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DRAFT
How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent a point in 3D-Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B-Spline grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices
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1 Introduction

..

Improvement: mehr Motivation, Ziel der Arbeit, Wieso das ganze?

Wieso untersuchen wir das überhaupt? 3

Aufbau der Arbeit? 7

Mehr Bilder

Many modern industrial design processes require advanced optimization methods do to

the increased complexity. These designs have to adhere to more and more degrees of free-

dom as methods refine and/or other methods are used. Examples for this are physical do-

mains like aerodynamic (i.e. drag), fluid dynamics (i.e. throughput of liquid) – where the

complexity increases with the temporal and spatial resolution of the simulation – or known

hard algorithmic problems in informatics (i.e. layouting of circuit boards or stacking of 3D-

objects). Moreover these are typically not static environments but requirements shift over

time or from case to case.

Evolutional algorithms cope especially well with these problem domains while address-

ing all the issues at hand[1]. One of the main concerns in these algorithms is the formulation

of the problems in terms of a genome and a fitness function. While one can typically use

an arbitrary cost-function for the fitness-functions (i.e. amount of drag, amount of space,

etc.), the translation of the problem-domain into a simple parametric representation can be

challenging.

The quality of such a representation in biological evolution is called evolvability[2] and

is at the core of this thesis. However, there is no consensus on how evolvability is defined

and the meaning varies from context to context[3].

As we transfer the results of Richter et al.[4] from using Radial Basis Function (RBF) as

a representation to manipulate a geometric mesh to the use of Freeform-Deformation (FFD)

we will use the same definition for evolvability the original author used, namely regularity,
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Chapter 1: Introduction

variability, and improvement potential. We introduce these term in detail in Chapter 2.4.

In the original publication the author used random sampled points weighted with Radial

Basis Function (RBF) to deform the mesh and showed that the mentioned criteria of reg-

ularity, variability, and improvement potential correlate with the quality and potential of

such optimization.

We will replicate the same setup on the same meshes but use Freeform-Deformation

(FFD) instead of Radial Basis Function (RBF) to create a local deformation near the control

points and evaluate if the evolution-criteria still work as a predictor given the different

deformation scheme, as suspected in [4].

1.1 Outline of this thesis
..Improvement: Kapitel vorstellen, Inhalt? Ziel?
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2 Background

2.1 What is Freeform-Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for deforming

meshes in the first place. For simplicity we only summarize the 1D-case from [5] here and

go into the extension to the 3D case in chapter 3.2.

Given an arbitrary number of points pi alongside a line, we map a scalar value τi ∈ [0,1[

to each point with τi < τi+1∀i. Given a degree of the target polynomial d we define the

curve Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(2.1)

and

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u

τi+d+1 − τi+1

Ni+1,d−1,τ (u) (2.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribution of

each point pi to the final curve-point parameterized only by u ∈ [0,1[. As can be seen from

(2.2) we only access points [i..i + d] for any given i1, which gives us, in combination with

choosing pi and τi in order, only a local interference of d+ 1 points.

We can even derive this equation straightforward for an arbitrary N 2:

1one more for each recursive step.
2Warning: in the case of d = 1 the recursion-formula yields a 0 denominator, but N is also 0. The right

solution for this case is a derivative of 0
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Chapter 2: Background

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

For a B-Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield ∂d

∂u
s(u) = 0.

Another interesting property of these recursive polynomials is that they are continuous

(given d ≥ 1) as every pi gets blended in linearly between τi and τi+d and out linearly

between τi+1 and τi+d+1 as can bee seen from the two coefficients in every step of the

recursion.

2.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties of the

polynomials and the correspondence to the control points. Having only a few control points

gives the user a nicer high-level-interface, as she only needs to move these points and the

model follows in an intuitive manner. The deformation is smooth as the underlying polygon

is smooth as well and affects as many vertices of the model as needed. Moreover the

changes are always local so one risks not any change that a user cannot immediately see.

But there are also disadvantages of this approach. The user loses the ability to directly

influence vertices and even seemingly simple tasks as creating a plateau can be difficult to

achieve[6, chapter 3.2][7].

