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Technical note 
Partial derivatives of Bbzier 
surfaces 
Klaus Spilzmijller 

In manufacturing BCzier surfaces, it is often useful to know 
some of their geometric invariants. In planning milling pathes 
for example, the curvature should be known in some points of 
the BCzier surface. From differential geometry it follows, that 
the partial derivatives up to second order must be computed. 
How this computation can be done effectively, is the content 
of this article. Using the algorithm of de Casteljau in a 
different way, the calculation of a point with his partial 
derivatives up to second order can be accomplished with little 
more computational cost than the calculation of the point 
only. 

Keywords: B6zier curves, B&ier patches, de Casteljau algo- 
rithm, derivatives 

INTRODUCTION 

In CAD systems freeform curves and freeform surfaces 
are important tools . ‘3 * In most cases, a free form curve 
c is defined by control points Bi and a set of suitable 
blending functions fi (i = 1,. . . , N) in the form 

c : Z(u) = &iif,(U), u E [O,ll 
i=l 

where si denote the geometric vectors of the control 
points Bi. If on the curve c a point X&J - its 
geometric vector St(u,) - has to be determined, one 
can compute fi(uo) for i = 1,. . . , N and then solve this 
equation. But generally, this is not the best way. For 
numerical reasons, in most cases subdivision algorithms 
are more effective. These algorithms determine the 
point X(u,) by iteratively subdividing the polygon 
formed by the control points. If c is a BCzier curve, the 
subdividing algorithm is the well-known algorithm of de 
Casteljau3. 

A similar approach is possible, if points of a freeform 
surface have to be determined. Generally a freeform 
surface @ is given in tensor product form. In this case, 
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a point on Q, can be determined by subdivision too. So, 
points of a BCzier surface can be computed by the 
repeated use of the algorithm of de Casteljau4. 

As an additional advantage, the algorithm of de 
Casteljau gives the possibility to compute the deriva- 
tives at a point of a Btzier curve without additional 
costs3~ 4. Analogously, it is important to know a simple 
way for the determination of the partial derivatives of a 
Bezier surface. This holds, as most of the geometrical 
invariants of a surface which are essential for the shape 
of such a surface, depend on the partial derivatives, 
usually up to second order. An example may illustrate 
the importance of this question. Milling a surface by a 
ball end cutter with radius r, the maximum curvature 
in concave regions of the surface is limited by l/r to 
avoid surface gouging5. So, it is helpful to know the 
principal curvatures of the surface which has to be 
milled. To get these curvatures, the partial derivatives 
of the surface up to second order have to be computed6. 
Some other examples are treated in the final section of 
this paper. 

Using the algorithm of de Casteljau, the partial 
derivatives up to second order of a I36zier surface can 
be determined very effectively. A suitable algorithm is 
presented in this paper, which is organized as follows. 
After an introductory section about BCzier curves and 
surfaces, the calculation of partial derivatives of a 
BBzier surface is explained. Next, the algorithm based 
on these results is given. Finally, some applications of 
the presented algorithm are listed. 

BiiZIER CURVES AND SURFACES 

With B,, . . . , B, E E3 and the Bernstein polynomials 
B/“, i = 0,. . . , N the curve 

i=O 
(1) 

is called the Bt%ier curuz (of degree N) belonging to 
the BCzier points B,, . . . , B,. Another very elegant rep- 
resentation, which is due to Hosaka and Kimura’, makes 
use of the shift operator E, which is defined by E(bi) = 
bi+l,i=O ,..., N-l. 
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From the binomial theorem it follows that the Bezier 
curve, Equation 1, is given by 

c:~,N(U)=jZ)(U)=(l--UCuE)N~,~, UE[O,l] 

(2) 

With bf:= (1 - u + uE)~ bj, 0 I i + k I N and the re- 
cursion bf = (1 - U) @- ’ + u@;,’ one gets the algo- 
rithm of de Casteljau: 

Z 
L+ 

N-l =@_, + b;mZ %~_,...@-I 

ljN =: ij; >$f,_, :5;_2...5;“-’ Li;p 

The vector i$, which is constructed in this way, is the 
geometric vector of the point on the Btzier cmve, 
which belongs to the parameter U. 

