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How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent a point in 3D-Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B-Spline grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices

1



DRAFT



DRAFT
1 Introduction

In this Master Thesis we try to extend a previously proposed concept of predicting the

evolvability of Freeform-Deformation (FFD) given a Deformation-Matrix[1]. In the origi-

nal publication the author used random sampled points weighted with Radial Basis Func-

tion (RBF) to deform the mesh and defined three different criteria that can be calculated

prior to using an evolutional optimization algorithm to asses the quality and potential of

such optimization.

We will replicate the same setup on the same meshes but use Freeform-Deformation

(FFD) instead of Radial Basis Function (RBF) to create a deformation and evaluate if the

evolution-criteria still work as a predictor given the different deformation scheme.

1.1 What is Freeform-Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for deforming

meshes in the first place. For simplicity we only summarize the 1D-case from [3] here and

go into the extension to the 3D case in chapter 2.2.

Given an arbitrary number of points pi alongside a line, we map a scalar value τi ∈ [0,1[

to each point with τi < τi+1∀i. Given a degree of the target polynomial d we define the

curve Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(1.1)

and
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Chapter 1: Introduction

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u
τi+d+1 − τi+1

Ni+1,d−1,τ (u) (1.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribution of

each point pi to the final curve-point parameterized only by u ∈ [0,1[. As can be seen from

(1.2) we only access points [i..i + d] for any given i1, which gives us, in combination with

choosing pi and τi in order, only a local interference of d+ 1 points.

We can even derive this equation straightforward for an arbitrary N 2:

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)− d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

For a B-Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield ∂d

∂u
s(u) = 0.

Another interesting property of these recursive polynomials is that they are continuous

(given d ≥ 1) as every pi gets blended in linearly between τi and τi+d and out linearly

between τi+1 and τi+d+1 as can bee seen from the two coefficients in every step of the

recursion.

1.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties of the

polynomials and the correspondence to the control points. Having only a few control points

gives the user a nicer high-level-interface, as she only needs to move these points and the

model follows in an intuitive manner. The deformation is smooth as the underlying polygon

is smooth as well and affects as many vertices of the model as needed. Moreover the

changes are always local so one risks not any change that a user cannot immediately see.

But there are also disadvantages of this approach. The user loses the ability to directly

influence vertices and even seemingly simple tasks as creating a plateau can be difficult to

1one more for each recursive step.
2Warning: in the case of d = 1 the recursion-formula yields a 0 denominator, but N is also 0. The right

solution for this case is a derivative of 0
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1.1 What is Freeform-Deformation (FFD)?

achieve[5, chapter 3.2][2].

This disadvantages led to the formulation of Direct Manipulation Freeform-Deformation

(DM-FFD)[5, chapter 3.3] in which the user directly interacts with the surface-mesh. All in-

teractions will be applied proportionally to the control-points that make up the parametriza-

tion of the interaction-point itself yielding a smooth deformation of the surface at the sur-

face without seemingly arbitrary scattered control-points. Moreover this increases the effi-

ciency of an evolutionary optimization[6], which we will use later on.

Figure 1.1: Figure 7 from [5]

But this approach also has downsides as can be seen in figure 1.1, as the tessellation of

the invisible grid has a major impact on the deformation itself.

All in all FFD and DM-FFD are still good ways to deform a high-polygon mesh albeit

the downsides.
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1.2 What is evolutional optimization?

Change: Write this section

1.3 Advantages of evolutional algorithms

Change: Needs citations

The main advantage of evolutional algorithms is the ability to find optima of general

functions just with the help of a given error-function (or fitness-function in this domain).

This avoids the general pitfalls of gradient-based procedures, which often target the same

error-function as an evolutional algorithm, but can get stuck in local optima.

This is mostly due to the fact that a gradient-based procedure has only one point of ob-

servation from where it evaluates the next steps, whereas an evolutional strategy starts with

a population of guessed solutions. Because an evolutional strategy modifies the solution

randomly, keeps the best solutions and purges the worst, it can also target multiple differ-

ent hypothesis at the same time where the local optima die out in the face of other, better

candidates.