This disadvantages led to the formulation of Direct Manipulation Freeform-Deformation

(DM-FFD)[6, chapter 3.3] in which the user directly interacts with the surface-mesh. All in-

teractions will be applied proportionally to the control-points that make up the parametriza-

tion of the interaction-point itself yielding a smooth deformation of the surface at the sur-

face without seemingly arbitrary scattered control-points. Moreover this increases the effi-

ciency of an evolutionary optimization[8], which we will use later on.

But this approach also has downsides as can be seen in figure 2.1, as the tessellation of

the invisible grid has a major impact on the deformation itself.

All in all FFD and DM-FFD are still good ways to deform a high-polygon mesh albeit
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2.2 What is evolutional optimization?

Figure 2.1: Figure 7 from [6].

the downsides.

2.2 What is evolutional optimization?
..Change: Write this section

2.3 Advantages of evolutional algorithms
..Change: Needs citations

The main advantage of evolutional algorithms is the ability to find optima of general

functions just with the help of a given error-function (or fitness-function in this domain).

This avoids the general pitfalls of gradient-based procedures, which often target the same
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Chapter 2: Background

error-function as an evolutional algorithm, but can get stuck in local optima.

This is mostly due to the fact that a gradient-based procedure has only one point of ob-

servation from where it evaluates the next steps, whereas an evolutional strategy starts with

a population of guessed solutions. Because an evolutional strategy modifies the solution

randomly, keeps the best solutions and purges the worst, it can also target multiple differ-

ent hypothesis at the same time where the local optima die out in the face of other, better

candidates.

If an analytic best solution exists (i.e. because the error-function is convex) an evolutional

algorithm is not the right choice. Although both converge to the same solution, the analytic

one is usually faster. But in reality many problems have no analytic solution, because the

problem is not convex. Here evolutional optimization has one more advantage as you get

bad solutions fast, which refine over time.

2.4 Criteria for the evolvability of linear deformations

2.4.1 Variability

In [4] variability is defined as

V (U) :=
rank(U)

n
,

whereby U is the m × n deformation-Matrix used to map the m control points onto the n

vertices.

Given n = m, an identical number of control-points and vertices, this quotient will be

= 1 if all control points are independent of each other and the solution is to trivially move

every control-point onto a target-point.

In praxis the value of V (U) is typically ≪ 1, because as there are only few control-points

for many vertices, so m ≪ n.

Additionally in our setup we connect neighbouring control-points in a grid so each con-

trol point is not independent, but typically depends on 4d control-points for an d-dimensional

control mesh.

8
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2.4 Criteria for the evolvability of linear deformations

2.4.2 Regularity

Regularity is defined[4] as

R(U) :=
1

κ(U)
=

σmin

σmax

where σmin and σmax are the smallest and greatest right singular value of the deformation-

matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x + Up) this

makes sure that ∥Up∥ ∝ ∥p∥ when κ(U) ≈ 1. The inversion of κ(U) is only performed to

map the criterion-range to [0..1], whereas 1 is the optimal value and 0 is the worst value.

This criterion should be characteristic for numeric stability on the on hand[9, chapter 2.7]

and for convergence speed of evolutional algorithms on the other hand[4] as it is tied to the

notion of locality[10, 11].

2.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic of the

fitness-function at hand the third criterion should reflect a notion of potential.

As during optimization some kind of gradient g is available to suggest a direction worth

pursuing we use this to guess how much change can be achieved in the given direction.

The definition for an improvement potential P is[4]:

P (U) := 1− ∥(1 − UU+)(G)∥2F

given some approximate n×d fitness-gradient G, normalized to ∥G∥F = 1, whereby ∥ · ∥F
denotes the Frobenius-Norm.
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3 Implementation of

Freeform-Deformation (FFD)

The general formulation of B-Splines has two free parameters d and τ which must be chosen

beforehand.

As we usually work with regular grids in our FFD we define τ statically as τi = i/n

whereby n is the number of control-points in that direction.

d defines the degree of the B-Spline-Function (the number of times this function is dif-

ferentiable) and for our purposes we fix d to 3, but give the formulas for the general case so

it can be adapted quite freely.

3.1 Adaption of FFD

As we have established in Chapter 2.1 we can define an FFD-displacement as

∆x(u) =
∑
i

Ni,d,τi(u)∆xci (3.1)

Note that we only sum up the ∆-displacements in the control points ci to get the change

in position of the point we are interested in.

