B-Spline Volumes

B-Spline Volumes are a simple extension of B-Splines to 3 Dimensions. This is a
straightforward adaption of the 2-Dimensional version.

Nomenclature

x,y, z denote space-coordinates,

u, v, w denote spline-coordinates (Between 0-1),

P;j1, denote the control-Points on the control-Polygon,

N;.a4,-(u) denote the value of the underlying Basis-Functions at value u using
the i-th Basis-Function of degree d in range 7.

For our case we only care about degree-3 splines, so we omit the d furtheron.
7 is defined statically (in each direction) with each P as Position on the whole
surface/volume and within [0,1]. For a regular Control-Grid this defaults to
T =1/n

Given n, m, o control points in z, y, z-direction each Point on the curve is defined

by
n—d—2m—d—2o0—d—2

d—2m—d d—
C(u,v,w) Z Z Z Py Ni(u)N; (v)Ni (w)

i=0  j=0 k=0

Calculate u, v, w

Given a target-point p* and an initial guess p = C(u,v,w) we define the
error-function as:

Erry(u,v,w,p*) = pi — Pijr, Ni(u)Nj(v) Ny (w)
To solve this we derive:
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The other partial derivatives follow the same pattern yiedling the Jacobian:
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using Cramers rule for solving the SLE.

Basis-Splines and Derivatives

The previously mentioned N; 4 - are defined recursively:
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This fact can be exploited to get the derivative for an arbitrary N:
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Warning: in the case of d = 1 the recursion-formula yields a 0 denominator, but
N is also 0. The right solution for this case is a derivative of 0
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