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How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent the coordinates of a point in 3D–Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B–Spline grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices
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1 Introduction

..Improvement: Mehr Bilder

Many modern industrial design processes require advanced optimization methods due to

the increased complexity resulting from more and more degrees of freedom as methods

refine and/or other methods are used. Examples for this are physical domains like aero-

dynamics (i.e. drag), fluid dynamics (i.e. throughput of liquid) — where the complexity

increases with the temporal and spatial resolution of the simulation — or known hard

algorithmic problems in informatics (i.e. layouting of circuit boards or stacking of 3D–

objects). Moreover these are typically not static environments but requirements shift over

time or from case to case.

Evolutionary algorithms cope especially well with these problem domains while address-

ing all the issues at hand[1]. One of the main concerns in these algorithms is the formu-

lation of the problems in terms of a genome and fitness–function. While one can typically

use an arbitrary cost–function for the fitness–functions (i.e. amount of drag, amount of

space, etc.), the translation of the problem–domain into a simple parametric representa-

tion (the genome) can be challenging.

This translation is often necessary as the target of the optimization may have too many

degrees of freedom. In the example of an aerodynamic simulation of drag onto an object,

those object–designs tend to have a high number of vertices to adhere to various require-

ments (visual, practical, physical, etc.). A simpler representation of the same object in
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Chapter 1: Introduction

only a few parameters that manipulate the whole in a sensible matter are desirable, as this

often decreases the computation time significantly.

Additionally one can exploit the fact, that drag in this case is especially sensitive to non–

smooth surfaces, so that a smooth local manipulation of the surface as a whole is more

advantageous than merely random manipulation of the vertices.

The quality of such a low-dimensional representation in biological evolution is strongly

tied to the notion of evolvability[2], as the parametrization of the problem has serious

implications on the convergence speed and the quality of the solution[3]. However, there

is no consensus on how evolvability is defined and the meaning varies from context to

context[4], so there is need for some criteria we can measure, so that we are able to

compare different representations to learn and improve upon these.

One example of such a general representation of an object is to generate random points

and represent vertices of an object as distances to these points — for example via Radial

Basis Function (RBF). If one (or the algorithm) would move such a point the object

will get deformed locally (due to the RBF). As this results in a simple mapping from

the parameter-space onto the object one can try out different representations of the same

object and evaluate the evolvability. This is exactly what Richter et al.[5] have done.

As we transfer the results of Richter et al.[5] from using Radial Basis Function (RBF)

as a representation to manipulate geometric objects to the use of Freeform–Deformation

(FFD) we will use the same definition for evolvability the original author used, namely

regularity, variability, and improvement potential. We introduce these term in detail in

Chapter 2.4. In the original publication the author could show a correlation between these

evolvability–criteria with the quality and convergence speed of such optimization.

We will replicate the same setup on the same objects but use Freeform–Deformation

(FFD) instead of Radial Basis Function (RBF) to create a local deformation near the con-

trol points and evaluate if the evolution–criteria still work as a predictor for evolvability

of the representation given the different deformation scheme, as suspected in [5].
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First we introduce different topics in isolation in Chapter 2. We take an abstract look

at the definition of FFD for a one–dimensional line (in 2.1) and discuss why this is a

sensible deformation function (in 2.1.1). Then we establish some background–knowledge

of evolutionary algorithms (in 2.2) and why this is useful in our domain (in 2.3). In a third

step we take a look at the definition of the different evolvability criteria established in [5].

In Chapter 3 we take a look at our implementation of FFD and the adaptation for 3D–

meshes that were used.

Next, in Chapter 4, we describe the different scenarios we use to evaluate the different

evolvability–criteria incorporating all aspects introduced in Chapter 2. Following that, we

evaluate the results in Chapter 5 with further on discussion in Chapter 6.
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2 Background

2.1 What is Freeform–Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for de-

forming geometric objects (esp. meshes in our case) in the first place. For simplicity we

only summarize the 1D–case from [6] here and go into the extension to the 3D case in

chapter 3.2.

The main idea of FFD is to create a function s : [0,1[d 7→ Rd that spans a certain part of a

vector–space and is only linearly parametrized by some special control points pi and an

constant attribution–function ai(u), so

s(u) =
∑
i

ai(u)pi

can be thought of a representation of the inside of the convex hull generated by the control

points where each point can be accessed by the right u ∈ [0,1[.

In the example in figure 2.1, the control–points are indicated as red dots and the color-

gradient should hint at the u–values ranging from 0 to 1.