If an analytic best solution exists (i.e. because the error-function is convex) an evolutional

algorithm is not the right choice. Although both converge to the same solution, the analytic

one is usually faster. But in reality many problems have no analytic solution, because the

problem is not convex. Here evolutional optimization has one more advantage as you get

bad solutions fast, which refine over time.

1.4 Criteria for the evolvability of linear deformations

1.4.1 Variability

In [1] variability is defined as

V (U) :=
rank(U)

n
,

6



DRAFT

1.4 Criteria for the evolvability of linear deformations

whereby U is the m × n deformation-Matrix used to map the m control points onto the n

vertices.

Given n = m, an identical number of control-points and vertices, this quotient will be

= 1 if all control points are independent of each other and the solution is to trivially move

every control-point onto a target-point.

In praxis the value of V (U) is typically� 1, because as there are only few control-points

for many vertices, so m� n.

Additionally in our setup we connect neighbouring control-points in a grid so each con-

trol point is not independent, but typically depends on 4d control-points for an d-dimensional

control mesh.

1.4.2 Regularity

Regularity is defined[1] as

R(U) :=
1

κ(U)
=
σmin
σmax

where σmin and σmax are the smallest and greatest right singular value of the deformation-

matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x + Up) this

makes sure that ‖Up‖ ∝ ‖p‖ when κ(U) ≈ 1. The inversion of κ(U) is only performed to

map the criterion-range to [0..1], whereas 1 is the optimal value and 0 is the worst value.

This criterion should be characteristic for numeric stability on the on hand[4, chapter 2.7]

and for convergence speed of evolutional algorithms on the other hand[1] as it is tied to the

notion of locality[8, 7].

1.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic of the

fitness-function at hand the third criterion should reflect a notion of potential.

As during optimization some kind of gradient g is available to suggest a direction worth

pursuing we use this to guess how much change can be achieved in the given direction.
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Chapter 1: Introduction

The definition for an improvement potential P is[1]:

P (U) := 1− ‖(1− UU+)(G)‖2F

given some approximate n×d fitness-gradient G, normalized to ‖G‖F = 1, whereby ‖ · ‖F
denotes the Frobenius-Norm.

8
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2 Implementation of

Freeform-Deformation (FFD)

As general B-Splines have a free parameters d and τ .

As we usually work with regular grids in our FFD we define τ statically as

τi = i/n

whereby n is the number of control-points in that direction.

d defines the degree of the B-Spline-Function (the number of times this function is dif-

ferentiable) and for our purposes we fix d to 3, but give the formulas for the general case so

it can be adapted quite freely.

2.1 Adaption of FFD

As we have established in Chapter 1.1 we can define an FFD-displacement as

∆x(u) =
∑
i

Ni,d,τi(u)∆xci (2.1)

Note that we only sum up the ∆-displacements in the control points ci to get the change

in position of the point we are interested in.

In this way every deformed vertex is defined by

Deform(vx) = vx + ∆x(u)

with u ∈ [0..1[ being the variable that connects the high-detailed vertex-mesh to the low-

9



DRAFT

Chapter 2: Implementation of Freeform-Deformation (FFD)

detailed control-grid. To actually calculate the new position of the vertex we first have to

calculate the u-value for each vertex. This is achieved by finding out the parametrization of

v in terms of ci

vx =
∑
i

Ni,d,τi(u)ci

As the B-Spline-functions are smooth and convex we just derive by u yielding

∂
∂u

vx −
∑
i

Ni,d,τi(u)ci

= vx −
∑
i

(
d

τi+d − τi
Ni,d−1,τ (u)− d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

)
ci

and do a gradient-descend to approximate the value of u up to an ε of 0.0001.

