
Evaluation of the Performance
of Randomized

FFD Control Grids

Master Thesis

at the

AG Computer Graphics

at the Faculty of Technology

of Bielefeld University

by

Stefan Dresselhaus

October 30, 2017

Supervisor: Prof. Dr. Mario Botsch
Dipl. Math. Andreas Richter

Contents

1 Introduction 3

2 Background 7

2.1 What is Freeform–Deformation (FFD)? 7

2.1.1 Why is FFD a good deformation function? 11

2.2 What is evolutionary optimization? 12

2.3 Advantages of evolutionary algorithms 15

2.4 Criteria for the evolvability of linear deformations 16

2.4.1 Variability . 17

2.4.2 Regularity . 18

2.4.3 Improvement Potential . 19

3 Implementation of Freeform–Deformation (FFD) 21

3.1 Adaption of FFD . 21

3.2 Adaption of FFD for a 3D–Mesh 23

3.3 Deformation Grid . 26

4 Scenarios for testing evolvability–criteria using FFD 29

4.1 Test Scenario: 1D Function Approximation 29

i

4.2 Test Scenario: 3D Function Approximation 31

5 Evaluation of Scenarios 35

5.1 Procedure: 1D Function Approximation 36

5.2 Results of 1D Function Approximation 38

5.2.1 Variability . 38

5.2.2 Regularity . 40

5.2.3 Improvement Potential . 41

5.3 Procedure: 3D Function Approximation 42

5.4 Results of 3D Function Approximation 44

5.4.1 Variability . 45

5.4.2 Regularity . 48

5.4.3 Improvement Potential . 50

6 Discussion and outlook 53

Appendix i

A Bibliography iii

B Abbreviations ix

C List of Figures xi

How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent the coordinates of a point in 3D–Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B–Spline

grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices

1

2

1 Introduction

Many modern industrial design processes require advanced optimization methods

due to the increased complexity resulting from more and more degrees of freedom

as methods refine and/or other methods are used. Examples for this are physical

domains like aerodynamics (i.e. drag), fluid dynamics (i.e. throughput of liquid)

— where the complexity increases with the temporal and spatial resolution of the

simulation — or known hard algorithmic problems in informatics (i.e. layouting of

circuit boards or stacking of 3D–objects). Moreover these are typically not static

environments but requirements shift over time or from case to case.

Figure 1.1: Example of the use of evolutionary algorithms in automotive design
(from [1]).

Evolutionary algorithms cope especially well with these problem domains while

3

Chapter 1: Introduction

addressing all the issues at hand[2]. One of the main concerns in these algo-

rithms is the formulation of the problems in terms of a genome and fitness–function.

While one can typically use an arbitrary cost–function for the fitness–functions

(i.e. amount of drag, amount of space, etc.), the translation of the problem–domain

into a simple parametric representation (the genome) can be challenging.

This translation is often necessary as the target of the optimization may have too

many degrees of freedom for a reasonable computation. In the example of an aero-

dynamic simulation of drag onto an object, those object–designs tend to have a

high number of vertices to adhere to various requirements (visual, practical, physi-

cal, etc.). A simpler representation of the same object in only a few parameters that

manipulate the whole in a sensible matter are desirable, as this often decreases the

computation time significantly.

Additionally one can exploit the fact, that drag in this case is especially sensitive to

non–smooth surfaces, so that a smooth local manipulation of the surface as a whole

is more advantageous than merely random manipulation of the vertices.

The quality of such a low–dimensional representation in biological evolution is

strongly tied to the notion of evolvability[3], as the parametrization of the problem

has serious implications on the convergence speed and the quality of the solution[4].

However, there is no consensus on how evolvability is defined and the meaning

varies from context to context[5]. As a consequence there is need for some criteria

we can measure, so that we are able to compare different representations to learn

and improve upon these.

One example of such a general representation of an object is to generate random

points and represent vertices of an object as distances to these points — for example

4

Figure 1.2: Example of RBF–based deformation and FFD targeting the same mesh.

via Radial Basis Function (RBF). If one (or the algorithm) would move such a

point the object will get deformed only locally (due to the RBF). As this results in a

simple mapping from the parameter–space onto the object one can try out different

representations of the same object and evaluate which criteria may be suited to

describe this notion of evolvability. This is exactly what Richter et al.[1] have done.

As we transfer the results of Richter et al.[1] from using Radial Basis Function

(RBF) as a representation to manipulate geometric objects to the use of Freeform–

Deformation (FFD) we will use the same definition for evolvability the original au-

thor used, namely regularity, variability, and improvement potential. We introduce

these term in detail in Chapter 2.4. In the original publication the author could show

a correlation between these evolvability–criteria with the quality and convergence

speed of such optimization.

We will replicate the same setup on the same objects but use Freeform–Deformation

(FFD) instead of Radial Basis Function (RBF) to create a local deformation near

the control–points and evaluate if the evolution–criteria still work as a predictor

5

Chapter 1: Introduction

for evolvability of the representation given the different deformation scheme, as

suspected in [1].

First we introduce different topics in isolation in Chapter 2. We take an abstract look

at the definition of FFD for a one–dimensional line (in 2.1) and discuss why this

is a sensible deformation function (in 2.1.1). Then we establish some background–

knowledge of evolutionary algorithms (in 2.2) and why this is useful in our domain

(in 2.3) followed by the definition of the different evolvability–criteria established

in [1] (in 2.4).

In Chapter 3 we take a look at our implementation of FFD and the adaptation for

3D–meshes that were used. Next, in Chapter 4, we describe the different scenar-

ios we use to evaluate the different evolvability–criteria incorporating all aspects

introduced in Chapter 2. Following that, we evaluate the results in Chapter 5 with

further on discussion, summary and outlook in Chapter 6.

6

2 Background

2.1 What is Freeform–Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for

deforming geometric objects (especially meshes in our case) in the first place. For

simplicity we only summarize the 1D–case from [6] here and go into the extension

to the 3D case in chapter 3.2.

The main idea of FFD is to create a function s : [0,1[d 7→ Rd that spans a certain part

of a vector–space and is only linearly parametrized by some special control–points

pi and an constant attribution–function ai(u), so

s(u) =
∑
i

ai(u)pi

can be thought of a representation of the inside of the convex hull generated by the

control–points where each position inside can be accessed by the right u ∈ [0,1[d.