We now define a Freeform–Deformation (FFD) by the following:

Given an arbitrary number of points pi alongside a line, we map a scalar value τi ∈ [0,1[

7
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Chapter 2: Background

Figure 2.1: Example of a parametrization of a line with corresponding deformation to gen-
erate a deformed objet

to each point with τi < τi+1∀i according to the position of pi on said line. Additionally,

given a degree of the target polynomial d we define the curve Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(2.1)

and

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u

τi+d+1 − τi+1

Ni+1,d−1,τ (u) (2.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribution of

each point pi to the final curve–point parameterized only by u ∈ [0,1[. As can be seen

from (2.2) we only access points [pi..pi+d] for any given i1, which gives us, in combination

with choosing pi and τi in order, only a local interference of d+ 1 points.

We can even derive this equation straightforward for an arbitrary N 2:

1one more for each recursive step.
2Warning: in the case of d = 1 the recursion–formula yields a 0 denominator, but N is also 0. The right

solution for this case is a derivative of 0
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2.1 What is Freeform–Deformation (FFD)?

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

For a B–Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield ∂d

∂u
s(u) = 0.

Another interesting property of these recursive polynomials is that they are continuous

(given d ≥ 1) as every pi gets blended in between τi and τi+d and out between τi+1, and

τi+d+1 as can bee seen from the two coefficients in every step of the recursion.

This means that all changes are only a local linear combination between the control–point

pi to pi+d+1 and consequently this yields to the convex–hull–property of B-Splines —

meaning, that no matter how we choose our coefficients, the resulting points all have to

lie inside convex–hull of the control–points.

For a given point vi we can then calculate the contributions ni,j := Nj,d,τ of each control

point pj to get the projection from the control–point–space into the object–space:

vi =
∑
j

ni,j · pj = nT
i p

or written for all points at the same time:

v = Np

where N is the n×m transformation–matrix (later on called deformation matrix) for n

object–space–points and m control–points.

Furthermore B–splines–basis–functions form a partition of unity for all, but the first and

last d control-points[7]. Therefore we later on use the border-points d+1 times, such that∑
j ni,jpj = pi for these points.
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Figure 2.2: From [7, Figure 2.13]:
„Some interesting properties of the B–splines. On the natural definition domain of the
B–spline ([k0,k4] on this figure), the B–spline basis functions sum up to one (partition
of unity). In this example, we use B–splines of degree 2. The horizontal segment below
the abscissa axis represents the domain of influence of the B–splines basis function, i.e.
the interval on which they are not null. At a given point, there are at most d+1 non-zero
B–spline basis functions (compact support).“
Note, that Brunet starts his index at −d opposed to our definition, where we start at 0.

The locality of the influence of each control–point and the partition of unity was beauti-

fully pictured by Brunet, which we included here as figure 2.2.

2.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties of the

polynomials and the correspondence to the control points. Having only a few control

points gives the user a nicer high–level–interface, as she only needs to move these points

and the model follows in an intuitive manner. The deformation is smooth as the underlying

polygon is smooth as well and affects as many vertices of the model as needed. Moreover

the changes are always local so one risks not any change that a user cannot immediately

see.

But there are also disadvantages of this approach. The user loses the ability to directly

10



DRAFT

2.1 What is Freeform–Deformation (FFD)?

influence vertices and even seemingly simple tasks as creating a plateau can be difficult

to achieve[8, chapter 3.2][9].

This disadvantages led to the formulation of Direct Manipulation Freeform–Deformation

(DM–FFD)[8, chapter 3.3] in which the user directly interacts with the surface–mesh.

All interactions will be applied proportionally to the control–points that make up the

parametrization of the interaction–point itself yielding a smooth deformation of the sur-

face at the surface without seemingly arbitrary scattered control–points. Moreover this

increases the efficiency of an evolutionary optimization[10], which we will use later on.

Figure 2.3: Figure 7 from [8].

But this approach also has downsides as can be seen in figure 2.3, as the tessellation of

the invisible grid has a major impact on the deformation itself.

All in all FFD and DM–FFD are still good ways to deform a high–polygon mesh albeit
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the downsides.

2.2 What is evolutionary optimization?

In this thesis we are using an evolutionary optimization strategy to solve the problem of

finding the best parameters for our deformation. This approach, however, is very generic

and we introduce it here in a broader sense.

Algorithm 1 An outline of evolutionary algorithms
t := 0;
initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ;
evaluate F (0) : {Φ(x)|x ∈ P (0)};
while c(F (t)) ̸= true do

recombine: P (t) := r(P (t));
mutate: P ′′(t) := m(P (t));
evaluate F ′′(t) : {Φ(x)|x ∈ P ′′(t)}
select: P (t+ 1) := s(P ′′(t) ∪Q,Φ);
t := t + 1;

The general shape of an evolutionary algorithm (adapted from [11]) is outlined in Algo-

rithm 1. Here, P (t) denotes the population of parameters in step t of the algorithm. The

population contains µ individuals ai from the possible individual–set I that fit the shape

of the parameters we are looking for. Typically these are initialized by a random guess

or just zero. Further on we need a so–called fitness–function Φ : I 7→ M that can take

each parameter to a measurable space M (usually M = R) along a convergence–function

c : I 7→ B that terminates the optimization.

