FFPiH - Performance!

Florian Hofmann
08.07.2016

Prolog

= Florian Hofmann
= Mail: fho©f12n.de
= Blog: fho.f12n.de

Obligatory XKCD referenz

CODE WRITTEN IN HASKELL
15 GUARANTEED TO TAKE
I\K)THETORU\I

... BECAUSE NO ONE
UI&&ER&NIW

i

Figure 1: Adapted from XKCD #1312

= Benchmarking in Haskell
= Strictness/Laziness

= Boxing/Unboxing

= [nlining

= (just a little bit of) Core

Benchmarking / Criterion

Criterion Benchmark Report

fib/1

F)

LS regressian
R goodness-ot-ii
hazan meseution time
Standard ceviation

Figure 2: Criterion HTML output

In .cabal file:

benchmark signal-bench

type: exitcode-stdio-1.0
hs-source-dirs: src, bench
main-is: MainBenchmarkSuite.hs
build-depends: base,
criterion,
random
ghc-options: -Wall
-02
Run as:

stack bench --benchmark-arguments "-o filename.html"

In MainBenchmarkSuite.hs:

import Criterion.Main

—-— The function we're benchmarking.
fib :: Int -> Int
fib x = ...

-— Our benchmark harness.
main = defaultMain [
bgroup "fib" [bench "1" § whnf fib 1
, bench "5" ¢ whnf fib 5
, bench "9" ¢ whnf fib 9

]

Profiling

stack build --executable-profiling --library-profiling \
-—ghc-options="-fprof-auto -rtsopts"

stack exec -- program-exe +RTS -p -s

= Creates a file program-exe.prof in the current folder
= -s option give small report about runtime at program shutdown
= Profiling overhead is huge

10

Profiling Report

Wed Jun 29 16:33 2016 Time and Allocation Profiling Report
eventrate +RTS -s -p -RTS 2016-06-08-atis-trials/vp09-dots-

total time 44 .01 secs (44008 ticks © 1000 us, 1
total alloc = 55,502,215,128 bytes (excludes profiling ove

COST CENTRE MODULE %time
decodeStreamWith System.I0.Streams.Csv.Decode 50.3
handleToOutputStream.f System.I0.Streams.Handle 18.0
encodeRates Main 17.3
eventRate.go.s' EventDriven.Rate 4.3

eventRate.go EventDriven.Rate %14
1 1

contraman QSvaetem T0 Streamse Combinators

Strictness

12

= Haskell is lazy by default.

= Allows some algorithms and datastructures to be written more
efficient.

= But this results in problems, other languages don't face.

= Spaceleaks
= Bad intuition about runtime and space usage

13

A mean volunteer

mean :: Fractional a => [a] -> a
mean xs = s / 1
where (s,1) = foldl go (0,0) xs
go (a,b) x = (atx,b+l)

14

-XBangPatterns

= Extension that allows us to use ! (bangs) in pattern matches.
= Enabled by -XBangPatterns or {-# LANGUAGE
BangPatterns #-1}.

5

A (not so) mean volunteer

notSoMean:: Fractional a => [a] -> a
notSoMean xs = s / 1
where (s,1) = foldl' go (0,0) xs
go (la,!'b) x = (atx,b+1)

16

The difference

benchmarking mean

time 39.84 ms (39.49 ms .. 40.33 ms)

1.000 R2 (0.999 R? .. 1.000 R?)
mean 40.02 ms (39.83 ms .. 40.30 ms)
std dev 432.7 us (272.0 us .. 679.1 us)

benchmarking notSoMean

time 2.910 ms (2.895 ms .. 2.925 ms)

1.000 R2 (0.999 R2 .. 1.000 R?)
mean 2.929 ms (2.916 ms .. 2.954 ms)
std dev 56.65 us (21.81 us .. 95.49 us)

= Success: ~13x faster

17

An alternative: strict datastructures

data StrictTuple a b = ST !a !b
notSoMeanEither :: Fractional a => [a] -> a
notSoMeanEither xs = s / fromIntegral 1
where (ST s 1) = foldl' go (ST 0 0) xs
go (8T a b) x = (ST (a+x) (b+1))

