control.Parallel.Strategies
|
import Control.Parallel.Strategies hiding (parMap)
|
||||||
import Control.Monad.Identity
|
import Control.Monad.Identity
|
||||||
import Control.DeepSeq
|
import Control.DeepSeq
|
||||||
import Data.Array.Repa ((:.) (..), Array, (!), (*^), (++), (+^),
|
import Data.Array.Repa ((:.) (..), Array, (!), (*^), (++), (+^),
|
||||||
@ -37,7 +37,7 @@ import Data.Int
|
|||||||
import qualified Data.List as L
|
import qualified Data.List as L
|
||||||
import Data.Maybe
|
import Data.Maybe
|
||||||
import qualified Data.Vector.Unboxed as V
|
import qualified Data.Vector.Unboxed as V
|
||||||
--import Debug.Trace
|
import Debug.Trace
|
||||||
import qualified Data.ByteString.Char8 as B
|
import qualified Data.ByteString.Char8 as B
|
||||||
|
|
||||||
|
|
||||||
@ -77,9 +77,9 @@ instance (A.Shape sh, V.Unbox e) => NFData (Array A.U sh e) where
|
|||||||
--TODO: Do we have to filter?
|
--TODO: Do we have to filter?
|
||||||
|
|
||||||
step :: [Graph] -> Adj -> Attr -> Density -> MaxDivergence -> Int -> [Graph]
|
step :: [Graph] -> Adj -> Attr -> Density -> MaxDivergence -> Int -> [Graph]
|
||||||
step gs@((ind,_,_):_) a b c d e = --trace ("step from " P.++ show (A.extent ind) ) $
|
step gs@((ind,_,_):_) a b c d e = traceEvent ("step from " P.++ show (A.extent ind) ) $
|
||||||
filterLayer $ concat $ map (expand a b c d e ) gs
|
filterLayer $ concat $ map (expand a b c d e ) gs
|
||||||
+|| (parBuffer 75 rdeepseq)
|
+|| (parBuffer 1000 rdeepseq)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -103,15 +103,16 @@ preprocess :: Adj -- ^ original adjacency matrix
|
|||||||
-> (Adj, [Graph])
|
-> (Adj, [Graph])
|
||||||
preprocess adj attr div req =
|
preprocess adj attr div req =
|
||||||
let
|
let
|
||||||
! (Z:.nNodes:._) = A.extent adj
|
(Z:.nNodes:._) = A.extent adj
|
||||||
! results = map (initGraph attr div req) [(i, j) | i <- [0..(nNodes-1)], j <- [(i+1)..(nNodes-1)], adj!(ix2 i j) /= 0]
|
results = map (initGraph attr div req) [(i, j) | i <- [0..(nNodes-1)], j <- [(i+1)..(nNodes-1)], adj!(ix2 i j) /= 0]
|
||||||
+|| (parBuffer 25 rdeepseq)
|
-- +|| (parBuffer 25 rdeepseq)
|
||||||
! finalGraphs = lefts results
|
finalGraphs = lefts results
|
||||||
! mask = A.fromUnboxed (A.extent adj) $V.replicate (nNodes*nNodes) False V.//
|
mask = A.fromUnboxed (A.extent adj) $V.replicate (nNodes*nNodes) False V.//
|
||||||
((map (\(i,j) -> (i*nNodes + (mod j nNodes), True)) $rights results)
|
((map (\(i,j) -> (i*nNodes + (mod j nNodes), True)) $rights results)
|
||||||
P.++ (map (\(i,j) -> (j*nNodes + (mod i nNodes), True)) $rights results))
|
P.++ (map (\(i,j) -> (j*nNodes + (mod i nNodes), True)) $rights results))
|
||||||
! adj' = runIdentity $ A.computeUnboxedP $A.fromFunction (A.extent adj) (\sh -> if mask!sh then 0 else adj!sh)
|
adj' = runIdentity $ A.computeUnboxedP $A.fromFunction (A.extent adj) (\sh -> if mask!sh then 0 else adj!sh)
|
||||||
in (adj', finalGraphs)
|
in (adj', finalGraphs)
|
||||||
|
+|| parTuple2 rdeepseq rseq
|
||||||
|
|
||||||
-- | Initializes a seed 'Graph' if it fulfills the constraints, returns the input nodes
|
-- | Initializes a seed 'Graph' if it fulfills the constraints, returns the input nodes
|
||||||
-- otherwise. It is assumed that the given nodes are connected.
|
-- otherwise. It is assumed that the given nodes are connected.
|
||||||
@ -137,12 +138,10 @@ constraintInit ! attr ! div req i j =
|
|||||||
let
|
let
|
||||||
! (Z:._:.nAttr) = A.extent attr
|
! (Z:._:.nAttr) = A.extent attr
|
||||||
fConstr (Z:.a:.c) =
|
fConstr (Z:.a:.c) =
|
||||||
let
|
case c of
|
||||||
! col = A.slice attr (A.Any:.a)
|
|
||||||
in case c of
|
|
||||||
0 -> min (attr!(ix2 i a)) (attr!(ix2 j a))
|
0 -> min (attr!(ix2 i a)) (attr!(ix2 j a))
|
||||||
1 -> max (attr!(ix2 i a)) (attr!(ix2 j a))
|
1 -> max (attr!(ix2 i a)) (attr!(ix2 j a))
|
||||||
(constr, fulfill, nrHit) = runIdentity $
|
(!constr, !fulfill, !nrHit) = runIdentity $
|
||||||
do
|
do
|
||||||
! constr <- return $ A.computeUnboxedS $A.fromFunction (ix2 nAttr 2) fConstr
|
! constr <- return $ A.computeUnboxedS $A.fromFunction (ix2 nAttr 2) fConstr
|
||||||
! fulfill <- return $ A.computeUnboxedS $ A.zipWith (\thediv dist -> if abs dist <= thediv then 1 else 0) div
|
! fulfill <- return $ A.computeUnboxedS $ A.zipWith (\thediv dist -> if abs dist <= thediv then 1 else 0) div
|
||||||
@ -152,8 +151,12 @@ constraintInit ! attr ! div req i j =
|
|||||||
in if nrHit >= req then Just (fulfill, constr) else Nothing
|
in if nrHit >= req then Just (fulfill, constr) else Nothing
|
||||||
|
|
||||||
-- | removes all duplicate graphs
|
-- | removes all duplicate graphs
|
||||||
|
|
||||||
|
-- nub has O(n^2) complexity.