Biologically speaking the set I corresponds to the set of possible Genotypes while M

represents the possible observable Phenotypes.

The main algorithm just repeats the following steps:

• Recombine with a recombination–function r : Iµ 7→ Iλ to generate λ new individ-

uals based on the characteristics of the µ parents.

12
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2.3 Advantages of evolutionary algorithms

This makes sure that the next guess is close to the old guess.

• Mutate with a mutation–function m : Iλ 7→ Iλ to introduce new effects that cannot

be produced by mere recombination of the parents.

Typically this just adds minor defects to individual members of the population like

adding a random gaussian noise or amplifying/dampening random parts.

• Selection takes a selection–function s : (Iλ ∪ Iµ+λ,Φ) 7→ Iµ that selects from the

previously generated Iλ children and optionally also the parents (denoted by the set

Q in the algorithm) using the fitness–function Φ. The result of this operation is the

next Population of µ individuals.

All these functions can (and mostly do) have a lot of hidden parameters that can be

changed over time. One can for example start off with a high mutation–rate that cools

off over time (i.e. by lowering the variance of a gaussian noise).

2.3 Advantages of evolutionary algorithms

The main advantage of evolutionary algorithms is the ability to find optima of general

functions just with the help of a given fitness–function. With this most problems of simple

gradient–based procedures, which often target the same error–function which measures

the fitness, as an evolutionary algorithm, but can easily get stuck in local optima.

Components and techniques for evolutionary algorithms are specifically known to help

with different problems arising in the domain of optimization[12]. An overview of the

typical problems are shown in figure 2.4.

Most of the advantages stem from the fact that a gradient–based procedure has only one

point of observation from where it evaluates the next steps, whereas an evolutionary strat-

egy starts with a population of guessed solutions. Because an evolutionary strategy modi-

fies the solution randomly, keeps the best solutions and purges the worst, it can also target

13



DRAFT

Chapter 2: Background

Figure 2.4: Fig. 3. taken from [12]

multiple different hypothesis at the same time where the local optima die out in the face

of other, better candidates.

If an analytic best solution exists and is easily computable (i.e. because the error–function

is convex) an evolutionary algorithm is not the right choice. Although both converge to

the same solution, the analytic one is usually faster.

But in reality many problems have no analytic solution, because the problem is either not

convex or there are so many parameters that an analytic solution (mostly meaning the

equivalence to an exhaustive search) is computationally not feasible. Here evolutionary

optimization has one more advantage as you can at least get suboptimal solutions fast,

which then refine over time.

2.4 Criteria for the evolvability of linear deformations

As we have established in chapter 2.1, we can describe a deformation by the formula

V = UP
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2.4 Criteria for the evolvability of linear deformations

where V is a n × d matrix of vertices, U are the (during parametrization) calculated

deformation–coefficients and P is a m× d matrix of control–points that we interact with

during deformation.

We can also think of the deformation in terms of differences from the original coordinates

∆V = U ·∆P

which is isomorphic to the former due to the linear correlation in the deformation. One

can see in this way, that the way the deformation behaves lies solely in the entries of U ,

which is why the three criteria focus on this.

2.4.1 Variability

In [5] variability is defined as

V (U) :=
rank(U)

n
,

whereby U is the n ×m deformation–Matrix .used to map the m control points onto the ...Unsure:

Nicht

(n · d)×m?

Wegen

u,v,w?

.Unsure:

Nicht

(n · d)×m?

Wegen

u,v,w?

.

n vertices.

Given n = m, an identical number of control–points and vertices, this quotient will be

= 1 if all control points are independent of each other and the solution is to trivially move

every control–point onto a target–point.

In praxis the value of V (U) is typically ≪ 1, because as there are only few control–points

for many vertices, so m ≪ n.
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2.4.2 Regularity

Regularity is defined[5] as

R(U) :=
1

κ(U)
=

σmin

σmax

where σmin and σmax are the smallest and greatest right singular value of the deformation–

matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x + Up) this

makes sure that ∥Up∥ ∝ ∥p∥ when κ(U) ≈ 1. The inversion of κ(U) is only performed

to map the criterion–range to [0..1], whereas 1 is the optimal value and 0 is the worst

value.

On the one hand this criterion should be characteristic for numeric stability[13, chapter

2.7] and on the other hand for the convergence speed of evolutionary algorithms[5] as it

is tied to the notion of locality[12, 14].

2.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic of the

fitness–function at hand the third criterion should reflect a notion of potential.

As during optimization some kind of gradient g is available to suggest a direction worth

pursuing we use this to guess how much change can be achieved in the given direction.