= Same speedup as with BangPatterns

18

Core

19

= Core is a simplified version of Haskell
= Overview about external Core representation:

= “An External Representation for the GHC Core Language" -
Andrew Tolmach, Tim Chevalier and The GHC Team
= https://downloads.haskell.org/~ghc/6.12.2 /docs/core.pdf

20

(Hard-)Core

Program

Binding

Expression

Atoms

Literals

Alternatives

Constr. alt.
Literal alt

Default alt

Prog

Bind

Eapr

Atom

Literal

Alts

Calt
Lalt

Default

> Bindy ; ... ; Bind,
= var = Ea
| rec vary = Ezpr ;
varn = Ezpra

> Expr Atom
| Exprey
| \vary...var, -> Eapr
|\ tyvar, ...tyvar, -> Eapr
| case Expr ot { Alts }
| et Bind in Expr
| prim var ...var,
| Atom

Literal
> integer | fioat |
nd i Calt,; Default
| H tn; Default
~ con vary ...var, -> Ezpr
> Literal -> Expr
~ NoDefault

var > Ezpr

n>1

Non-recursive
Recursive 7> 1

Application
Type application
Lambda abstraction
Type abstraction

Case expression
Local definition
Constructor n > 0
Primitive 1> 0

Variable
Unboxed Object

20
n20

n>0

Figure 3: Syntax of the Core language

21

How to core

$ stack build --ghc-options "-ddump-to-file -ddump-simpl \
-dsuppress-idinfo -dsuppress-coercions \
-dsuppress-type-applications -dsuppress-uniques \

-dsuppress-module-prefixes"

» -ddump-simpl enables (simplified) core output
s —ddump-to-file dumps the output to files

= stack:
./ .stack-work/dist/x86_64-1linux/Cabal-1.22.5.0/ \

build/prog/prog-tmp/src/Source.dump-simpl

= -ddump-suppress—* removes lots of output to make it

readable

22

Rec {
$wgo :: [Double] -> Double# -> Int# -> (# Double#, Int# #)
$wgo = \ (w :: [Double]) (ww :: Double#) (wwl :: Int#) ->
case w of _ {
[0 > (# ww, wwl #);
:yys -> case y of _ { D# y1 -> $wgo ys (+## ww yl1) (+#
} end Rec }

mean05 :: [Double] -> Double

mean05 = \ (w :: [Double]) ->
case $wgo w 0.0 0 of _ { (# wwl, ww2 #) ->
case /## wwl (int2Double# ww2) of ww3 {
__DEFAULT -> D# ww3 }}

23

Core (the very brief version)

= Hashes are good, datatypes with hashes are unboxed
= each case is a strict evaluation

= each let is a lazy thunk

= constructors are applied in prefix notation

24

Unboxing

25

The riddling case

How much memory does this Haskell expression use?
data IntPair = IP Int Int

(blatantly stolen from: Johan Tibell - ZuriHac2015 Performance)

26

Datatypes 101

IP

Figure 4: 7 machine words / 56 bytes on 64bit

27

Datatypes 102 - Unboxing

data IntPair =
IP {-# UNPACK #-} !'Int
{-# UNPACK #-} !'Int

28

Datatypes 102 - Unboxing

Int# | Int#

Figure 5: 3 machine words / 24 bytes on 64bit

29

= Unboxing/-packing uses Pragma {-# UNPACK #-}
= Generally improves performance

= no unboxing required

= reduces pointer count, improves cache locality

30

Unboxed Vectors

31

List Memory Layout

Shared

1
)

1

—r + (]
| |

I# 1 I# 2

Figure 6: Lists in Memory

32

Solution: better datastructures

= vector package offers C-style zero-indexed arrays.
= Data.Vector stores references to elements in a plain array
= Data.Vector.Unboxed stores elements as a plain array.