The representation (2) of a BCzier curve can be used 
to determine its derivatives. 

Lemma 1 

For the kth derivative of a Bezier curve of degree N, 
OsksZV, it holds 

P’(U) = (/l), .(l --u +z&Y(E- l)“b,, 

(3) 

It follows for the first and second order derivatives 

Because the vectors 5: = (1 - u + uE)~~; can be found 
in the table of de Casteljau, the derivatives of a Bezier 
curve can be computed from this scheme. The first 
derivative is N times the difference of the vectors in 
the last but one column. The second derivative is a 
linear combination of vectors in the column before. 
Generally the vectors in the (N + 1 - k)th column of 
the table of de Casteljau are needed to calculate the 
kth derivatives of a BCzier curve. 

With Bjj E E3 (i = 0, . . . , M; j = 0,. . ., N) the surface 

(u, VI E [O, 11 x LO, 11 (4) 

is called the B&o surface (of degree (M, N)) belong- 
ing to the BCzier points Bij. 

An example of a wzier surface is shown in Figure I. 
For better visibility the net of control points has been 
lifted. Some obvious properties of Bezier surfaces can 
be found in the following list: 

Figure 1 BCzier surface and the algorithm of de Casteljau (1st way) 

(a> 

(b) 

(c) 

go, 0) =i&, 30, 1) = 5,,, 541, 0) =&“, 31, 1) = 
b 
7%: i-line u = u0 is a BCzier curve belonging to the 
Btzier points Bi(v,) with the geometric vectors 

So:= ~~;jBjN(U,), i=O,...,M 
j=O 

The Aine u = u,, is a BCzier curve belonging to the 
BCzier points Bj(u,) with the geometric vectors 

--j(U,,):= ~~ijB;~(u,), j=O,...,N 
i=o 

In Figure 1 the v-line u = 0.75 and its control 
points - marked by l - have been drawn. 

There also exist shift operators E ?nd F-for Btzier 
surfaces, which are defined by E(bi,j) = bi + ,,j and 

F(sjj) = si,, + ,. They are commutative: E(F (si,j)) = 

F( E($jj)). The Btzier surface can be represented by 
these operators as 

z(u, v) = (1 - u + uEj”(l - u + uF)~&,, 

= (1 - u + uF)‘?l - u + uEj”i;,,,, 

It follows 

@;(u, u> = (1 - u + uE)(l - u + uEj”- ’ 

(1 - u + uF)~T;,, 

= (I- &,f; 1, N + &;u; 1, N (5) 

68 



or 

i#bN(U, u) = (1 - LJ + vF)(l - U + UEY 

(1- u+ UFY& 

= (1 - U)g;oMbNdl + &fiNel (6) 

Clearly the algorithm of de Casteljau can be used for 
the u- as well as for the pdirection. With the notation 
600 :=hi. there are two obvious ways to compute a 
pzint duo, u,,) on the %zier surface. 

1st way: 
By (M + 1) applications of the algorithm of de 
Casteljau for the &direction (operator F) the geo- 
metric vectors 5pbN of the BCzier points of the 
u-line u = u0 are ‘calculated. In our notation this 
can be seen in an augmentation of the second 
superscript. In Figure I this results in a row of 
A4 + 1 = 4 points, which are marked by l . Then by a 
single application of the algorithm of de Casteljau 
for this u-line the geometric vector @‘bN is com- 
puted (Operator E), which results in the change of 
the first superscript. The last step for this first way 
of computation is shown in Equation 5. In Figure I 
this computation can be seen too. It results in a 
point X of the surface, which is marked as @ 
2nd way: 
By (N + 1) applications of the algorithm of de 
Casteljau for the u-direction the geometric vectors 
@‘;” of the Bizier points of the Lrline u = u. are 
calculated. After that the geometric vector @‘$” is 
computed by a single application of the algorithm 
of de Casteljau for the @line. The last step for the 
second way of computation is shown in Equation 6. 