The definition for an improvement potential P is[5]:

P (U) := 1− ∥(1−UU+)G∥2F

given some approximate n × d fitness–gradient G, normalized to ∥G∥F = 1, whereby

∥ · ∥F denotes the Frobenius–Norm.
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3 Implementation of Freeform–

Deformation (FFD)

The general formulation of B–Splines has two free parameters d and τ which must be

chosen beforehand.

As we usually work with regular grids in our FFD we define τ statically as τi = i/n

whereby n is the number of control–points in that direction.

d defines the degree of the B–Spline–Function (the number of times this function is dif-

ferentiable) and for our purposes we fix d to 3, but give the formulas for the general case

so it can be adapted quite freely.

3.1 Adaption of FFD

As we have established in Chapter 2.1 we can define an FFD–displacement as

∆x(u) =
∑
i

Ni,d,τi(u)∆xci (3.1)

Note that we only sum up the ∆–displacements in the control points ci to get the change

in position of the point we are interested in.

17
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Chapter 3: Implementation of Freeform–Deformation (FFD)

In this way every deformed vertex is defined by

Deform(vx) = vx +∆x(u)

with u ∈ [0..1[ being the variable that connects the high–detailed vertex–mesh to the low–

detailed control–grid. To actually calculate the new position of the vertex we first have to

calculate the u–value for each vertex. This is achieved by finding out the parametrization

of v in terms of ci

vx
!
=

∑
i

Ni,d,τi(u)ci

so we can minimize the error between those two:

argmin
u

Err(u,vx) = argmin
u

2 · ∥vx −
∑
i

Ni,d,τi(u)ci∥22

As this error–term is quadratic we just derive by u yielding

∂
∂u

vx −
∑

iNi,d,τi(u)ci

= −
∑

i

(
d

τi+d−τi
Ni,d−1,τ (u)− d

τi+d+1−τi+1
Ni+1,d−1,τ (u)

)
ci

and do a gradient–descend to approximate the value of u up to an ε of 0.0001.

For this we use the Gauss–Newton algorithm[15] as the solution to this problem may

not be deterministic, because we usually have way more vertices than control points

(#v ≫ #c).

3.2 Adaption of FFD for a 3D–Mesh

This is a straightforward extension of the 1D–method presented in the last chapter. But

this time things get a bit more complicated. As we have a 3–dimensional grid we may

have a different amount of control–points in each direction.

18
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3.2 Adaption of FFD for a 3D–Mesh

Given n,m,o control points in x,y,z–direction each Point on the curve is defined by

V (u,v,w) =
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · Cijk.

In this case we have three different B–Splines (one for each dimension) and also 3 vari-

ables u,v,w for each vertex we want to approximate.

Given a target vertex p∗ and an initial guess p = V (u,v,w) we define the error–function

for the gradient–descent as:

Err(u,v,w,p∗) = p∗ − V (u,v,w)

And the partial version for just one direction as

Errx(u,v,w,p
∗) = p∗x −

∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

To solve this we derive partially, like before:

∂Errx
∂u

p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

= −
∑
i

∑
j

∑
k

N ′
i,d,τi

(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

The other partial derivatives follow the same pattern yielding the Jacobian:

19
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Chapter 3: Implementation of Freeform–Deformation (FFD)

J(Err(u,v,w)) =



∂Errx
∂u

∂Errx
∂v

∂Errx
∂w

∂Erry
∂u

∂Erry
∂v

∂Erry
∂w

∂Errz
∂u

∂Errz
∂v

∂Errz
∂w



=


−

∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkx

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijky

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkz



With the Gauss–Newton algorithm we iterate via the formula

J(Err(u,v,w)) ·∆


u

v

w


= −Err(u,v,w)

and use Cramers rule for inverting the small Jacobian and solving this system of linear

equations.

3.3 Deformation Grid

As mentioned in chapter 2.2, the way of choosing the representation to map the general

problem (mesh–fitting/optimization in our case) into a parameter-space it very important

for the quality and runtime of evolutionary algorithms[3].

Because our control–points are arranged in a grid, we can accurately represent each

vertex–point inside the grids volume with proper B–Spline–coefficients between [0,1[ and
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3.3 Deformation Grid

— as a consequence — we have to embed our object into it (or create constant “dummy”-

points outside).

The great advantage of B–Splines is the locality, direct impact of each control point with-

out having a 1 : 1–correlation, and a smooth deformation. While the advantages are great,

the issues arise from the problem to decide where to place the control–points and how

many.

Figure 3.1: A high resolution (10×10) of control–points over a circle. Yellow/green points
contribute to the parametrization, red points don’t.
An Example–point (blue) is solely determined by the position of the green control–
points.

One would normally think, that the more control–points you add, the better the result will

be, but this is not the case for our B–Splines. Given any point p only the 2·(d−1) control–

points contribute to the parametrization of that point1. This means, that a high resolution

can have many control-points that are not contributing to any point on the surface and are

thus completely irrelevant to the solution.