In the 1–dimensional example in figure 2.1, the control–points are indicated as red

dots and the colour–gradient should hint at the u–values ranging from 0 to 1.

7

Chapter 2: Background

Figure 2.1: Example of a parametrization of a line with corresponding deformation
to generate a deformed objet

We now define a Freeform–Deformation (FFD) by the following:

Given an arbitrary number of points pi alongside a line, we map a scalar value

τi ∈ [0,1[to each point with τi < τi+1∀i according to the position of pi on said

line. Additionally, given a degree of the target polynomial d we define the curve

Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(2.1)

and

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u

τi+d+1 − τi+1
Ni+1,d−1,τ (u) (2.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribu-

tion of each point pi to the final curve–point parametrized only by u ∈ [0,1[. As can

8

2.1 What is Freeform–Deformation (FFD)?

be seen from (2.2) we only access points [pi..pi+d] for any given i1, which gives us,

in combination with choosing pi and τi in order, only a local interference of d + 1

points.

We can even derive this equation straightforward for an arbitrary N2:

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1
Ni+1,d−1,τ (u)

For a B–Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield
(

∂
∂u

)d
s(u) = 0.

Another interesting property of these recursive polynomials is that they are contin-

uous (given d ≥ 1) as every pi gets blended in between τi and τi+d and out between

τi+1, and τi+d+1 as can bee seen from the two coefficients in every step of the

recursion.

This means that all changes are only a local linear combination between the control–

point pi to pi+d+1 and consequently this yields to the convex–hull–property of B–

Splines — meaning, that no matter how we choose our coefficients, the resulting

points all have to lie inside convex–hull of the control–points.

For a given point si we can then calculate the contributions ui,j := Nj,d,τ of

each control point pj to get the projection from the control–point–space into the

1one more for each recursive step.
2Warning: in the case of d = 1 the recursion–formula yields a 0 denominator, but N is also 0. The

right solution for this case is a derivative of 0

9

Chapter 2: Background

object–space:

si =
∑
j

ui,j · pj = nT
i p

or written for all points at the same time:

s = Up

where U is the n×m transformation–matrix (later on called deformation matrix)

for n object–space–points and m control–points.

Figure 2.2: From [7, Figure 2.13]:
„Some interesting properties of the B–splines. On the natural definition domain
of the B–spline ([k0,k4] on this figure), the B–Spline basis functions sum up to
one (partition of unity). In this example, we use B–Splines of degree 2. The
horizontal segment below the abscissa axis represents the domain of influence of
the B–splines basis function, i.e. the interval on which they are not null. At a
given point, there are at most d+1 non–zero B–Spline basis functions (compact
support).“
Note, that Brunet starts his index at −d opposed to our definition, where we start
at 0.

Furthermore B–Spline–basis–functions form a partition of unity for all, but the first

and last d control–points[7]. Therefore we later on use the border–points d + 1

times, such that
∑

j ui,jpj = pi for these points.

10

2.1 What is Freeform–Deformation (FFD)?

The locality of the influence of each control–point and the partition of unity was

beautifully pictured by Brunet, which we included here as figure 2.2.

2.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties

of the polynomials and the correspondence to the control–points. Having only a

few control–points gives the user a nicer high–level–interface, as she only needs to

move these points and the model follows in an intuitive manner. The deformation

is smooth as the underlying polygon is smooth as well and affects as many vertices

of the model as needed. Moreover the changes are always local so one risks not any

change that a user cannot immediately see.

But there are also disadvantages of this approach. The user loses the ability to

directly influence vertices and even seemingly simple tasks as creating a plateau

can be difficult to achieve[8, chapter 3.2][9].

This disadvantages led to the formulation of Direct Manipulation Freeform–Deformation

(DM–FFD)[8, chapter 3.3] in which the user directly interacts with the surface–

mesh. All interactions will be applied proportionally to the control–points that make

up the parametrization of the interaction–point itself yielding a smooth deformation

of the surface at the surface without seemingly arbitrary scattered control–points.

Moreover this increases the efficiency of an evolutionary optimization[10], which

we will use later on.

But this approach also has downsides as can be seen in figure 2.3, as the tessellation

of the invisible grid has a major impact on the deformation itself.

11

Chapter 2: Background

Figure 2.3: Figure 7 from [8].

All in all FFD and DM–FFD are still good ways to deform a high–polygon mesh

albeit the downsides.

2.2 What is evolutionary optimization?

In this thesis we are using an evolutionary optimization strategy to solve the prob-

lem of finding the best parameters for our deformation. This approach, however, is

very generic and we introduce it here in a broader sense.

The general shape of an evolutionary algorithm (adapted from [11]) is outlined in

Algorithm 1. Here, P (t) denotes the population of parameters in step t of the

12

2.2 What is evolutionary optimization?

Algorithm 1 An outline of evolutionary algorithms
t := 0;
initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ;
evaluate F (0) : {Φ(x)|x ∈ P (0)};
while c(F (t)) ̸= true do

recombine: P (t) := r(P (t));
mutate: P ′′(t) := m(P (t));
evaluate F ′′(t) : {Φ(x)|x ∈ P ′′(t)}
select: P (t+ 1) := s(P ′′(t) ∪Q,Φ);
t := t + 1;

algorithm. The population contains µ individuals ai from the possible individual–

set I that fit the shape of the parameters we are looking for. Typically these are

initialized by a random guess or just zero. Further on we need a so–called fitness–

function Φ : I 7→ M that can take each parameter to a measurable space M (usually

M = R) along a convergence–function c : I 7→ B that terminates the optimization.

Biologically speaking the set I corresponds to the set of possible genotypes while

M represents the possible observable phenotypes. Genotypes define all initial prop-

erties of an individual, but their properties are not directly observable. It is the

genes, that evolve over time (and thus correspond to the parameters we are tweak-

ing in our algorithms or the genes in nature), but only the phenotypes make certain

behaviour observable (algorithmically through our fitness–function, biologically by

the ability to survive and produce offspring). Any individual in our algorithm thus

experience a biologically motivated life cycle of inheriting genes from the parents,

modified by mutations occurring, performing according to a fitness–metric, and

generating offspring based on this. Therefore each iteration in the while–loop above

is also often named generation.