= Needs Unboxed instance, can be derived by GHC with a little
help

= Data.Vector.Storable stores elements for exchange with
foreign (C) programs

= Needs Storable instance, c-storable-deriving package derives C
compatible instances

33

A vectors mean

mean06 :: (Fractional a, V.Unbox a) => V.Vector a -> a

mean06 v = V.sum v / fromIntegral (V.length v)

mean07 :: V.Vector Double -> Double
mean07 v = V.sum v / fromIntegral (V.length v)

34

Criterion report

benchmarking mean06

time 2.949 ms (2.922 ms .. 2.976 ms)

0.999 R? (0.998 R2 .. 1.000 R?)
mean 2.914 ms (2.902 ms .. 2.930 ms)
std dev 43.86 us (32.44 us .. 72.83 us)

benchmarking mean07

time 343.1 us (340.9 us .. 345.4 us)
1.000 R? (1.000 R2 .. 1.000 R?2)
mean 345.4 us (343.8 us .. 347.3 us)

std dev 5.789 us (4.973 us .. 6.943 us)

85

Inlining

36

= GHC inlines small functions by default, but only in modules

= {-# INLINEABLE function #-} allows GHC to inline over
module borders

= {-# INLINE function #-} forces GHC to always inline this
function

37

Some things to consider

= Use module export lists, this allows GHC to inline code that is
not exported:

module Foo (bar,baz) where

= SPECIALIZE pragma makes GHC create specialized versions of
a function:

foo a = a + 42
{-# SPECIALIZE foo :: Double -> Double #-}

38

Have my cake and eat it too

benchmarking meanO6'

time 339.4 us (337.8 us .. 341.1 us)

1.000 R? (1.000 R2 .. 1.000 R?)
mean 341.6 us (340.1 us .. 343.8 us)
std dev 6.103 us (4.610 us .. 8.465 us)

benchmarking meanO7

time 339.1 us (336.9 us .. 341.4 us)
1.000 R? (1.000 R* .. 1.000 R?)
mean 339.9 us (338.6 us .. 341.7 us)

std dev 4.897 us (4.014 us .. 6.372 us)

39

Epilog

40

Random bits and pieces

= go functions, allows GHC to store data once (kind of a bug)

bar a xs = go xs
where go [] =0

go (x:xs) = a * x + go xs

= Use appropriate data-structures and algorithms

= Data.Vector instead of List

= Data.Text instead of String

= Maybe use an alternative Prelude? (package:
basic-prelude)

41

Random bits and pieces

= strict return from monadic functions ($!)

foo = do
x <- getData

let x' = doComplexStuff x

return $! x' -- evaluates z' before returning

= don't use lazy 10, use io-streams, pipes, conduit instead

42

Random bits and pieces

= GHC compile flags:

= -02: enable optimization

= -fexcess-precision: faster floating point code (not /EEE
754 compatible)

= -optc-03: enable optimizations in the C backend

= -optc-ffast-math: allow the C backend to optimize floating
point code more (see also the fast-math package)

= —f1lvm: use LLVM instead of GCC, may work better on
numeric code

43

Random bits and pieces

THE SMARTNESS OF GHC ...

51
h

.- 1S TOO DAMN HIGH ...
impflip.com

Figure 7: too smart

44

Conclusion

= Avoid boxing in hot loops:

= Use Unboxing
= Use Strictness
= Inlining facilitates both

= ook out for non-strict accumulators
= Good guideline for datastructures: “lazy in the spine, strict in
the leaves”

45

“We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.
Yet we should not pass up our opportunities in that
critical 3%" - Donald Knuth

46

References

= ZuriHac2015 - Performance
= GHC User Guide

47

https://www.youtube.com/watch?v=_pDUq0nNjhI
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

	Prolog
	Benchmarking / Criterion
	Strictness
	Core
	Unboxing
	Unboxed Vectors
	Inlining
	Epilog