1Normally these are d − 1 to each side, but at the boundaries the number gets increased to the inside to
meet the required smoothness
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We illustrate this phenomenon in figure 3.1, where the four red central points are not

relevant for the parametrization of the circle.

..Unsure: erwähnen, dass man aus D einfach die Null–Spalten entfernen kann?

For our tests we chose different uniformly sized grids and added noise onto each control-

point2 to simulate different starting-conditions.

..Unsure: verweis auf DM–FFD?

2For the special case of the outer layer we only applied noise away from the object, so the object is still
confined in the convex hull of the control–points.
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4 Scenarios for testing evolvabil-

ity criteria using Freeform–

Deformation (FFD)

In our experiments we use the same two testing–scenarios, that were also used by [5].

The first scenario deforms a plane into a shape originally defined in [16], where we setup

control-points in a 2–dimensional manner merely deform in the height–coordinate to get

the resulting shape.

In the second scenario we increase the degrees of freedom significantly by using a 3–

dimensional control–grid to deform a sphere into a face. So each control point has three

degrees of freedom in contrast to first scenario.

4.1 Test Scenario: 1D Function Approximation

In this scenario we used the shape defined by Giannelli et al.[16], which is also used by

Richter et al.[5] using the same discretization to 150×150 points for a total of n = 22 500

vertices. The shape is given by the following definition
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t(x,y) =


0.5 cos(4π · q0.5) + 0.5 q(x,y) < 1

16
,

2(y − x) 0 < y − x < 0.5,

1 0.5 < y − x

(4.1)

with (x,y) ∈ [0,2]× [0,1] and q(x,y) = (x− 1.5)2+(y−0.5)2, which we have visualized

in figure 4.1.

Figure 4.1: The target–shape for our 1–dimensional optimization–scenario including a
wireframe–overlay of the vertices.

As the starting-plane we used the same shape, but set all z–coordinates to 0, yielding a

flat plane, which is partially already correct.

Regarding the fitness–function f(p), we use the very simple approach of calculating the

squared distances for each corresponding vertex

f(p) =
n∑

i=1

∥(Up)i − ti∥22 = ∥Up− t∥2 → min (4.2)

where ti are the respective target–vertices to the parametrized source–vertices1 with the
1The parametrization is encoded in U and the initial position of the control points. See 3.1
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current deformation–parameters p = (p1, . . . , pm). We can do this one–to–one–correspondence

because we have exactly the same number of source and target-vertices do to our setup of

just flattening the object.

This formula is also the least–squares approximation error for which we can compute the

analytic solution p∗ = U+t, yielding us the correct gradient in which the evolutionary

optimizer should move.

4.2 Test Scenario: 3D Function Approximation

Opposed to the 1–dimensional scenario before, the 3–dimensional scenario is much more

complex — not only because we have more degrees of freedom on each control point, but

also because the fitness–function we will use has no known analytic solution and multiple

local minima.

Figure 4.2:
Left: The sphere we start from with 10 807 vertices
Right: The face we want to deform the sphere into with 12 024 vertices.
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First of all we introduce the set up: We have given a triangulated model of a sphere

consisting of 10 807 vertices, that we want to deform into a the target–model of a face

with a total of 12 024 vertices. Both of these Models can be seen in figure 4.2.

Opposed to the 1D–case we cannot map the source and target–vertices in a one–to–one–

correspondence, which we especially need for the approximation of the fitting–error.

Hence we state that the error of one vertex is the distance to the closest vertex of the

other model.

We therefore define the fitness–function to be:

f(P) =
1

n

n∑
i=1

∥cT(si)− si∥22︸ ︷︷ ︸
source-to-target–distance

+
1

m

m∑
i=1

∥cS(ti)− ti∥22︸ ︷︷ ︸
target-to-source–distance

+λ · regularization(P) (4.3)

where cT(si) denotes the target–vertex that is corresponding to the source–vertex si and

cS(ti) denotes the source–vertex that corresponds to the target–vertex ti. Note that the

target–vertices are given and fixed by the target–model of the face we want to deform

into, whereas the source–vertices vary depending on the chosen parameters P, as those

get calculated by the previously introduces formula S = UP with S being the n × 3–

matrix of source–vertices, U the n×m–matrix of calculated coefficients for the FFD —

analog to the 1D case — and finally P being the m×3–matrix of the control–grid defining

the whole deformation.

As regularization-term we add a weighted Laplacian of the deformation that has been

used before by Aschenbach et al.[17, Section 3.2] on similar models and was shown to

lead to a more precise fit. The Laplacian

regularization(P) =
1∑
iAi

n∑
i=1

Ai ·

 ∑
sj∈N(si)

wj · ∥∆sj −∆sj∥2
 (4.4)
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is determined by the cotangent weighted displacement wj of the to si connected vertices

N(si) and Ai is the Voronoi–area of the corresponding vertex si. We leave out the Ri–

term from the original paper as our deformation is merely linear.