One should note that there is a subtle difference between fitness–function and a so

called genotype–phenotype–mapping. The first one directly applies the genotype–

13

Chapter 2: Background

phenotype–mapping and evaluates the performance of an individual, thus going

directly from genes/parameters to reproduction–probability/score. In a concrete ex-

ample the genotype can be an arbitrary vector (the genes), the phenotype is then

a deformed object, and the performance can be a single measurement like an air–

drag–coefficient. The genotype–phenotype–mapping would then just be the gen-

eration of different objects from that starting–vector, whereas the fitness–function

would go directly from such a starting–vector to the coefficient that we want to

optimize.

The main algorithm just repeats the following steps:

• Recombine with a recombination–function r : Iµ 7→ Iλ to generate λ new

individuals based on the characteristics of the µ parents.

This makes sure that the next guess is close to the old guess.

• Mutate with a mutation–function m : Iλ 7→ Iλ to introduce new effects that

cannot be produced by mere recombination of the parents.

Typically this just adds minor defects to individual members of the population

like adding a random gaussian noise or amplifying/dampening random parts.

• Selection takes a selection–function s : (Iλ∪Iµ+λ,Φ) 7→ Iµ that selects from

the previously generated Iλ children and optionally also the parents (denoted

by the set Q in the algorithm) using the fitness–function Φ. The result of this

operation is the next Population of µ individuals.

All these functions can (and mostly do) have a lot of hidden parameters that can

be changed over time. A good overview of this is given in [12], so we only give a

small excerpt here.

For example the mutation can consist of merely a single σ determining the strength

14

2.3 Advantages of evolutionary algorithms

of the gaussian defects in every parameter — or giving a different σ to every com-

ponent of those parameters. An even more sophisticated example would be the „1/5

success rule“ from [13].

Also in the selection–function it may not be wise to only take the best–performing

individuals, because it may be that the optimization has to overcome a barrier of

bad fitness to achieve a better local optimum.

Recombination also does not have to be mere random choosing of parents, but can

also take ancestry, distance of genes or groups of individuals into account.

2.3 Advantages of evolutionary algorithms

The main advantage of evolutionary algorithms is the ability to find optima of gen-

eral functions just with the help of a given fitness–function. Components and tech-

niques for evolutionary algorithms are specifically known to help with different

problems arising in the domain of optimization[14]. An overview of the typical

problems are shown in figure 2.4.

Most of the advantages stem from the fact that a gradient–based procedure has usu-

ally only one point of observation from where it evaluates the next steps, whereas

an evolutionary strategy starts with a population of guessed solutions. Because an

evolutionary strategy can be modified according to the problem–domain (i.e. by the

ideas given above) it can also approximate very difficult problems in an efficient

manner and even self–tune parameters depending on the ancestry at runtime3.

3Some examples of this are explained in detail in [12]

15

Chapter 2: Background

Figure 2.4: Fig. 3. taken from [14]

If an analytic best solution exists and is easily computable (i.e. because the error–

function is convex) an evolutionary algorithm is not the right choice. Although both

converge to the same solution, the analytic one is usually faster.

But in reality many problems have no analytic solution, because the problem is ei-

ther not convex or there are so many parameters that an analytic solution (mostly

meaning the equivalence to an exhaustive search) is computationally not feasible.

Here evolutionary optimization has one more advantage as one can at least get sub-

optimal solutions fast, which then refine over time and still converge to a decent

solution much faster than an exhaustive search.

2.4 Criteria for the evolvability of linear deformations

As we have established in chapter 2.1, we can describe a deformation by the formula

S = UP

16

2.4 Criteria for the evolvability of linear deformations

where S is a n×d matrix of vertices4, U are the (during parametrization) calculated

deformation–coefficients and P is a m×d matrix of control–points that we interact

with during deformation.

We can also think of the deformation in terms of differences from the original co-

ordinates

∆S = U ·∆P

which is isomorphic to the former due to the linearity of the deformation. One can

see in this way, that the way the deformation behaves lies solely in the entries of U,

which is why the three criteria focus on this.

2.4.1 Variability

In [1] variability is defined as

variability(U) :=
rank(U)

n
,

whereby U is the n × m deformation–Matrix used to map the m control–points

onto the n vertices.

Given n = m, an identical number of control–points and vertices, this quotient will

be = 1 if all control–points are independent of each other and the solution is to

trivially move every control–point onto a target–point.

In praxis the value of V (U) is typically ≪ 1, because there are only few control–

points for many vertices, so m ≪ n.

4We use S in this notation, as we will use this parametrization of a source–mesh to manipulate S
into a target–mesh T via P

17

Chapter 2: Background

This criterion should correlate to the degrees of freedom the given parametrization

has. This can be seen from the fact, that rank(U) is limited by min(m,n) and —

as n is constant — can never exceed n.

The rank itself is also interesting, as control–points could theoretically be placed on

top of each other or be linear dependent in another way — but will in both cases

lower the rank below the number of control–points m and are thus measurable by

the variability.

2.4.2 Regularity

Regularity is defined[1] as

regularity(U) :=
1

κ(U)
=

σmin

σmax

where σmin and σmax are the smallest and greatest right singular value of the

deformation–matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x +Up)

this makes sure that ∥Up∥ ∝ ∥p∥ when κ(U) ≈ 1. The inversion of κ(U) is only

performed to map the criterion–range to [0..1], where 1 is the optimal value and 0

is the worst value.

On the one hand this criterion should be characteristic for numeric stability[15,

chapter 2.7] and on the other hand for the convergence speed of evolutionary algorithms[1]

as it is tied to the notion of locality[14, 16].

18

2.4 Criteria for the evolvability of linear deformations

2.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic

of the fitness–function at hand, the third criterion should reflect a notion of the

potential for optimization, taking a guess into account.

Most of the times some kind of gradient g is available to suggest a direction worth

pursuing; either from a previous iteration or by educated guessing. We use this to

guess how much change can be achieved in the given direction.

The definition for an improvement potential P is[1]:

potential(U) := 1− ∥(1−UU+)G∥2F

given some approximate n × d fitness–gradient G, normalized to ∥G∥F = 1,

whereby ∥ · ∥F denotes the Frobenius–Norm.

19

Chapter 2: Background

20

3 Implementation of

Freeform–Deformation

(FFD)

The general formulation of B–Splines has two free parameters d and τ which must

be chosen beforehand.

As we usually work with regular grids in our FFD we define τ statically as τi = i/n

whereby n is the number of control–points in that direction.

d defines the degree of the B–Spline–Function (the number of times this function

is differentiable) and for our purposes we fix d to 3, but give the formulas for the

general case so it can be adapted quite freely.

