# B-Spline Volumes B-Spline Volumes are a simple extension of B-Splines to 3 Dimensions. This is a straightforward adaption of the 2-Dimensional version. ## Nomenclature $x,y,z$ denote space-coordinates, $u,v,w$ denote spline-coordinates (Between 0-1), $P_{ijk}$ denote the control-Points on the control-Polygon, $N_{i,d,\tau}(u)$ denote the value of the underlying Basis-Functions at value $u$ using the $i$-th Basis-Function of degree $d$ in range $\tau$. For our case we only care about degree-3 splines, so we omit the d furtheron. $\tau$ is defined statically (in each direction) with each $P$ as Position on the whole surface/volume and within [0,1]. For a regular Control-Grid this defaults to $\tau_i = i/n$ Given $n,m,o$ control points in $x,y,z$-direction each Point on the curve is defined by $$C(u,v,w) = \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} P_{ijk} N_{i}(u) N_j(v) N_k(w)$$ ## Calculate $u, v, w$ Given a target-point $\textbf{p}^*$ and an initial guess $\textbf{p}=C(u,v,w)$ we define the error-function as: $$Err(u,v,w,\textbf{p}^{*}) = \textbf{p}^{*} - C(u,v,w)$$ $$Err_x(u,v,w,\textbf{p}^{*}) = p^{*}_x - \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N_{i}(u) N_j(v) N_k(w) $$ To solve this we derive: $$ \begin{array}{rl} \displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N_{i}(u) N_j(v) N_k(w) \\ = & \displaystyle - \sum_{i=0}^{n-d-2} \sum_{j=0}^{m-d-2} \sum_{k=0}^{o-d-2} {P_{ijk}}_x N'_{i}(u) N_j(v) N_k(w) \end{array} $$ The other partial derivatives follow the same pattern yiedling the Jacobian: $$ J(Err(u,v,w)) = \left( \begin{array}{ccc} \frac{\partial Err_x}{\partial u} & \frac{\partial Err_x}{\partial v} & \frac{\partial Err_x}{\partial w} \\ \frac{\partial Err_y}{\partial u} & \frac{\partial Err_y}{\partial v} & \frac{\partial Err_y}{\partial w} \\ \frac{\partial Err_z}{\partial u} & \frac{\partial Err_z}{\partial v} & \frac{\partial Err_z}{\partial w} \end{array} \right) $$ Iterate with $$J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)$$ using Cramers rule for solving the SLE. ## Basis-Splines and Derivatives The previously mentioned $N_{i,d,\tau}$ are defined recursively: $$N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[ \\ 0, & \mbox{otherwise} \end{cases} $$ and $$N_{i,d,\tau}(u) = \frac{u-\tau_i}{\tau_{i+d}} N_{i,d-1,\tau}(u) + \frac{\tau_{i+d+1} - u}{\tau_{i+d+1}-\tau_{i+1}} N_{i+1,d-1,\tau}(u) $$ This fact can be exploited to get the derivative for an arbitrary $N$: $$\frac{d}{du} N_{i,d,r}(u) = \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u)$$ *Warning:* in the case of $d=1$ the recursion-formula yields a $0$ denominator, but $N$ is also $0$. The right solution for this case is a derivative of $0$