% bibtotoc[numbered] : Literaturv. wird in Inhaltsv. aufgenommen % abstracton : Abstract mit Ueberschrift \documentclass[ a4paper, % default 11pt, % default = 11pt BCOR6mm, % Bindungskorrektur bei Klebebindung 6mm, bei Lochen BCOR8.25mm twoside, % default, 2seitig titlepage, % pagesize=auto % openany, % Kapitel koennen auch auf geraden Seiten starten % draft % schneller compillieren, Bild-dummy % appendixprefix % Anhang mit Bezeichner ]{scrbook} %%%%%%%%%%%%%%% Literaturverzeichnisstil %%%%%%%%%%%%%%% % achtung, auch \bibstyle, unten, anpassen! % \usepackage[square]{natbib} % fuer bibstyle natdin/ see ../natbib.pdf %%%%%%%%%%%%%%% Packages %%%%%%%%%%%%%%% \input{settings/packages} \makeindex %%%%%%%%%%%%%%% Graphics %%%%%%%%%%%%%%% \graphicspath{{pics/}} %%%%%%%%%%%%%%% Globale Einstellungen %%%%%%%%%%%%%%% \input{settings/commands} \input{settings/environments} %\setlength{\parindent}{0pt} % kein einzug bei absaetzen %\setlength{\lineskip}{1ex plus0.5ex minus0.5ex} % dafr abstand zwischen abs�zen (funktioniert noch nicht) % \renewcommand{\familydefault}{\sfdefault} %%%%%%%%%%%%%%% Header - Footer %%%%%%%%%%%%%%% % ### Fr 2 Seitig (option twopage): \usepackage{fancyhdr}%http://www.tug.org/tex-archive/info/german/fancyhdr \pagestyle{fancy} % must be called before the following renewcommands !!! \fancyhead{} % Alte Definition loeschen \fancyfoot{} % dito \renewcommand{\chaptermark}[1]{\markboth{\chaptername\ \thechapter{}: #1}{}} \renewcommand{\sectionmark}[1]{\markright{\thesection{}~~#1}} % % um das hard codierte makeuppercase zu verhindern \fancyhead[EL]{\textrm{\nouppercase\leftmark}}% Even=linke Seiten und dort links, also aussn das \leftmark \fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark \fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade % ### fr 1 seitig %\usepackage{fancyhdr} % %\lhead{\textsf{\noupercase\leftmark}} %\chead{} %\rhead{\textsf{\nouppercase\rightmark}} %\lfoot{} %\cfoot{\textsf{\thepage}} %\rfoot{} \setkomafont{sectioning}{\rmfamily\bfseries} \setcounter{tocdepth}{3} %\setcounter{secnumdepth}{3} % \input{settings/hyphenation} %% Manchmal bricht latex nicht richtig um. hier trennregeln rein. % \includeonly{% % % files/0_titlepage.tex % % files/1_0_introduction,% % % files/2_0_knownDCJ,% % % files/3_0_DCJIndels,% % % files/4_0_DCJIndels_1comps,% % files/5_0_DCJIndels_2comps,% % % files/6_0_implementation,% % % files/7_0_evaluation% % % ,files/8_0_conclusion% % } %%%%%%%%%%%%%%% PANDOC-nedded defs %%%%%%%%%% \providecommand{\tightlist}{% \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} %disable "Redefining ngerman shorthand"-Message % \makeatletter % \patchcmd{\pdfstringdef} % {\csname HyPsd@babel@} % {\let\bbl@info\@gobble\csname HyPsd@babel@} % {}{} % \makeatother %%%%%%%%%%%%%%% Hauptdokument %%%%%%%%%%%%%%% \begin{document} % ###### Autoref definitions (hyperref package)##### \def\subtableautorefname{Table} \def\algorithmautorefname{Algorithm} \def\chapterautorefname{Chapter} \def\sectionautorefname{Section} \def\definitionautorefname{Definition} \def\exampleautorefname{Example} \def\observationautorefname{Observation} \def\propositionautorefname{Proposition} \def\lemmaautorefname{Lemma} % in diesem Dokument nicht verwendet: % \def\subsectionautorefname{Subsection} % \def\Subsubsectionautorefname{Subsubsection} % \def\subfigureautorefname{Figure} % \def\claimautorefname{Claim} %%%%%%%%%%%%%%% Deckblatt %%%%%%%%%%%%%%% \extratitle{} \input{files/titlepage} %\input{files/titlepage.pdf} % Rueckseite leer % \input{files/0_deckblatt/title} \pagestyle{empty} % Rueckseite leer % %%%%%%%%%%%%%%% Verzeichnisse %%%%%%%%%%%%%%% \frontmatter % Abstrakte Gliederungsebene: Anfang des Buches \tableofcontents % Rueckseite leer %\lstlistoflistings % fuer listingsverzeichnis mit package listings %%%%%%%%%%%%%%% Hauptteil %%%%%%%%%%%%%%% % Insgesamt ca. 60-100 Seiten Davon mindesten 50% Eigene Arbeit \mainmatter %Abstrakte Gliederungsebene: Hauptteil des Buches \pagestyle{fancy} \pagenumbering{arabic} \chapter*{How to read this Thesis} As a guide through the nomenclature