3.1 Adaption of FFD

As we have established in Chapter 2.1 we can define an FFD–displacement as

21

Chapter 3: Implementation of Freeform–Deformation (FFD)

∆x(u) =
∑
i

Ni,d,τi(u)∆xci (3.1)

Note that we only sum up the ∆–displacements in the control–points ci to get the

change in position of the point we are interested in.

In this way every deformed vertex is defined by

Deform(vx) = vx +∆x(u)

with u ∈ [0..1[being the variable that connects the high–detailed vertex–mesh to

the low–detailed control–grid. To actually calculate the new position of the vertex

we first have to calculate the u–value for each vertex. This is achieved by finding

out the parametrization of v in terms of ci

vx
!
=

∑
i

Ni,d,τi(u)ci

so we can minimize the error between those two:

argmin
u

Err(u,vx) = argmin
u

2 · ∥vx −
∑
i

Ni,d,τi(u)ci∥
2
2

As this error–term is quadratic we just derive by u yielding

∂
∂u vx −

∑
iNi,d,τi(u)ci

= −
∑

i

(
d

τi+d−τi
Ni,d−1,τ (u)− d

τi+d+1−τi+1
Ni+1,d−1,τ (u)

)
ci

and do a gradient–descend to approximate the value of u up to an ε of 0.0001.

22

3.2 Adaption of FFD for a 3D–Mesh

For this we employ the Gauss–Newton algorithm[17], which converges into the

least–squares solution. An exact solution of this problem is impossible most of the

time, because we usually have way more vertices than control–points (#v ≫ #c).

3.2 Adaption of FFD for a 3D–Mesh

This is a straightforward extension of the 1D–method presented in the last chapter.

But this time things get a bit more complicated. As we have a 3–dimensional grid

we may have a different amount of control–points in each direction.

Given n,m,o control–points in x,y,z–direction each Point on the curve is defined

by

V (u,v,w) =
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj (v)Nk,d,τk(w) · Cijk.

In this case we have three different B–Splines (one for each dimension) and also 3

variables u,v,w for each vertex we want to approximate.

Given a target vertex p∗ and an initial guess p = V (u,v,w) we define the error–

function for the gradient–descent as:

Err(u,v,w,p∗) = p∗ − V (u,v,w)

And the partial version for just one direction as

23

Chapter 3: Implementation of Freeform–Deformation (FFD)

Errx(u,v,w,p
∗) = p∗x −

∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj (v)Nk,d,τk(w) · cijkx

To solve this we derive partially, like before:

∂Errx
∂u

p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj (v)Nk,d,τk(w) · cijkx

= −
∑
i

∑
j

∑
k

N ′
i,d,τi

(u)Nj,d,τj (v)Nk,d,τk(w) · cijkx

The other partial derivatives follow the same pattern yielding the Jacobian:

J(Err(u,v,w)) =

∂Errx
∂u

∂Errx
∂v

∂Errx
∂w

∂Erry
∂u

∂Erry
∂v

∂Erry
∂w

∂Errz
∂u

∂Errz
∂v

∂Errz
∂w

=

−

∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkx

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijky

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkz

24

3.2 Adaption of FFD for a 3D–Mesh

With the Gauss–Newton algorithm we iterate via the formula

J(Err(u,v,w)) ·∆

u

v

w

= −Err(u,v,w)

and use Cramer’s rule for inverting the small Jacobian and solving this system of

linear equations.

As there is no strict upper bound of the number of iterations for this algorithm,

we just iterate it long enough to be within the given ε–error above. This takes —

depending on the shape of the object and the grid — about 3 to 5 iterations that we

observed in practice.

Another issue that we observed in our implementation is, that multiple local op-

tima may exist on self–intersecting grids. We solve this problem by defining self–

intersecting grids to be invalid and do not test any of them.

This is not such a big problem as it sounds at first, as self–intersections mean,

that control–points being further away from a given vertex have more influence

over the deformation than control–points closer to this vertex. Also this contradicts

the notion of locality that we want to achieve and deemed beneficial for a good

behaviour of the evolutionary algorithm.

25

Chapter 3: Implementation of Freeform–Deformation (FFD)

3.3 Deformation Grid

As mentioned in chapter 2.2, the way of choosing the representation to map the

general problem (mesh–fitting/optimization in our case) into a parameter–space is

very important for the quality and runtime of evolutionary algorithms[4].

Because our control–points are arranged in a grid, we can accurately represent each

vertex–point inside the grids volume with proper B–Spline–coefficients between

[0,1[and — as a consequence — we have to embed our object into it (or create

constant “dummy”–points outside).

The great advantage of B–Splines is the local, direct impact of each control point

without having a 1 : 1–correlation, and a smooth deformation. While the advan-

tages are great, the issues arise from the problem to decide where to place the

control–points and how many to place at all.

One would normally think, that the more control–points you add, the better the

result will be, but this is not the case for our B–Splines. Given any point p only

the 2 · (d− 1) control–points contribute to the parametrization of that point1. This

means, that a high resolution can have many control–points that are not contributing

to any point on the surface and are thus completely irrelevant to the solution.

We illustrate this phenomenon in figure 3.1, where the red central points are not rel-

evant for the parametrization of the circle. This leads to artefacts in the deformation–

matrix U, as the columns corresponding to those control–points are 0.

1Normally these are d− 1 to each side, but at the boundaries border points get used multiple times
to meet the number of points required

26

3.3 Deformation Grid

Figure 3.1: A high resolution (10×10) of control–points over a circle. Yellow/green
points contribute to the parametrization, red points don’t.
An Example–point (blue) is solely determined by the position of the green
control–points.

This also leads to useless increased complexity, as the parameters corresponding

to those points will never have any effect, but a naive algorithm will still try to

optimize them yielding numeric artefacts in the best and non–terminating or ill–

defined solutions2 at worst.

One can of course neglect those columns and their corresponding control–points,

but this raises the question why they were introduced in the first place. We will

address this in a special scenario in 5.4.1.

For our tests we chose different uniformly sized grids and added noise onto each

2One example would be, when parts of an algorithm depend on the inverse of the minimal right
singular value leading to a division by 0.

27

Chapter 3: Implementation of Freeform–Deformation (FFD)

control–point3 to simulate different starting–conditions.