Which of these two ways is more effective depends on 
the degree (M, N) of the B6zier surface. Applying the 
algorithm of de Casteljau on (N + 1) control points 
1/2N(N + 1) convex combinations are computed. So 
in the 1st way (M + 1) applications of an O(N*)-al- 
gorithm and one application of an 0(&f*)-algorithm 
are necessary. All things considered 1/2((M + 1) 
N((N + 1) + M(M + 1)) = 1/2(MN* + M* + MN + N* 
+ M + N) convex combinations have to be computed. 
Analogously, in the 2nd way 1/2((N + l)M( M + 1) + 
N(N+1))=1/2(NM*+M*+MN+N*+M+N) 
convex combinations have to be computed. Therefore 
the 1st way will in general need less computation time 
for N < M. In the case N > M, the 2nd should be 
faster. 

PARTIAL DERIVATIVES OF BikZIER 
SURFACES 

As for BCzier curves the derivatives of a BCzier surface 
can be given by a formula. 

Lemma 2 

The partial derivatives of a B6zier surface are for 

Partial derivatives of BBzier surfaces: K Spitzmijller 

OsksM and O<Z<N given by: 

ak+lt M! N! 
-j--&-p’ rJ) = 

(M-k)!. (N-Z)! 

(1 - U + UEY k (E - l)k 

(1 - u + uF)~-’ (F - l)‘&,, 

M! N! 

= (M-k)! * (N-l)! *(E- l)k’ 

(F - l)‘*b&-k~N-‘. (7) 

The 1st way to get a point X(u,, u,) on the Bizier 
surface starts with the calculation of the u-line u = u, 
and computes finally the point X(uo, u = u,) on this 
curve. Therefore the partial derivatives Z,, S;,,, . . . with 
respect to the first parameter u of the surface can be 
computed as tangent vectors to this u-line as described 
in the second section of this article. It is as easy to 
determine the partial derivatives with respect to the 
second parameter of the surface s7,, Z,,, . . . , if the 2nd 
way is used. But to get both sorts of derivatives, it 
should not be necessary to calculate a point on the 
BCzier surface twice. Mixed partial derivatives, gUU for 
example, cannot be computed in this way. So the two 
ways, to calculate points on BCzier surfaces, shall be 
modified. To hold this article clear, only the derivatives 
up to second order are computed. So our task is: 

For (uo, uo) the point X(uol vo) and the first and 
second order derivatives in this point shall be com- 
puted: 

2 = h$N (8a) 

~;,=M.(E-I).~~,~.N=M.(~~~~.N-~~~~.N) 

(8b) 

j;” = N. S;$N- 1 -j&N- 1) 
( (8~) 

L =M(M- l).(E- 1)2$$-2.N 

=M(M- I).(~~;*.N_2~~~*.N+~~~*,N) 

(8d) 

57,” =MN.(E- l)(F- l)?$‘;‘~N-l 

=MN.($T;l.N-‘_-,&V-l _-,.M;,,N-1 

+sM- 1, N- 1 

o,o 1 
(8e) 

2”” =N(N- I).(~~~N-*-2~~iN-*+~~~N-*) 

(8f) 

The vectors, which occur in these equations, will be 
found with the help of the algorithm of de Casteljau. 
To make this clear, we rewrite these, using the shift 
operators E and F. 

;;r’=(1-~+~E)*(1-v+vF)* 

(1-u+UE) ‘++*(l- U+ uF)~-*&, (9a) 

jz, = M( E - l)(l - u + r&)*(1 - u + uF)* 

(l-u+uE) M-2(1 - u+ UF)N-2.7;00 (9b) 
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2, = N(1 - U + UE)*(F - l)(l - U + L!!)’ 

