// // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float mod289(float x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } float permute(float x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float taylorInvSqrt(float r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0); vec4 p,s; p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p, vec4(0.0))); p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; return p; } // (sqrt(5) - 1)/4 = F4, used once below #define F4 0.309016994374947451 float snoise(vec4 v) { const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 -0.447213595499958); // -1 + 4 * G4 // First corner vec4 i = floor(v + dot(v, vec4(F4)) ); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) vec4 i0; vec3 isX = step( x0.yzw, x0.xxx ); vec3 isYZ = step( x0.zww, x0.yyz ); // i0.x = dot( isX, vec3( 1.0 ) ); i0.x = isX.x + isX.y + isX.z; i0.yzw = 1.0 - isX; // i0.y += dot( isYZ.xy, vec2( 1.0 ) ); i0.y += isYZ.x + isYZ.y; i0.zw += 1.0 - isYZ.xy; i0.z += isYZ.z; i0.w += 1.0 - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel vec4 i3 = clamp( i0, 0.0, 1.0 ); vec4 i2 = clamp( i0-1.0, 0.0, 1.0 ); vec4 i1 = clamp( i0-2.0, 0.0, 1.0 ); // x0 = x0 - 0.0 + 0.0 * C.xxxx // x1 = x0 - i1 + 1.0 * C.xxxx // x2 = x0 - i2 + 2.0 * C.xxxx // x3 = x0 - i3 + 3.0 * C.xxxx // x4 = x0 - 1.0 + 4.0 * C.xxxx vec4 x1 = x0 - i1 + C.xxxx; vec4 x2 = x0 - i2 + C.yyyy; vec4 x3 = x0 - i3 + C.zzzz; vec4 x4 = x0 + C.wwww; // Permutations i = mod289(i); float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x); vec4 j1 = permute( permute( permute( permute ( i.w + vec4(i1.w, i2.w, i3.w, 1.0 )) + i.z + vec4(i1.z, i2.z, i3.z, 1.0 )) + i.y + vec4(i1.y, i2.y, i3.y, 1.0 )) + i.x + vec4(i1.x, i2.x, i3.x, 1.0 )); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ; vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; p4 *= taylorInvSqrt(dot(p4,p4)); // Mix contributions from the five corners vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0); vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0); m0 = m0 * m0; m1 = m1 * m1; return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 ))) + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ; }