|
||||||
|
-- with this variant of ordNubBy we need a simple bucket-extractor (first function) obeying Ord
|
||||||
|
-- and a second equality-check function for edge-cases (lin-search).
|
||||||
filterLayer :: [Graph] -> [Graph]
|
filterLayer :: [Graph] -> [Graph]
|
||||||
filterLayer gs = L.nubBy filter gs
|
filterLayer gs = ordNubBy (\g@(ind,_,_) -> L.sort (A.toList ind)) filter gs
|
||||||
where
|
where
|
||||||
filter :: Graph -> Graph -> Bool
|
filter :: Graph -> Graph -> Bool
|
||||||
filter (ind,_,_) (ind',_,_) = and [V.any (==i) (A.toUnboxed ind) | i <- A.toList ind']
|
filter (ind,_,_) (ind',_,_) = and [V.any (==i) (A.toUnboxed ind) | i <- A.toList ind']
|
||||||
@ -223,8 +226,8 @@ updateDensity adj nodes newNode dens =
|
|||||||
fromIntegral $adj!(ix2 i newNode)
|
fromIntegral $adj!(ix2 i newNode)
|
||||||
else
|
else
|
||||||
0)-}
|
0)-}
|
||||||
(Z:.n') = A.extent nodes
|
! (Z:.n') = A.extent nodes
|
||||||
n = fromIntegral n'
|
! n = fromIntegral n'
|
||||||
newdens = (dens * ((n)*(n-1)) / 2 + fromIntegral neighbours) * 2 / ((n+1)*(n))
|
newdens = (dens * ((n)*(n-1)) / 2 + fromIntegral neighbours) * 2 / ((n+1)*(n))
|
||||||
in newdens
|
in newdens
|
||||||
{-+ trace (
|
{-+ trace (
|
||||||
|
@ -47,7 +47,11 @@ instance Ord Graph where
|
|||||||
s2 = (A.size $ A.extent nodes)
|
s2 = (A.size $ A.extent nodes)
|
||||||
in
|
in
|
||||||
if s1 == s2 then
|
if s1 == s2 then
|
||||||
(A.sumAllS const') `compare` (A.sumAllS const)
|
let
|
||||||
|
const1 = (A.sumAllS const')
|
||||||
|
const2 = (A.sumAllS const)
|
||||||
|
in
|
||||||
|
const1 `compare` const2
|
||||||
else
|
else
|
||||||
s1 `compare` s2
|
s1 `compare` s2
|
||||||
|
|
||||||
|
18
src/Util.hs
18
src/Util.hs
@ -1,6 +1,8 @@
|
|||||||
module Util where
|
module Util where
|
||||||
|
|
||||||
import Control.Parallel.Strategies
|
import Control.Parallel.Strategies
|
||||||
|
import qualified Data.Map as Map
|
||||||
|
import qualified Data.Set as Set
|
||||||
|
|
||||||
-- | Move first argument to first place (for style uniformity)
|
-- | Move first argument to first place (for style uniformity)
|
||||||
flip1 :: (a -> b) -> (a -> b)
|
flip1 :: (a -> b) -> (a -> b)
|
||||||
@ -84,3 +86,19 @@ a +|| b = a `using` b
|
|||||||
appendS :: (Show a) => String -> String -> a -> String
|
appendS :: (Show a) => String -> String -> a -> String
|
||||||
appendS sep a b = (a ++ show b) ++ sep
|
appendS sep a b = (a ++ show b) ++ sep
|
||||||
|
|
||||||
|
-- When removing duplicates, the first function assigns the input to a bucket,
|
||||||
|
-- the second function checks whether it is already in the bucket (linear search).
|
||||||
|
ordNubBy :: (Ord b) => (a -> b) -> (a -> a -> Bool) -> [a] -> [a]
|
||||||
|
ordNubBy p f l = go Map.empty l
|
||||||
|
where
|
||||||
|
go _ [] = []
|
||||||
|
go m (x:xs) = let b = p x in case b `Map.lookup` m of
|
||||||
|
Nothing -> x : go (Map.insert b [x] m) xs
|
||||||
|
Just bucket
|
||||||
|
| elem_by f x bucket -> go m xs
|
||||||
|
| otherwise -> x : go (Map.insert b (x:bucket) m) xs
|
||||||
|
|
||||||
|
-- From the Data.List source code.
|
||||||
|
elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool
|
||||||
|
elem_by _ _ [] = False
|
||||||
|
elem_by eq y (x:xs) = y `eq` x || elem_by eq y xs
|
||||||
|
Loading…
Reference in New Issue
Block a user