In this way every deformed vertex is defined by

Deform(vx) = vx +∆x(u)

with u ∈ [0..1[ being the variable that connects the high-detailed vertex-mesh to the low-

detailed control-grid. To actually calculate the new position of the vertex we first have to

11
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Chapter 3: Implementation of Freeform-Deformation (FFD)

calculate the u-value for each vertex. This is achieved by finding out the parametrization of

v in terms of ci

vx
!
=

∑
i

Ni,d,τi(u)ci

so we can minimize the error between those two:

argmin
u

Err(u,vx) = argmin
u

2 · ∥vx −
∑
i

Ni,d,τi(u)ci∥22

As this error-term is quadratic we just derive by u yielding

∂
∂u

vx −
∑
i

Ni,d,τi(u)ci

= −
∑
i

(
d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

)
ci

and do a gradient-descend to approximate the value of u up to an ε of 0.0001.

For this we use the Gauss-Newton algorithm[12] as the solution to this problem may not

be deterministic, because we usually have way more vertices than control points (#v ≫

#c).

3.2 Adaption of FFD for a 3D-Mesh

This is a straightforward extension of the 1D-method presented in the last chapter. But this

time things get a bit more complicated. As we have a 3-dimensional grid we may have a

different amount of control-points in each direction.

Given n,m,o control points in x,y,z-direction each Point on the curve is defined by

V (u,v,w) =
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · Cijk.

In this case we have three different B-Splines (one for each dimension) and also 3 vari-

ables u,v,w for each vertex we want to approximate.

12
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3.2 Adaption of FFD for a 3D-Mesh

Given a target vertex p∗ and an initial guess p = V (u,v,w) we define the error-function

for the gradient-descent as:

Err(u,v,w,p∗) = p∗ − V (u,v,w)

And the partial version for just one direction as

Errx(u,v,w,p∗) = p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

To solve this we derive partially, like before:

∂Errx
∂u

p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

= −
∑
i

∑
j

∑
k

N ′
i,d,τi

(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

The other partial derivatives follow the same pattern yielding the Jacobian:

J(Err(u,v,w)) =


∂Errx
∂u

∂Errx
∂v

∂Errx
∂w

∂Erry
∂u

∂Erry
∂v

∂Erry
∂w

∂Errz
∂u

∂Errz
∂v

∂Errz
∂w



=


−

∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkx

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijky

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkz


With the Gauss-Newton algorithm we iterate via the formula

J(Err(u,v,w)) ·∆


u

v

w

 = −Err(u,v,w)

and use Cramers rule for inverting the small Jacobian and solving this system of linear

equations.
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Chapter 3: Implementation of Freeform-Deformation (FFD)

3.3 Parametrisierung sinnvoll?

• Nachteile von Parametrisierung

• Deformation ist um einen Kontrollpunkt viel direkter zu steuern.

• => DM-FFD?

14
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4 Scenarios for testing evolvability

criteria using

Freeform-Deformation (FFD)

4.1 Test Scenario: 1D Function Approximation

4.1.1 Optimierungszenario

• Ebene -> Template-Fit

4.1.2 Matching in 1D

• Trivial

4.1.3 Besonderheiten der Auswertung

• Analytische Lösung einzig beste

• Ergebnis auch bei Rauschen konstant?

• normierter 1-Vektor auf den Gradienten addieren

– Kegel entsteht

15
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Chapter 4: Scenarios for testing evolvability criteria using Freeform-Deformation (FFD)

4.2 Test Scenario: 3D Function Approximation

4.2.1 Optimierungsszenario

• Ball zu Mario

4.2.2 Matching in 3D

• alternierende Optimierung

4.2.3 Besonderheiten der Optimierung

• Analytische Lösung nur bis zur Optimierung der ersten Punkte gültig

• Kriterien trotzdem gut

16
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5 Evaluation of Scenarios

5.1 Spearman/Pearson-Metriken

• Was ist das?

• Wieso sollte uns das interessieren?

• Wieso reicht Monotonie?

• Haben wir das gezeigt?

• Statistik, Bilder, blah!

5.2 Results of 1D Function Approximation

5.3 Results of 3D Function Approximation

17
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Chapter 5: Evaluation of Scenarios

Figure 5.1: Results 1D

Figure 5.2: Results 3D
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6 Schluss

HAHA .. als ob -.-
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