3For the special case of the outer layer we only applied noise away from the object, so the object is
still confined in the convex hull of the control–points.

28

4 Scenarios for testing

evolvability–criteria us-

ing FFD

In our experiments we use the same two testing–scenarios, that were also used by

Richter et al.[1] The first scenario deforms a plane into a shape originally defined

by Giannelli et al.[18], where we setup control–points in a 2–dimensional manner

and merely deform in the height–coordinate to get the resulting shape.

In the second scenario we increase the degrees of freedom significantly by using

a 3–dimensional control–grid to deform a sphere into a face, so each control point

has three degrees of freedom in contrast to first scenario.

4.1 Test Scenario: 1D Function Approximation

In this scenario we used the shape defined by Giannelli et al.[18], which is also used

by Richter et al.[1] using the same discretization to 150 × 150 points for a total of

29

Chapter 4: Scenarios for testing evolvability–criteria using FFD

n = 22 500 vertices. The shape is given by the following definition

t(x,y) =

0.5 cos(4π · q0.5) + 0.5 q(x,y) < 1

16 ,

2(y − x) 0 < y − x < 0.5,

1 0.5 < y − x

(4.1)

with (x,y) ∈ [0,2] × [0,1] and q(x,y) = (x − 1.5)2 + (y − 0.5)2, which we have

visualized in figure 4.1.

Figure 4.1: The target–shape for our 1–dimensional optimization–scenario includ-
ing a wireframe–overlay of the vertices.

As the starting–plane we used the same shape, but set all z–coordinates to 0, yield-

ing a flat plane, which is partially already correct.

Regarding the fitness–function f(p), we use the very simple approach of calculating

the squared distances for each corresponding vertex

30

4.2 Test Scenario: 3D Function Approximation

f(p) =

n∑
i=1

∥(Up)i − ti∥22 = ∥Up− t∥2 → min (4.2)

where ti are the respective target–vertices to the parametrized source–vertices1

with the current deformation–parameters p = (p1, . . . , pm). We can do this one–

to–one–correspondence because we have exactly the same number of source and

target–vertices do to our setup of just flattening the object.

This formula is also the least–squares approximation error for which we can com-

pute the analytic solution p∗ = U+t, yielding us the correct gradient in which the

evolutionary optimizer should move.

4.2 Test Scenario: 3D Function Approximation

Opposed to the 1–dimensional scenario before, the 3–dimensional scenario is much

more complex — not only because we have more degrees of freedom on each con-

trol point, but also, because the fitness–function we will use has no known analytic

solution and multiple local minima.

First of all we introduce the set up: We have given a triangulated model of a sphere

consisting of 10 807 vertices, that we want to deform into a the target–model of a

face with a total of 12 024 vertices. Both of these Models can be seen in figure 4.2.

Opposed to the 1D–case we cannot map the source and target–vertices in a one–to–

one–correspondence, which we especially need for the approximation of the fitting–

1The parametrization is encoded in U and the initial position of the control–points. See 3.1

31

Chapter 4: Scenarios for testing evolvability–criteria using FFD

Figure 4.2:
Left: The sphere we start from with 10 807 vertices
Right: The face we want to deform the sphere into with 12 024 vertices.

error. Hence we state that the error of one vertex is the distance to the closest vertex

of the respective other model and sum up the error from the source and target.

We therefore define the fitness–function to be:

f(P) =
1

n

n∑
i=1

∥cT(si)− si∥22︸ ︷︷ ︸
source–to–target–distance

+
1

m

m∑
i=1

∥cS(ti)− ti∥22︸ ︷︷ ︸
target–to–source–distance

+λ · regularization(P)

(4.3)

where cT(si) denotes the target–vertex that is corresponding to the source–vertex

si and cS(ti) denotes the source–vertex that corresponds to the target–vertex ti.

Note that the target–vertices are given and fixed by the target–model of the face

we want to deform into, whereas the source–vertices vary depending on the chosen

32

4.2 Test Scenario: 3D Function Approximation

parameters P, as those get calculated by the previously introduces formula S =

UP with S being the n × 3–matrix of source–vertices, U the n × m–matrix of

calculated coefficients for the FFD — analog to the 1D case — and finally P being

the m× 3–matrix of the control–grid defining the whole deformation.

As regularization–term we add a weighted Laplacian of the deformation that has

been used before by Aschenbach et al.[19, Section 3.2] on similar models and was

shown to lead to a more precise fit. The Laplacian

regularization(P) =
1∑
iAi

n∑
i=1

Ai ·

 ∑
sj∈N(si)

wj · ∥∆sj −∆si∥2
 (4.4)

is determined by the cotangent weighted displacement wj of the to si connected

vertices N(si) and Ai is the Voronoi–area of the corresponding vertex si. We leave

out the Ri–term from the original paper as our deformation is merely linear.

This regularization–weight gives us a measure of stiffness for the material that we

will influence via the λ–coefficient to start out with a stiff material that will get more

flexible per iteration. As a side–effect this also limits the effects of overagressive

movement of the control–points in the beginning of the fitting process and thus

should limit the generation of ill–defined grids mentioned in section 3.3.

33

Chapter 4: Scenarios for testing evolvability–criteria using FFD

34

5 Evaluation of Scenarios

To compare our results to the ones given by Richter et al.[1], we also use Spearman’s

rank correlation coefficient. Opposed to other popular coefficients, like the Pear-

son correlation coefficient, which measures a linear relationship between variables,

the Spearman’s coefficient assesses „how well an arbitrary monotonic function can

describe the relationship between two variables, without making any assumptions

about the frequency distribution of the variables“[20].

As we don’t have any prior knowledge if any of the criteria is linear and we are just

interested in a monotonic relation between the criteria and their predictive power,

the Spearman’s coefficient seems to fit out scenario best and was also used before

by Richter et al.[1]

For interpretation of these values we follow the same interpretation used in [1],

based on [21]: The coefficient intervals rS ∈ [0,0.2[, [0.2,0.4[, [0.4,0.6[, [0.6,0.8[,

and [0.8,1] are classified as very weak, weak, moderate, strong and very strong. We

interpret p–values smaller than 0.01 as significant and cut off the precision of p–

values after four decimal digits (thus often having a p–value of 0 given for p–values

< 10−4).