(1 --u +r&Y-* (l- U+UFY-*& (SC) 

L =M(M - l)(E - 1j2(1 - U + UFj2 

(1 --u +z.&?ZY2 (l- u+ UFY2&) (94 

2”” =MN(E - Ml- 24 + r&!&F - 1x1- U + UF)’ 

(l-24+2&) M-2(1 - u+ L#-*& (9e) 

2”” = N(N- l)(l - 2.4 + UE)*(F - l)* 

(l-u+z&) M- *cl - U + “FY-**i& (90 

These formulae show that the desired vectors have the 
common shape 

G(l-u+uE) M-2(l -u+ vFY2.& 

with different operators G. So the approach to com- 
pute the vectors effectively is clear. First the common 
factors 

(l-u+uE) M-2(1 - v+ UFY2&, 

are computed. After that the vectors are computed by 
the operators G. 

THE ALGORITHM 

Starting point of all computation of a Bezier surface is 
the (A4 + 1) x (N + l)-matrix 

B= 

ii”, . . .i”, . . .7;“, 

of geometric vectors of the Btzier points. 

step 1 

Apply the algorithm of de Casteljau in v-direction (1st 
way> on the ith row of B for i = 0,. . . , M and stop the 
computation in the last but two columns. For fixed i 
the vectors i!‘*N-2 s!*N-2 and $!‘,N-2 ,I.0 
from sp.0” := hio, . . . :s$$ .- -) 

are computed 
.- bi,. Ndti the results in the 

ith row of a new (M + 1) x 3-matrix 

B’ = 

T;O,N-2 T;ll,N-2 iO,N-2 
hf.0 hf.1 M,2 

The result of the Step 1 can be seen in Figure 2. 
Instead of producing a single row of ‘control points’ as 
in Figure I we have left three rows. With them we now 
deal in Step 2. 

Step 2 

Now apply the algorithm of de Casteljau in u-direction 
(2nd way> on every column k = 0, 1, 2 of the matrix B’. 
Stop again the calculation in the last but two steps of 
the algorithm. In this part_of the alg%rithm for fixed 
column k the vectors b&2,N-2, by,*vN-* and 

7;M-2,N-2 
2.k are computed from the vectors 

$,N-2 
i”SN-2. These vectors are the common fac- 

tc% and’buiskup for k = 0, 1, 2 the lst, 2nd and 3rd 
column of a 3 X 3-matrix 

B” = 

SM- I,N-2 @72,N-2 @,2, N-2 
0.0 

‘,g,‘,N-2 @f-2, N-2 @;2,N-2 

7;M-2, N-2 7;M-2,N-2 
*,a 2.1 

$62, N-2 
*,2 

The results of Step 2 can be seen in Figure 3. Instead 
of computing a single point, as it is the result of the 
unmodified algorithm of de Casteljau and is shown in 
Figure I, we computed in three steps from the results of 
Step 1 (marked by O) nine points, which are marked by 
. . These points contain all the informations we need, to 
compute the point on the Bezier surface and the de- 
sired derivatives. This will be done in the final step. 

Step 3 

As the operators G show, the reduction of this matrix 
has to be done now in both directions u and U. 

Figure 4 shows the final step. Starting point is the 
matrix B”, whose elements can be found in the upper- 
left corner of this table. From left to right the algo- 
rithm of de Casteljau is used in u-direction (changing 

Figure 2 Situation after step 1 Figure 3 Situation after step 2 

70 



d 

Figure 4 The third and final step 

the first superscript). From top to bottom the algorithm 
of de Casteljau in pdirection is used (raising the sec- 
ond superscript). In th_e second diagonal of this table 
and below the vectors bz;S can be found, which result 
-combined according to Equations 8a-8f - in the 
partial derivatives of a B&ier surface in the point 
X(u, v>. The letters in Figure 4 point to the correspond- 
ing formulae in the Equations 8a-8f. 