used in the formulas we prepend this chapter. Unless otherwise noted the following holds: \begin{itemize} \tightlist \item lowercase letters \(x,y,z\)\\ refer to real variables and represent a point in 3D-Space. \item lowercase letters \(u,v,w\)\\ refer to real variables between \(0\) and \(1\) used as coefficients in a 3D B-Spline grid. \item other lowercase letters\\ refer to other scalar (real) variables. \item lowercase \textbf{bold} letters (e.g. \(\vec{x},\vec{y}\))\\ refer to 3D coordinates \item uppercase \textbf{BOLD} letters (e.g. \(\vec{D}, \vec{M}\))\\ refer to Matrices \end{itemize} \chapter{Introduction}\label{introduction} In this Master Thesis we try to extend a previously proposed concept of predicting the evolvability of \acf{FFD} given a Deformation-Matrix\cite{anrichterEvol}. In the original publication the author used random sampled points weighted with \acf{RBF} to deform the mesh and defined three different criteria that can be calculated prior to using an evolutional optimization algorithm to asses the quality and potential of such optimization. We will replicate the same setup on the same meshes but use \acf{FFD} instead of \acf{RBF} to create a deformation and evaluate if the evolution-criteria still work as a predictor given the different deformation scheme. \section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is} First of all we have to establish how a \ac{FFD} works and why this is a good tool for deforming meshes in the first place. For simplicity we only summarize the 1D-case from \cite{spitzmuller1996bezier} here and go into the extension to the 3D case in chapter \ref{3dffd}. Given an arbitrary number of points \(p_i\) alongside a line, we map a scalar value \(\tau_i \in [0,1[\) to each point with \(\tau_i < \tau_{i+1} \forall i\). Given a degree of the target polynomial \(d\) we define the curve \(N_{i,d,\tau_i}(u)\) as follows: \begin{equation} \label{eqn:ffd1d1} N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[ \\ 0, & \mbox{otherwise} \end{cases} \end{equation} and \begin{equation} \label{eqn:ffd1d2} N_{i,d,\tau}(u) = \frac{u-\tau_i}{\tau_{i+d}} N_{i,d-1,\tau}(u) + \frac{\tau_{i+d+1} - u}{\tau_{i+d+1}-\tau_{i+1}} N_{i+1,d-1,\tau}(u) \end{equation} If we now multiply every \(p_i\) with the corresponding \(N_{i,d,\tau_i}(u)\) we get the contribution of each point \(p_i\) to the final curve-point parameterized only by \(u \in [0,1[\). As can be seen from \eqref{eqn:ffd1d2} we only access points \([i..i+d]\) for any given \(i\)\footnote{one more for each recursive step.}, which gives us, in combination with choosing \(p_i\) and \(\tau_i\) in order, only a local interference of \(d+1\) points. We can even derive this equation straightforward for an arbitrary \(N\)\footnote{\emph{Warning:} in the case of \(d=1\) the recursion-formula yields a \(0\) denominator, but \(N\) is also \(0\). The right solution for this case is a derivative of \(0\)}: \[\frac{\partial}{\partial u} N_{i,d,r}(u) = \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u)\] For a B-Spline \[s(u) = \sum_{i} N_{i,d,\tau_i}(u) p_i\] these derivations yield \(\frac{\partial^d}{\partial u} s(u) = 0\). Another interesting property of these recursive polynomials is that they are continuous (given \(d \ge 1\)) as every \(p_i\) gets blended in linearly between \(\tau_i\) and \(\tau_{i+d}\) and out linearly between \(\tau_{i+1}\) and \(\tau_{i+d+1}\) as can bee seen from the two coefficients in every step of the recursion. \subsection{\texorpdfstring{Why is \ac{FFD} a good deformation function?}{Why is a good deformation function?