This regularization–weight gives us a measure of stiffness for the material that we will

influence via the λ–coefficient to start out with a stiff material that will get more flexible

per iteration.

..Unsure: Andreas: hast du nen cite, wo gezeigt ist, dass das so sinnvoll ist?
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To compare our results to the ones given by Richter et al.[5], we also use Spearman’s rank

correlation coefficient. Opposed to other popular coefficients, like the Pearson correlation

coefficient, which measures a linear relationship between variables, the Spearmans’s coef-

ficient assesses „how well an arbitrary monotonic function can descripbe the relationship

between two variables, without making any assumptions about the frequency distribution

of the variables“[18].

As we don’t have any prior knowledge if any of the criteria is linear and we are just

interested in a monotonic relation between the criteria and their predictive power, the

Spearman’s coefficient seems to fit out scenario best.

For interpretation of these values we follow the same interpretation used in [5], based on

[19]: The coefficient intervals rS ∈ [0,0.2[, [0.2,0.4[, [0.4,0.6[, [0.6,0.8[, and [0.8,1] are

classified as very weak, weak, moderate, strong and very strong. We interpret p–values

smaller than 0.1 as significant and cut off the precision of p–values after four decimal

digits (thus often having a p–value of 0 given for p–values < 10−4).

As we are looking for anti–correlation (i.e. our criterion should be maximized indicating

a minimal result in — for example — the reconstruction–error) instead of correlation

we flip the sign of the correlation–coefficient for readability and to have the correlation–

coefficients be in the classification–range given above.
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For the evolutionary optimization we employ the CMA–ES (covariance matrix adaptation

evolution strategy) of the shark3.1 library [20], as this algorithm was used by [5] as well.

We leave the parameters at their sensible defaults as further explained in [21, Appendix A:

Table 1].

5.1 Procedure: 1D Function Approximation

For our setup we first compute the coefficients of the deformation–matrix and use then

the formulas for variability and regularity to get our predictions. Afterwards we solve the

problem analytically to get the (normalized) correct gradient that we use as guess for the

improvement potential. To check we also consider a distorted gradient gd

gd =
gc + 1

∥gc + 1∥

where 1 is the vector consisting of 1 in every dimension and gc = p∗ the calculated

correct gradient.

Figure 5.1:
Left: A regular 7× 4–grid
Right: The same grid after a random distortion to generate a testcase.

We then set up a regular 2–dimensional grid around the object with the desired grid res-

olutions. To generate a testcase we then move the grid–vertices randomly inside the x–

y–plane. As self-intersecting grids get tricky to solve with our implemented newtons–

method we avoid the generation of such self–intersecting grids for our testcases.
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This is a reasonable thing to do, as self-intersecting grids violate our desired property of

locality, as the then farther away control–point has more influence over some vertices as

the next-closer.

To achieve that we select a uniform distributed number r ∈ [−0.25,0.25] per dimension

and shrink the distance to the neighbours (the smaller neighbour for r < 0, the larger for

r > 0) by the factor r1.

..Improvement: update!! gaussian, not uniform!!

An Example of such a testcase can be seen for a 7× 4–grid in figure 5.1.

5.2 Results of 1D Function Approximation

In the case of our 1D–Optimization–problem, we have the luxury of knowing the analyt-

ical solution to the given problem–set. We use this to experimentally evaluate the quality

criteria we introduced before. As an evolutional optimization is partially a random pro-

cess, we use the analytical solution as a stopping-criteria. We measure the convergence

speed as number of iterations the evolutional algorithm needed to get within 1.05% of the

optimal solution.

We used different regular grids that we manipulated as explained in Section 5.1 with a

different number of control points. As our grids have to be the product of two integers,

we compared a 5 × 5–grid with 25 control–points to a 4 × 7 and 7 × 4–grid with 28

control–points. This was done to measure the impact an „improper“setup could have and

how well this is displayed in the criteria we are examining.

Additionally we also measured the effect of increasing the total resolution of the grid by

taking a closer look at 5× 5, 7× 7 and 10× 10 grids.

1Note: On the Edges this displacement is only applied outwards by flipping the sign of r, if appropriate.
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Figure 5.2: The squared error for the various grids we examined.
Note that 7× 4 and 4× 7 have the same number of control–points.

5.2.1 Variability

Variability should characterize the potential for design space exploration and is defined in

terms of the normalized rank of the deformation matrix U: V (U) := rank(U)
n

, whereby n

is the number of vertices. As all our tested matrices had a constant rank (being m = x · y

for a x× y grid), we have merely plotted the errors in the boxplot in figure 5.2

It is also noticeable, that although the 7× 4 and 4× 7 grids have a higher variability, they

perform not better than the 5 × 5 grid. Also the 7 × 4 and 4 × 7 grids differ distinctly

from each other, although they have the same number of control–points. This is an indi-

cation the impact a proper or improper grid–setup can have. We do not draw scientific

conclusions from these findings, as more research on non-squared grids seem necessary.....machen wir

die noch?

