#version 330 //#include "3rdParty/noise.glsl" vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } float fog(float dist) { dist = max(0,dist - 50); dist = dist * 0.05; dist = dist; return 1-exp(-dist); } smooth in vec3 teNormal; smooth in vec3 tePosition; smooth in float fogDist; smooth in float gmix; in vec4 teColor; out vec4 fgColor; uniform mat4 ViewMatrix; uniform mat4 ProjectionMatrix; void main(void) { //fog color vec4 fogColor = vec4(0.6,0.7,0.8,1.0); //heliospheric lighting vec4 light = vec4(1.0,1.0,1.0,1.0); vec4 dark = vec4(0.0,0.0,0.0,1.0); //direction to sun from origin vec3 lightDir = normalize(ViewMatrix * vec4(5.0,5.0,1.0,0.0)).xyz; float costheta = dot(teNormal, lightDir); float a = costheta * 0.5 + 0.5; //create gravel-texel vec3 uvw = tePosition; // Six components of noise in a fractal sum //float n = snoise(uvw * 10); float n = 0; n += 0.5 * snoise(uvw * 20.0); //n += 0.25 * snoise(uvw * 40.0); //n += 0.125 * snoise(uvw * 80.0); //n += 0.0625 * snoise(uvw * 160.0); //n += 0.03125 * snoise(uvw * 320.0); n = abs(n*2);//[0,1] //dirt float d = snoise(uvw); d += 0.5 * snoise(uvw * 2); d += 0.25 * snoise(uvw * 4); d = d/3*2 +0.5; // base, dirt, noise-level*(above 0?)*(linear blend by y) vec4 texBase = mix(teColor, vec4(0.45,0.27,0.1,1),d*d*step(0.01,tePosition.y)*clamp(tePosition.y/2,0,2)); // stone highlights vec4 texHighlights = mix(texBase, vec4(0.9*n,0.9*n,0.9*n,1),n*n*n); //mix highlights into Color with inclination, if inclination^2 > 0.35 vec4 texColor = mix(texBase,texHighlights, (gmix*(1-gmix))*4*(gmix*(1-gmix))*4); vec4 Color = texColor; fgColor = Color * mix(dark, light, a); fgColor = mix(fgColor,fogColor,fog(fogDist)); }