}}\label{why-is-a-good-deformation-function} The usage of \ac{FFD} as a tool for manipulating follows directly from the properties of the polynomials and the correspondence to the control points. Having only a few control points gives the user a nicer high-level-interface, as she only needs to move these points and the model follows in an intuitive manner. The deformation is smooth as the underlying polygon is smooth as well and affects as many vertices of the model as needed. Moreover the changes are always local so one risks not any change that a user cannot immediately see. But there are also disadvantages of this approach. The user loses the ability to directly influence vertices and even seemingly simple tasks as creating a plateau can be difficult to achieve\cite[chapter~3.2]{hsu1991dmffd}\cite{hsu1992direct}. This disadvantages led to the formulation of \acf{DM-FFD}\cite[chapter~3.3]{hsu1991dmffd} in which the user directly interacts with the surface-mesh. All interactions will be applied proportionally to the control-points that make up the parametrization of the interaction-point itself yielding a smooth deformation of the surface \emph{at} the surface without seemingly arbitrary scattered control-points. Moreover this increases the efficiency of an evolutionary optimization\cite{Menzel2006}, which we will use later on. But this approach also has downsides as can be seen in \cite[figure~7]{hsu1991dmffd}\todo{figure hier einfügen?}, as the tessellation of the invisible grid has a major impact on the deformation itself. All in all \ac{FFD} and \ac{DM-FFD} are still good ways to deform a high-polygon mesh albeit the downsides. \section{What is evolutional optimization?}\label{what-is-evolutional-optimization} \section{Wieso ist evo-Opt so cool?}\label{wieso-ist-evo-opt-so-cool} The main advantage of evolutional algorithms is the ability to find optima of general functions just with the help of a given error-function (or fitness-function in this domain). This avoids the general pitfalls of gradient-based procedures, which often target the same error-function as an evolutional algorithm, but can get stuck in local optima. This is mostly due to the fact that a gradient-based procedure has only one point of observation from where it evaluates the next steps, whereas an evolutional strategy starts with a population of guessed solutions. Because an evolutional strategy modifies the solution randomly, keeps the best solutions and purges the worst, it can also target multiple different hypothesis at the same time where the local optima die out in the face of other, better candidates. If an analytic best solution exists (i.e.~because the error-function is convex) an evolutional algorithm is not the right choice. Although both converge to the same solution, the analytic one is usually faster. But in reality many problems have no analytic solution, because the problem is not convex. Here evolutional optimization has one more advantage as you get bad solutions fast, which refine over time. \section{Criteria for the evolvability of linear deformations}\label{criteria-for-the-evolvability-of-linear-deformations} \subsection{Variability}\label{variability} In \cite{anrichterEvol} variability is defined as \[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\) is the \(m \times n\) deformation-Matrix used to map the \(m\) control points onto the \(n\) vertices. Given \(n = m\), an identical number of control-points and vertices, this quotient will be \(=1\) if all control points are independent of each other and the solution is to trivially move every control-point onto a target-point. In praxis the value of \(V(\vec{U})\) is typically \(\ll 1\), because as there are only few control-points for many vertices, so \(m \ll n\). Additionally in our setup we connect neighbouring control-points in a grid so each control point is not independent, but typically depends on \(4^d\) control-points for an \(d\)-dimensional control mesh. \subsection{Regularity}\label{regularity} Regularity is defined\cite{anrichterEvol} as \[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\] where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and greatest right singular value of the deformation-matrix \(\vec{U}\). As we deform the given Object only based on the parameters as \(\vec{p} \mapsto f(\vec{x} + \vec{U}\vec{p})\) this makes sure that \(\|\vec{Up}\| \propto \|\vec{p}\|\) when \(\kappa(\vec{U}) \approx 1\). The inversion of \(\kappa(\vec{U})\) is only performed to map the criterion-range