35

Chapter 5: Evaluation of Scenarios

As we are looking for anti–correlation (i.e. our criterion should be maximized in-

dicating a minimal result in — for example — the reconstruction–error) instead of

correlation we flip the sign of the correlation–coefficient for readability and to have

the correlation–coefficients be in the classification–range given above.

For the evolutionary optimization we employ the CMA–ES of the shark3.1 library

[22], as this algorithm was used by [1] as well. We leave the parameters at their

sensible defaults as further explained in [23, Appendix A: Table 1].

5.1 Procedure: 1D Function Approximation

For our setup we first compute the coefficients of the deformation–matrix and use

the formulas for variability and regularity to get our predictions. Afterwards we

solve the problem analytically to get the (normalized) correct gradient that we use

as guess for the improvement potential. To further test the improvement potential

we also consider a distorted gradient gd:

gd =
µgc + (1− µ)1
∥µgc + (1− µ)1∥

where 1 is the vector consisting of 1 in every dimension, gc = p∗ − p is the

calculated correct gradient, and µ is used to blend between gc and 1. As we always

start with a gradient of p = 0 this means we can shorten the definition of gc to

gc = p∗.

We then set up a regular 2–dimensional grid around the object with the desired grid

resolutions. To generate a testcase we then move the grid–vertices randomly inside

the x–y–plane. As self–intersecting grids get tricky to solve with our implemented

36

5.1 Procedure: 1D Function Approximation

Figure 5.1:
Left: A regular 7× 4–grid
Right: The same grid after a random distortion to generate a testcase.

newtons–method (see section 3.2) we avoid the generation of such self–intersecting

grids for our testcases.

To achieve that we generated a gaussian distributed number with µ = 0, σ = 0.25

and clamped it to the range [−0.25,0.25]. We chose such an r ∈ [−0.25,0.25]

per dimension and moved the control–points by that factor towards their respective

neighbours1.

In other words we set

pi =

pi + (pi − pi−1) · r, if r negative

pi + (pi+1 − pi) · r, if r positive

in each dimension separately.

An Example of such a testcase can be seen for a 7× 4–grid in figure 5.1.

1Note: On the Edges this displacement is only applied outwards by flipping the sign of r, if appro-
priate.

37

Chapter 5: Evaluation of Scenarios

5.2 Results of 1D Function Approximation

In the case of our 1D–Optimization–problem, we have the luxury of knowing the

analytical solution to the given problem–set. We use this to experimentally evaluate

the quality criteria we introduced before. As an evolutional optimization is partially

a random process, we use the analytical solution as a stopping–criteria. We measure

the convergence speed as number of iterations the evolutional algorithm needed to

get within 1.05× of the optimal solution.

We used different regular grids that we manipulated as explained in Section 5.1 with

a different number of control–points. As our grids have to be the product of two

integers, we compared a 5×5–grid with 25 control–points to a 4×7 and 7×4–grid

with 28 control–points. This was done to measure the impact an „improper“ setup

could have and how well this is displayed in the criteria we are examining.

Additionally we also measured the effect of increasing the total resolution of the

grid by taking a closer look at 5× 5, 7× 7 and 10× 10 grids.

5.2.1 Variability

Variability should characterize the potential for design space exploration and is de-

fined in terms of the normalized rank of the deformation matrix U: V (U) :=

rank(U)
n , whereby n is the number of vertices. As all our tested matrices had a con-

stant rank (being m = x · y for a x × y grid), we have merely plotted the errors in

the box plot in figure 5.2

38

5.2 Results of 1D Function Approximation

Figure 5.2: The squared error for the various grids we examined.
Note that 7× 4 and 4× 7 have the same number of control–points.

It is also noticeable, that although the 7×4 and 4×7 grids have a higher variability,

they perform not better than the 5 × 5 grid. Also the 7 × 4 and 4 × 7 grids differ

distinctly from each other with a mean±sigma of 233.09 ± 12.32 for the former

and 286.32± 22.36 for the latter, although they have the same number of control–

points. This is an indication of an impact a proper or improper grid–setup can have.

We do not draw scientific conclusions from these findings, as more research on

non–squared grids seem necessary.

Leaving the issue of the grid–layout aside we focused on grids having the same

number of prototypes in every dimension. For the 5×5, 7×7 and 10×10 grids we

found a very strong correlation (−rS = 0.94, p = 0) between the variability and

the evolutionary error.

39

Chapter 5: Evaluation of Scenarios

Figure 5.3:
Left: *Improvement potential* against number of iterations until convergence
Right: *Regularity* against number of iterations until convergence
Coloured by their grid–resolution, both with a linear fit over the whole dataset.

5.2.2 Regularity

Regularity should correspond to the convergence speed (measured in iteration–steps

of the evolutionary algorithm), and is computed as inverse condition number κ(U)

of the deformation–matrix.

As can be seen from table 5.1, we could only show a weak correlation in the case

of a 5 × 5 grid. As we increment the number of control–points the correlation

gets worse until it is completely random in a single dataset. Taking all presented

datasets into account we even get a strong correlation of −rS = −0.72, p = 0, that

is opposed to our expectations.

5× 5 7× 4 4× 7 7× 7 10× 10

0.28 (0.0045) 0.21 (0.0396) 0.1 (0.3019) 0.01 (0.9216) 0.01 (0.9185)

Table 5.1: Negated Spearman’s correlation (and p–values) between *regularity* and
number of iterations for the 1D function approximation problem.
Note: Not significant results are marked in red.

40

5.2 Results of 1D Function Approximation

To explain this discrepancy we took a closer look at what caused these high num-

ber of iterations. In figure 5.3 we also plotted the improvement potential against

the steps next to the regularity–plot. Our theory is that the very strong correlation

(−rS = −0.82, p = 0) between improvement potential and number of iterations

hints that the employed algorithm simply takes longer to converge on a better solu-

tion (as seen in figure 5.2 and 5.4) offsetting any gain the regularity–measurement

could achieve.

5.2.3 Improvement Potential

Figure 5.4: *Improvement potential* plotted against the error yielded by the evolu-
tionary optimization for different grid–resolutions

The improvement potential should correlate to the quality of the fitting–result. We

plotted the results for the tested grid–sizes 5 × 5, 7 × 7 and 10 × 10 in figure 5.4.

We tested the 4× 7 and 7× 4 grids as well, but omitted them from the plot.