:D

.machen wir

die noch?

:D

.

Leaving the issue of the grid–layout aside we focused on grids having the same number

of prototypes in every dimension. For the 5× 5, 7× 7 and 10× 10 grids we found a very

strong correlation (−rS = 0.94, p = 0) between the variability and the evolutionary error.
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5.2.2 Regularity

Figure 5.3:
Left: Improvement potential against steps until convergence
Right: Regularity against steps until convergence
Coloured by their grid–resolution, both with a linear fit over the whole dataset.

Regularity should correspond to the convergence speed (measured in iteration–steps of

the evolutionary algorithm), and is computed as inverse condition number κ(U) of the

deformation–matrix.

As can be seen from table 5.1, we could only show a weak correlation in the case of a

5× 5 grid. As we increment the number of control–points the correlation gets worse until

it is completely random in a single dataset. Taking all presented datasets into account we

even get a strong correlation of −rS = −0.72, p = 0, that is opposed to our expectations.

To explain this discrepancy we took a closer look at what caused these high number of

iterations. In figure 5.3 we also plotted the improvement-potential against the steps next

to the regularity–plot. Our theory is that the very strong correlation (−rS = −0.82, p = 0)

5× 5 7× 4 4× 7 7× 7 10× 10

0.28 (0.0045) 0.21 (0.0396) 0.1 (0.3019) 0.01 (0.9216) 0.01 (0.9185)
Table 5.1: Spearman’s correlation (and p-values) between regularity and convergence speed

for the 1D function approximation problem.
Note: Not significant results are marked in red.
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between improvement–potential and number of iterations hints that the employed algo-

rithm simply takes longer to converge on a better solution (as seen in figure 5.2 and 5.4)

offsetting any gain the regularity–measurement could achieve.

5.2.3 Improvement Potential

Figure 5.4: Improvement potential plotted against the error yielded by the evolutionary
optimization for different grid–resolutions

..Improvement: write something about it..

• spearman 1 (p=0)

• gradient macht keinen unterschied

• UU+ scheint sehr kleine EW zu haben, s. regularität

• trotzdem sehr gutes kriterium - auch ohne Richtung.
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5.3 Procedure: 3D Function Approximation

As explained in section 4.2 in detail, we do not know the analytical solution to the global

optimum. Additionally we have the problem of finding the right correspondences between

the original sphere–model and the target–model, as they consist of 10 807 and 12 024

vertices respectively, so we cannot make a one–to–one–correspondence between them as

we did in the one–dimensional case.

Initially we set up the correspondences cT(. . . ) and cS(. . . ) to be the respectively clos-

est vertices of the other model. We then calculate the analytical solution given these

correspondences via P∗ = U+T, and also use the first solution as guessed gradient for

the calculation of the improvement–potential, as the optimal solution is not known. We

then let the evolutionary algorithm run up within 1.05 times the error of this solution and

afterwards recalculate the correspondences cT(. . . ) and cS(. . . ).

Figure 5.5:
Left: The 3D–setup with a 4× 4× 4–grid.
Right: The same grid after added noise to the control–points.

For the next step we then halve the regularization–impact λ (starting at 1) of our fitness–

35



DRAFT

Chapter 5: Evaluation of Scenarios

function (4.3) and calculate the next incremental solution P∗ = U+T with the updated

correspondences to get our next target–error. We repeat this process as long as the target–

error keeps decreasing and use the number of these iterations as measure of the conver-

gence speed. As the resulting evolutional error without regularization is in the numeric

range of ≈ 100, whereas the regularization is numerically ≈ 7000 we need at least 10 to

15 iterations until the regularization–effect wears off.

The grid we use for our experiments is just very coarse due to computational limitations.

We are not interested in a good reconstruction, but an estimate if the mentioned evolvabil-

ity criteria are good.

In figure 5.5 we show an example setup of the scene with a 4 × 4 × 4–grid. Identical to

the 1–dimensional scenario before, we create a regular grid and move the control-points
.random between their neighbours, but in three instead of two dimensions2....wie? .wie? .

Figure 5.6:
Left: A 7× 4× 4 grid suited to better deform into facial features.
Right: A 4× 4× 7 grid that we expect to perform worse.

As is clearly visible from figure 5.6, the target–model has many vertices in the facial area,

at the ears and in the neck–region. Therefore we chose to increase the grid-resolutions for

2Again, we flip the signs for the edges, if necessary to have the object still in the convex hull.
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our tests in two different dimensions and see how well the criteria predict a suboptimal

placement of these control-points.