to \([0..1]\), whereas \(1\) is the optimal value and \(0\) is the worst value. This criterion should be characteristic for numeric stability on the on hand\cite[chapter 2.7]{golub2012matrix} and for convergence speed of evolutional algorithms on the other hand\cite{anrichterEvol} as it is tied to the notion of locality\cite{weise2012evolutionary,thorhauer2014locality}. \subsection{Improvement Potential}\label{improvement-potential} In contrast to the general nature of variability and regularity, which are agnostic of the fitness-function at hand the third criterion should reflect a notion of potential. As during optimization some kind of gradient \(g\) is available to suggest a direction worth pursuing we use this to guess how much change can be achieved in the given direction. The definition for an improvement potential \(P\) is\cite{anrichterEvol}: \[ P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F \] given some approximate \(n \times d\) fitness-gradient \(\vec{G}\), normalized to \(\|\vec{G}\|_F = 1\), whereby \(\|\cdot\|_F\) denotes the Frobenius-Norm. \chapter{Hauptteil}\label{hauptteil} \section{Was ist FFD?}\label{was-ist-ffd} \label{3dffd} \begin{itemize} \tightlist \item Definition \item Wieso Newton-Optimierung? \item Was folgt daraus? \end{itemize} \section{Szenarien vorstellen}\label{szenarien-vorstellen} \subsection{1D}\label{d} \subsubsection{Optimierungszenario}\label{optimierungszenario} \begin{itemize} \tightlist \item Ebene -\textgreater{} Template-Fit \end{itemize} \subsubsection{Matching in 1D}\label{matching-in-1d} \begin{itemize} \tightlist \item Trivial \end{itemize} \subsubsection{Besonderheiten der Auswertung}\label{besonderheiten-der-auswertung} \begin{itemize} \tightlist \item Analytische Lösung einzig beste \item Ergebnis auch bei Rauschen konstant? \item normierter 1-Vektor auf den Gradienten addieren \begin{itemize} \tightlist \item Kegel entsteht \end{itemize} \end{itemize} \subsection{3D}\label{d-1} \subsubsection{Optimierungsszenario}\label{optimierungsszenario} \begin{itemize} \tightlist \item Ball zu Mario \end{itemize} \subsubsection{Matching in 3D}\label{matching-in-3d} \begin{itemize} \tightlist \item alternierende Optimierung \end{itemize} \subsubsection{Besonderheiten der Optimierung}\label{besonderheiten-der-optimierung} \begin{itemize} \tightlist \item Analytische Lösung nur bis zur Optimierung der ersten Punkte gültig \item Kriterien trotzdem gut \end{itemize} \chapter{Evaluation}\label{evaluation} \section{Spearman/Pearson-Metriken}\label{spearmanpearson-metriken} \begin{itemize} \tightlist \item Was ist das? \item Wieso sollte uns das interessieren? \item Wieso reicht Monotonie? \item Haben wir das gezeigt? \item Statistik, Bilder, blah! \end{itemize} \chapter{Schluss}\label{schluss} HAHA .. als ob -.- \backmatter \cleardoublepage \renewcommand\thesection{\Roman{section}} \addtocontents{toc}{\protect\setcounter{tocdepth}{1}} \setcounter{section}{1} % reset section to 1 so its stars I, II, III,... \chapter*{Appendix} \addcontentsline{toc}{chapter}{\protect\numberline{}Appendix} \pagenumbering{roman} %%%%%%%%%%%%%%% Literaturverzeichnis %%%%%%%%%%%%%%% \bibliographystyle{natdin} % \bibliographystyle{natdin} \bibliography{bibma} \addcontentsline{toc}{section}{\protect\numberline{\thesection}Bibliography} % Literaturverzeichnis in das Inhaltsverzeichnis aufnehmen \addtocounter{section}{1} \newpage %%%%%%%%%%%%%%% Anhang %%%%%%%%%%%%%%% % \clearpage %spaeter alles wieder rein % % \input{files/appendix} \input{settings/abkuerzungen} \addcontentsline{toc}{section}{\protect\numberline{\thesection}Abbreviations} \addtocounter{section}{1} \newpage \listofalgorithms \addcontentsline{toc}{section}{\protect\numberline{\thesection}List of Algorithms} \addtocounter{section}{1} \newpage \listoffigures \listoftables \listoftodos \addcontentsline{toc}{section}{\protect\numberline{\thesection}TODOs} \addtocounter{section}{1} \newpage % \printindex %%%%%%%%%%%%%%% Erklaerung %%%%%%%%%%%%%%% % *\input{settings/declaration} \include{files/erklaerung} \end{document}