41

Chapter 5: Evaluation of Scenarios

Additionally we tested the results for a distorted gradient described in 5.1 with a

µ–value of 0.25, 0.5, 0,75, and 1.0 for the 5× 5 grid and with a µ–value of 0.5 for

all other cases.

All results show the identical very strong and significant correlation with a Spearman–

coefficient of −rS = 1.0 and p–value of 0.

These results indicate, that ∥1 − UU+∥F is close to 0, reducing the impacts of

any kind of gradient. Nevertheless, the improvement potential seems to be suited to

make estimated guesses about the quality of a fit, even lacking an exact gradient.

5.3 Procedure: 3D Function Approximation

As explained in section 4.2 in detail, we do not know the analytical solution to

the global optimum. Additionally we have the problem of finding the right cor-

respondences between the original sphere–model and the target–model, as they

consist of 10 807 and 12 024 vertices respectively, so we cannot make a one–to–

one–correspondence between them as we did in the one–dimensional case.

Initially we set up the correspondences cT(. . .) and cS(. . .) to be the respectively

closest vertices of the other model. We then calculate the analytical solution given

these correspondences via P∗ = U+T, and also use the first solution as guessed

gradient for the calculation of the improvement potential, as the optimal solution

is not known. We then let the evolutionary algorithm run up within 1.05 times the

error of this solution and afterwards recalculate the correspondences cT(. . .) and

cS(. . .).

42

5.3 Procedure: 3D Function Approximation

Figure 5.5:
Left: The 3D–setup with a 4× 4× 4–grid.
Right: The same grid after added noise to the control–points.

For the next step we then halve the regularization–impact λ (starting at 1) of our

fitness–function (4.3) and calculate the next incremental solution P∗ = U+T with

the updated correspondences (again, mapping each vertex to its closest neighbour

in the respective other model) to get our next target–error. We repeat this process

as long as the target–error keeps decreasing and use the number of these iterations

as measure of the convergence speed. As the resulting evolutional error without

regularization is in the numeric range of ≈ 100, whereas the regularization is nu-

merically ≈ 7000 we need at least 10 to 15 iterations until the regularization–effect

wears off.

The grid we use for our experiments is just very coarse due to computational limi-

tations. We are not interested in a good reconstruction, but an estimate if the men-

tioned evolvability–criteria are good.

In figure 5.5 we show an example setup of the scene with a 4×4×4–grid. Identical

43

Chapter 5: Evaluation of Scenarios

to the 1–dimensional scenario before, we create a regular grid and move the control–

points in the exact same random manner between their neighbours as described in

section 5.1, but in three instead of two dimensions2.

Figure 5.6:
Left: A 7× 4× 4 grid suited to better deform into facial features.
Right: A 4× 4× 7 grid that we expect to perform worse.

As is clearly visible from figure 5.6, the target–model has many vertices in the facial

area, at the ears and in the neck–region. Therefore we chose to increase the grid–

resolutions for our tests in two different dimensions and see how well the criteria

predict a suboptimal placement of these control–points.

5.4 Results of 3D Function Approximation

In the 3D–Approximation we tried to evaluate further on the impact of the grid–

layout to the overall criteria. As the target–model has many vertices in concentrated

in the facial area we start from a 4 × 4 × 4 grid and only increase the number of
2Again, we flip the signs for the edges, if necessary to have the object still in the convex hull.

44

5.4 Results of 3D Function Approximation

control–points in one dimension, yielding a resolution of 7 × 4 × 4 and 4 × 4 × 7

respectively. We visualized those two grids in figure 5.6.

To evaluate the performance of the evolvability–criteria we also tested a more neu-

tral resolution of 4× 4× 4, 5× 5× 5, and 6× 6× 6 — similar to the 1D–setup.

Figure 5.7: The fitting error for the various grids we examined.
Note that the number of control–points is a product of the resolution, so X×4×4
and 4× 4×X have the same number of control–points.

5.4.1 Variability

4× 4×X X× 4× 4 Y ×Y ×Y all

0.89 (0) 0.9 (0) 0.91 (0) 0.94 (0)

Table 5.2: Correlation between *variability* and fitting error for the 3D fitting sce-
nario.
Displayed are the negated Spearman coefficients with the corresponding p–
values in brackets for three cases of increasing *variability* (X ∈ [4,5,7],Y ∈
[4,5,6]).
Note: Not significant results are marked in red.

45

Chapter 5: Evaluation of Scenarios

Similar to the 1D case all our tested matrices had a constant rank (being m = x·y ·z

for a x× y × z grid), so we again have merely plotted the errors in the box plot in

figure 5.7.

As expected the X × 4 × 4 grids performed slightly better than their 4 × 4 × X

counterparts with a mean±sigma of 101.25± 7.45 to 102.89± 6.74 for X = 5 and

85.37± 7.12 to 89.22± 6.49 for X = 7.

Interestingly both variants end up closer in terms of fitting error than we anticipated,

which shows that the evolutionary algorithm we employed is capable of correcting a

purposefully created „bad“ grid. Also this confirms, that in our cases the number of

control–points is more important for quality than their placement, which is captured

by the variability via the rank of the deformation–matrix.

Overall the correlation between variability and fitness–error were significant and

showed a very strong correlation in all our tests. The detailed correlation–coefficients

are given in table 5.2 alongside their p–values.

As introduces in section 3.3 and visualized in figure 3.1, we know, that not all

control–points have to necessarily contribute to the parametrization of our 3D–

model. Because we are starting from a sphere, some control–points are too far

away from the surface to contribute to the deformation at all.

One can already see in 2D in figure 3.1, that this effect starts with a regular 9 × 9

grid on a perfect circle. To make sure we observe this, we evaluated the variability

for 100 randomly moved 10× 10× 10 grids on the sphere we start out with.

As the variability is defined by rank(U)
n we can easily recover the rank of the

deformation–matrix U. The results are shown in the histogram in figure 5.8. Espe-

46

5.4 Results of 3D Function Approximation

Figure 5.8: Histogram of ranks of various 10 × 10 × 10 grids with 1000 control–
points each showing in this case how many control–points are actually used in
the calculations.

cially in the centre of the sphere and in the corners of our grid we effectively loose

control–points for our parametrization.

This of course yields a worse error as when those control–points would be put to

use and one should expect a loss in quality evident by a higher reconstruction–error

opposed to a grid where they are used. Sadly we could not run a in–depth test on

this due to computational limitations.

