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DRAFT
How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent a point in 3D-Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B-Spline grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices
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1 Introduction

In this Master Thesis we try to extend a previously proposed concept of predicting the evolv-

ability of Freeform-Deformation (FFD) given a Deformation-Matrix[1]. In the original pub-

lication the author used random sampled points weighted with Radial Basis Function (RBF)

to deform the mesh and defined three different criteria that can be calculated prior to using an

evolutional optimization algorithm to asses the quality and potential of such optimization.

We will replicate the same setup on the same meshes but use Freeform-Deformation (FFD)

instead of Radial Basis Function (RBF) to create a deformation and evaluate if the evolution-

criteria still work as a predictor given the different deformation scheme.

1.1 What is Freeform-Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for deforming

meshes in the first place. For simplicity we only summarize the 1D-case from [4] here and go

into the extension to the 3D case in chapter 2.1.

Given an arbitrary number of points pi alongside a line, we map a scalar value τi ∈ [0,1[ to

each point with τi < τi+1∀i. Given a degree of the target polynomial d we define the curve

Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(1.1)

and

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u
τi+d+1 − τi+1

Ni+1,d−1,τ (u) (1.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribution of

each point pi to the final curve-point parameterized only by u ∈ [0,1[. As can be seen from

(1.2) we only access points [i..i + d] for any given i1, which gives us, in combination with

choosing pi and τi in order, only a local interference of d+ 1 points.

1one more for each recursive step.
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Chapter 1: Introduction

We can even derive this equation straightforward for an arbitrary N2:

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1
Ni+1,d−1,τ (u)

For a B-Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield ∂d

∂us(u) = 0.

Another interesting property of these recursive polynomials is that they are continuous

(given d ≥ 1) as every pi gets blended in linearly between τi and τi+d and out linearly between

τi+1 and τi+d+1 as can bee seen from the two coefficients in every step of the recursion.

1.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties of the poly-

nomials and the correspondence to the control points. Having only a few control points gives

the user a nicer high-level-interface, as she only needs to move these points and the model fol-

lows in an intuitive manner. The deformation is smooth as the underlying polygon is smooth

as well and affects as many vertices of the model as needed. Moreover the changes are always

local so one risks not any change that a user cannot immediately see.

But there are also disadvantages of this approach. The user loses the ability to directly

influence vertices and even seemingly simple tasks as creating a plateau can be difficult to

achieve[5, chapter 3.2][2].

This disadvantages led to the formulation of Direct Manipulation Freeform-Deformation

(DM-FFD)[5, chapter 3.3] in which the user directly interacts with the surface-mesh. All

interactions will be applied proportionally to the control-points that make up the parametriza-

tion of the interaction-point itself yielding a smooth deformation of the surface at the surface

without seemingly arbitrary scattered control-points. Moreover this increases the efficiency

of an evolutionary optimization[6], which we will use later on.

But this approach also has downsides as can be seen in [5, figure 7], as the tessellation offigure hier einfü-

gen?

figure hier einfü-

gen? the invisible grid has a major impact on the deformation itself.

All in all FFD and DM-FFD are still good ways to deform a high-polygon mesh albeit the

downsides.

2Warning: in the case of d = 1 the recursion-formula yields a 0 denominator, but N is also 0. The right solution
for this case is a derivative of 0
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1.2 What is evolutional optimization?

1.2 What is evolutional optimization?

1.3 Advantages of evolutional algorithms

Needs citations

The main advantage of evolutional algorithms is the ability to find optima of general func-

tions just with the help of a given error-function (or fitness-function in this domain). This

avoids the general pitfalls of gradient-based procedures, which often target the same error-

function as an evolutional algorithm, but can get stuck in local optima.

This is mostly due to the fact that a gradient-based procedure has only one point of observa-

tion from where it evaluates the next steps, whereas an evolutional strategy starts with a pop-

ulation of guessed solutions. Because an evolutional strategy modifies the solution randomly,

keeps the best solutions and purges the worst, it can also target multiple different hypothesis

at the same time where the local optima die out in the face of other, better candidates.

If an analytic best solution exists (i.e. because the error-function is convex) an evolutional

algorithm is not the right choice. Although both converge to the same solution, the analytic

one is usually faster. But in reality many problems have no analytic solution, because the

problem is not convex. Here evolutional optimization has one more advantage as you get bad

solutions fast, which refine over time.

1.4 Criteria for the evolvability of linear deformations

1.4.1 Variability

In [1] variability is defined as

V (U) :=
rank(U)

n
,

whereby U is the m × n deformation-Matrix used to map the m control points onto the n

vertices.

Given n = m, an identical number of control-points and vertices, this quotient will be = 1

if all control points are independent of each other and the solution is to trivially move every

control-point onto a target-point.

In praxis the value of V (U) is typically� 1, because as there are only few control-points

for many vertices, so m� n.

Additionally in our setup we connect neighbouring control-points in a grid so each control

point is not independent, but typically depends on 4d control-points for an d-dimensional

control mesh.
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Chapter 1: Introduction

1.4.2 Regularity

Regularity is defined[1] as

R(U) :=
1

κ(U)
=
σmin
σmax

where σmin and σmax are the smallest and greatest right singular value of the deformation-

matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x+Up) this makes

sure that ‖Up‖ ∝ ‖p‖ when κ(U) ≈ 1. The inversion of κ(U) is only performed to map the

criterion-range to [0..1], whereas 1 is the optimal value and 0 is the worst value.

This criterion should be characteristic for numeric stability on the on hand[3, chapter 2.7]

and for convergence speed of evolutional algorithms on the other hand[1] as it is tied to the

notion of locality[8, 7].

1.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic of the fitness-

function at hand the third criterion should reflect a notion of potential.

As during optimization some kind of gradient g is available to suggest a direction worth

pursuing we use this to guess how much change can be achieved in the given direction.

The definition for an improvement potential P is[1]:

P (U) := 1− ‖(1− UU+)(G)‖2F

given some approximate n× d fitness-gradient G, normalized to ‖G‖F = 1, whereby ‖ · ‖F
denotes the Frobenius-Norm.
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2 Implementation of

Freeform-Deformation (FFD)

2.1 Was ist FFD?

• Definition

• Wieso Newton-Optimierung?

• Was folgt daraus?

2.2 Test Scenario: 1D Function Approximation

2.2.1 Optimierungszenario

• Ebene -> Template-Fit

2.2.2 Matching in 1D

• Trivial

2.2.3 Besonderheiten der Auswertung

• Analytische Lösung einzig beste

• Ergebnis auch bei Rauschen konstant?

• normierter 1-Vektor auf den Gradienten addieren

– Kegel entsteht

2.3 Test Scenario: 3D Function Approximation

2.3.1 Optimierungsszenario

• Ball zu Mario

7
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Chapter 2: Implementation of Freeform-Deformation (FFD)

2.3.2 Matching in 3D

• alternierende Optimierung

2.3.3 Besonderheiten der Optimierung

• Analytische Lösung nur bis zur Optimierung der ersten Punkte gültig

• Kriterien trotzdem gut

8
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3 Evaluation of Scenarios

3.1 Spearman/Pearson-Metriken

• Was ist das?

• Wieso sollte uns das interessieren?

• Wieso reicht Monotonie?

• Haben wir das gezeigt?

• Statistik, Bilder, blah!

3.2 Results of 1D Function Approximation

3.3 Results of 3D Function Approximation

9
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Chapter 3: Evaluation of Scenarios

Figure 3.1: Results 1D
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3.3 Results of 3D Function Approximation

Figure 3.2: Results 3D
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4 Schluss

HAHA .. als ob -.-
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