5.4 Results of 3D Function Approximation

In the 3D–Approximation we tried to evaluate further on the impact of the grid–layout to

the overall criteria. As the target–model has many vertices in concentrated in the facial

area we start from a 4× 4× 4 grid and only increase the number of control points in one

dimension, yielding a resolution of 7 × 4 × 4 and 4 × 4 × 7 respectively. We visualized

those two grids in figure 5.6.

To evaluate the performance of the evolvability–criteria we also tested a more neutral

resolution of 4× 4× 4, 5× 5× 5, and 6× 6× 6 — similar to the 1D–setup.

Figure 5.7: The fitting error for the various grids we examined.
Note that the number of control–points is a product of the resolution, so X × 4× 4 and
4× 4×X have the same number of control–points.
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5.4.1 Variability

4× 4× X X× 4× 4 Y × Y × Y all

0.89 (0) 0.9 (0) 0.91 (0) 0.94 (0)
Table 5.2: Correlation between variability and fitting error for the 3D fitting scenario.

Displayed are the negated Spearman coefficients with the corresponding p-values in
brackets for three cases of increasing variability (X ∈ [4,5,7],Y ∈ [4,5,6]).
Note: Not significant results are marked in red.

Similar to the 1D case all our tested matrices had a constant rank (being m = x · y · z for

a x× y × z grid), so we again have merely plotted the errors in the boxplot in figure 5.7.

As expected the X×4×4 grids performed slightly better than their 4×4×X counterparts

with a mean±sigma of 101.25 ± 7.45 to 102.89 ± 6.74 for X = 5 and 85.37 ± 7.12 to

89.22± 6.49 for X = 7.

Interestingly both variants end up closer in terms of fitting error than we anticipated,

which shows that the evolutionary algorithm we employed is capable of correcting a

purposefully created „bad“ grid. Also this confirms, that in our cases the number of

control–points is more important for quality than their placement, which is captured by

the variability via the rank of the deformation–matrix.

Overall the correlation between variability and fitness–error were significantly and showed

a very strong correlation in all our tests. The detailed correlation–coefficients are given in

table 5.3 alongside their p–values.

As introduces in section 3.3 and visualized in figure 3.1, we know, that not all control

points have to necessarily contribute to the parametrization of our 3D–model. Because

we are starting from a sphere, some control-points are too far away from the surface to

contribute to the deformation at all.

One can already see in 2D in figure 3.1, that this effect starts with a regular 9 × 9 grid

on a perfect circle. To make sure we observe this, we evaluated the variability for 100
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Figure 5.8: Histogram of ranks of various 10× 10× 10 grids.

randomly moved 10× 10× 10 grids on the sphere we start out with.

As the variability is defined by rank(U)
n

we can easily recover the rank of the deformation–

matrix U. The results are shown in the histogram in figure 5.8. Especially in the centre

of the sphere and in the corners of our grid we effectively loose control–points for our

parametrization.

This of course yields a worse error as when those control–points would be put to use

and one should expect a loss in quality evident by a higher reconstruction–error opposed

to a grid where they are used. Sadly we could not run a in–depth test on this due to

computational limitations.

Nevertheless this hints at the notion, that variability is a good measure for the overall

quality of a fit.
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5× 4× 4 7× 4× 4 X× 4× 4

0.15 (0.147) 0.09 (0.37) 0.46 (0)

4× 4× 4 4× 4× 5 4× 4× 7 4× 4× X

0.38 (0) 0.17 (0.09) 0.40 (0) 0.46 (0)

5× 5× 5 6× 6× 6 Y × Y × Y

-0.18 (0.0775) -0.13 (0.1715) -0.25 (0)

all: 0.15 (0)
Table 5.3: Correlation between regularity and number of iterations for the 3D fitting sce-

nario. Displayed are the negated Spearman coefficients with the corresponding p–values
in brackets for various given grids (X ∈ [4,5,7],Y ∈ [4,5,6]).
Note: Not significant results are marked in red.

5.4.2 Regularity

Opposed to the predictions of variability our test on regularity gave a mixed result —

similar to the 1D–case.

In half scenarios we have a significant, but weak to moderate correlation between regular-

ity and number of iterations. On the other hand in the scenarios where we increased the

number of control–points, namely 125 for the 5 × 5 × 5 grid and 216 for the 6 × 6 × 6

grid we found a significant, but weak anti–correlation, which seem to contradict the find-

ings/trends for the sets with 64, 80, and 112 control–points (first two rows of table 5.3).

Taking all results together we only find a very weak, but significant link between regularity

and the number of iterations needed for the algorithm to converge.

As can be seen from figure 5.9, we can observe.....things .things .

5.4.3 Improvement Potential
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Figure 5.9: **BLINDTEXT**
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Figure 5.10: **BLINDTEXT**
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6 Schluss

• Regularity ist kacke für unser setup. Bessere Vorschläge? EW/EV?

..Improvement: Bibliotheksverzeichnis links anpassen. DOI überschreibt Direktlinks

des Autors.
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