For this we use the Gauss-Newton algorithm[9] as the solution to this problem may not be

deterministic, because we usually have way more vertices than control points (#v � #c).

2.2 Adaption of FFD for a 3D-Mesh

This is a straightforward extension of the 1D-method presented in the last chapter. But this

time things get a bit more complicated. As we have a 3-dimensional grid we may have a

different amount of control-points in each direction.

Given n,m,o control points in x,y,z-direction each Point on the curve is defined by

V (u,v,w) =
n−d−2∑
i=0

m−d−2∑
j=0

o−d−2∑
k=0

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · Cijk.

In this case we have three different B-Splines (one for each dimension) and also 3 vari-

ables u,v,w for each vertex we want to approximate.

Given a target vertex p∗ and an initial guess p = V (u,v,w) we define the error-function

for the gradient-descent as:

Err(u,v,w,p∗) = p∗ − V (u,v,w)

10
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2.3 Parametrisierung sinnvoll?

And the partial version for just one direction as

Errx(u,v,w,p∗) = p∗x −
n−d−2∑
i=0

m−d−2∑
j=0

o−d−2∑
k=0

CijkxNi,d,τi(u)Nj,d,τj(v)Nk,d,τk(w)

To solve this we derive partially, like before:

∂Errx
∂u

p∗x −
n−d−2∑
i=0

m−d−2∑
j=0

o−d−2∑
k=0

CijkxNi,d,τi(u)Nj,d,τj(v)Nk,d,τk(w)

= −
n−d−2∑
i=0

m−d−2∑
j=0

o−d−2∑
k=0

CijkxN
′
i(u)Nj,d,τj(v)Nk,d,τk(w)

The other partial derivatives follow the same pattern yielding the Jacobian:

J(Err(u,v,w)) =


∂Errx
∂u

∂Errx
∂v

∂Errx
∂w

∂Erry
∂u

∂Erry
∂v

∂Erry
∂w

∂Errz
∂u

∂Errz
∂v

∂Errz
∂w


Unsure: Should I add an informal complete derivative?

Like leaving out Sums i,j,k-Indices to make obvious what derivative belongs where

in what case?

With the Gauss-Newton algorithm we iterate the formula

J(Err(u,v,w)) ·∆


u

v

w

 = −Err(u,v,w)

and use Cramers rule for inverting the small Jacobian and solving this system of linear

equations.

2.3 Parametrisierung sinnvoll?

• Nachteile von Parametrisierung
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Chapter 2: Implementation of Freeform-Deformation (FFD)

• Deformation ist um einen Kontrollpunkt viel direkter zu steuern.

• => DM-FFD?

2.4 Test Scenario: 1D Function Approximation

2.4.1 Optimierungszenario

• Ebene -> Template-Fit

2.4.2 Matching in 1D

• Trivial

2.4.3 Besonderheiten der Auswertung

• Analytische Lösung einzig beste

• Ergebnis auch bei Rauschen konstant?

• normierter 1-Vektor auf den Gradienten addieren

– Kegel entsteht

2.5 Test Scenario: 3D Function Approximation

2.5.1 Optimierungsszenario

• Ball zu Mario

2.5.2 Matching in 3D

• alternierende Optimierung

2.5.3 Besonderheiten der Optimierung

• Analytische Lösung nur bis zur Optimierung der ersten Punkte gültig

12
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2.5 Test Scenario: 3D Function Approximation

• Kriterien trotzdem gut
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3 Evaluation of Scenarios

3.1 Spearman/Pearson-Metriken

• Was ist das?

• Wieso sollte uns das interessieren?

• Wieso reicht Monotonie?

• Haben wir das gezeigt?

• Statistik, Bilder, blah!

3.2 Results of 1D Function Approximation

3.3 Results of 3D Function Approximation
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Chapter 3: Evaluation of Scenarios

Figure 3.1: Results 1D
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3.3 Results of 3D Function Approximation

Figure 3.2: Results 3D
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4 Schluss

HAHA .. als ob -.-
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