It is now easy to see, how partial derivatives up to 
general order k can be computed. The reductions of 
the starting matrix in Steps 1 and 2 result in a (k + 1) 
x (k + Dmatrix, to which in the third step the algo- 
rithm of de Casteljau must be applied as well in u- as 
in trdirection. In this table the second diagonal con- 
tains all vectors, which are needed to combine the kth 
derivatives according to Equation 7. In the lower-left 
end of this diagonal the vectors to combine dkZ/duk 
can be found, in the upper-right end the vectors for 
computing dkSZ/d vk. Looking for one partial derivative 
akQadauk-j only, the (k + 1) X (k + l)-matrix has 
to be reduced by j steps of the algorithm of de Castel- 
jau in tidirection and by k -j steps in u-direction, to 
find the vectors to compute this derivative according to 
Equation 7. 

To get the (k - 1) derivatives, the vectors below the 
second diagonal are combined. As in Figure 4 the 
geometric vector of the point X(u, v) on the BCzier 
surface occurs in the lower-right comer of the table. 

The final remark concerns the computational costs 
of the algorithm. In Step 1 04 + 1) applications of the 
reduced algorithm of de Casteljau are necessary. So 
here (M + 1)[1/2 N(N + 1) - 3)] convex combinations 
are computed. In Step 2 the three reduced algorithms 
in the u-direction compute 3[1/2M(M+ 1) - 31 con- 
vex combinations. In the final step 27 convex combina- 
tions must be calculated. So totally 1/2((M + 1) 
[MN + 1) - 61+ 3M(M + 1) - 18 + 54) = 1/2(MN2 
+N2+MN+M2+M+N+2M2-4M+30) convex 
combinations must be computed. Comparing this with 
the cost of the algorithm of de Casteljau (cf. the end of 
the section ‘BBzier curves and surfaces’), the additional 

b a 

costs are the computation of M2 - 2M + 15 convex 
combinations. In the case of a B6zier surface of degree 
(3,3) as in Figure I this means the calculation of 18 
additional convex combinations. 

APPLICATIONS 

A list of applications of differential geometry in com- 
puter-aided design was given by Hoschek’. The algo- 
rithm, presented in this paper, gives an effective way, to 
compute the invariants of differential geometry, which 
can be found in appropriate text-books, for example in 
Reference 7. 

Using the partial derivatives Z,, and Jz,, it can be 
determined, whether a point on the Bkzier surface is 
regular or not. In the regular case the partial deriva- 
tives of first order define the tangent plane to the 
Btzier surface in this point and the normal 

to the BCzier surface. In the tangent plane the coeffi- 
cients of the first fundamental form 

determine length of tangent vectors as well as angles 
between two tangent vectors. The first fundamental 
form is also used, to determine the length of curves on 
the BCzier surface and the area of parts of the Btzier 
surface. 

With the partial derivatives of second order the 
behaviour of the surface curvature in this point is 
known by the second fundamental form. Its coefficients 
are given by 

h,, = Jit,,,,ii, h,, = Qi, h,, = i,,ii 
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With this form the normal curvature K, in this point of 
the surface can be calculated for each direction Z = 
a’$, + a2Z, in the tangent plane. In addition to 
Hoschek’s list this may be used in milling for cutter 
location and collision control. 

The extreme values of the normal curvature, the 
principal curvatures, can be computed by the first and 
second fundamental form by a well-known formula in 
differential geometry. The corresponding directions, the 
principal directions in the given point, can be calcu- 
lated as the solutions of a 2 X 2-system of linear equa- 
tions. The Gaussian curvature and the mean curvature 
are given as product and average of the principal 
curvatures. They may be used in addition to Hoschek’s 
list to subdivide a surface in regions of small and big 
curvature, which can be worked in milling by different 
strategies. 

Beside the normal curvature, the geodesic curvature 
of a curve on the Bezier surface can also be computed. 
So the geodesics - curves with zero geodesic curva- 
ture - on the surface can be determined. It is well 
known that the shortest way between two points on the 
surface is part of a geodesic. 

The computation of asymptotic lines can be accom- 
plished by these fundamental forms as well as the 
determination of umbihc points, of the net of curvature 
lines and of geodesic parallel curves on the BCzier 
surface. 
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