Nevertheless this hints at the notion, that variability is a good measure for the over-

all quality of a fit.

47

Chapter 5: Evaluation of Scenarios

5× 4× 4 7× 4× 4 X× 4× 4

0.15 (0.147) 0.09 (0.37) 0.46 (0)

4× 4× 4 4× 4× 5 4× 4× 7 4× 4×X

0.38 (0) 0.17 (0.09) 0.40 (0) 0.46 (0)

5× 5× 5 6× 6× 6 Y ×Y ×Y

-0.18 (0.0775) -0.13 (0.1715) -0.25 (0)

all: 0.15 (0)

Table 5.3: Correlation between *regularity* and number of iterations for the 3D
fitting scenario. Displayed are the negated Spearman coefficients with the corre-
sponding p–values in brackets for various given grids (X ∈ [4,5,7],Y ∈ [4,5,6]).
Note: Not significant results are marked in red.

5.4.2 Regularity

Opposed to the predictions of variability our test on regularity gave a mixed result

— similar to the 1D–case.

In roughly half of the scenarios we have a significant, but weak to moderate correla-

tion between regularity and number of iterations. On the other hand in the scenarios

where we increased the number of control–points, namely 125 for the 5×5×5 grid

and 216 for the 6×6×6 grid we found a significant, but weak anti–correlation when

taking all three tests into account3, which seem to contradict the findings/trends for

the sets with 64, 80, and 112 control–points (first two rows of table 5.3).

Taking all results together we only find a very weak, but significant link between

regularity and the number of iterations needed for the algorithm to converge.

3Displayed as Y × Y × Y

48

5.4 Results of 3D Function Approximation

Figure 5.9: Plots of *regularity* against number of iterations for various scenarios
together with a linear fit to indicate trends.

As can be seen from figure 5.9, we can observe that increasing the number of

control–points helps the convergence–speeds. The regularity–criterion first behaves

as we would like to, but then switches to behave exactly opposite to our expecta-

tions, as can be seen in the first three plots. While the number of control–points

increases from red to green to blue and the number of iterations decreases, the regu-

larity seems to increase at first, but then decreases again on higher grid–resolutions.

This can be an artefact of the definition of regularity, as it is defined by the inverse

condition–number of the deformation–matrix U, being the fraction σmin
σmax

between

the least and greatest right singular value.

As we observed in the previous section, we cannot guarantee that each control–point

49

Chapter 5: Evaluation of Scenarios

has an effect (see figure 5.8) and so a small minimal right singular value occurring

on higher grid–resolutions seems likely the problem.

Adding to this we also noted, that in the case of the 10 × 10 × 10–grid the reg-

ularity was always 0, as a non–contributing control–point yields a 0–column in

the deformation–matrix, thus letting σmin = 0. A better definition for regularity

(i.e. using the smallest non–zero right singular value) could solve this particular

issue, but not fix the trend we noticed above.

5.4.3 Improvement Potential

5× 4× 4 7× 4× 4 X× 4× 4

0.3 (0.0023) 0.23 (0.0233) 0.89 (0)

4× 4× 4 4× 4× 5 4× 4× 7 4× 4×X

0.5 (0) 0.38 (0) 0.32 (0.0012) 0.9 (0)

5× 5× 5 6× 6× 6 Y ×Y ×Y

0.47 (0) -0.01 (0.8803) 0.89 (0)

all: 0.95 (0)

Table 5.4: Correlation between *improvement potential* and fitting–error for the
3D fitting scenario. Displayed are the negated Spearman coefficients with the
corresponding p–values in brackets for various given grids (X ∈ [4,5,7],Y ∈
[4,5,6]).
Note: Not significant results are marked in red.

Comparing to the 1D–scenario, we do not know the optimal solution to the given

problem and for the calculation we only use the initial gradient produced by the

initial correlation between both objects. This gradient changes with every iteration

and will be off our first guess very quickly. This is the reason we are not trying

50

5.4 Results of 3D Function Approximation

to create artificially bad gradients, as we have a broad range in quality of such

gradients anyway.

Figure 5.10: Plots of *improvement potential* against error given by our *fitness–
function* after convergence together with a linear fit of each of the plotted data
to indicate trends.

We plotted our findings on the improvement potential in a similar way as we did

before with the regularity. In figure 5.10 one can clearly see the correlation and

the spread within each setup and the behaviour when we increase the number of

control–points.

Along with this we also give the Spearman–coefficients along with their p–values in

table 5.4. Within one scenario we only find a weak to moderate correlation between

the improvement potential and the fitting error, but all findings (except for 7×4×4

and 6× 6× 6) are significant.

51

Chapter 5: Evaluation of Scenarios

If we take multiple datasets into account the correlation is very strong and sig-

nificant, which is good, as this functions as a litmus–test, because the quality is

naturally tied to the number of control–points.

All in all the improvement potential seems to be a good and sensible measure of

quality, even given gradients of varying quality.

Lastly, a small note on the behaviour of improvement potential and convergence

speed, as we used this in the 1D case to argue, why the regularity defied our expec-

tations. As a contrast we wanted to show, that improvement potential cannot serve

for good predictions of the convergence speed. In figure 5.11 we show improvement

potential against number of iterations for both scenarios. As one can see, in the 1D

scenario we have a strong and significant correlation (with −rS = −0.72, p = 0),

whereas in the 3D scenario we have the opposite significant and strong effect (with

−rS = 0.69, p = 0), so these correlations clearly seem to be dependent on the

scenario and are not suited for generalization.

Figure 5.11:
Left: *Improvement potential* against convergence speed for the 1D–scenario
Right: *Improvement potential* against convergence speed for the 3D–scnario

52

6 Discussion and outlook

In this thesis we took a look at the different criteria for evolvability as introduced

by Richter et al.[1], namely variability, regularity and improvement potential un-

der different setup–conditions. Where Richter et al. used Radial Basis Func-

tion (RBF), we employed Freeform–Deformation (FFD) to set up a low–complexity

parametrization of a more complex vertex–mesh.

In our findings we could show in the 1D–scenario, that there were statistically sig-

nificant very strong correlations between variability and fitting error (0.94) and

improvement potential and fitting error (1.0) with comparable results than Richter

et al. (with 0.31 to 0.88 for the former and 0.75 to 0.99 for the latter), whereas we

found only weak correlations for regularity and convergence–speed (0.28) opposed

to Richter et al. with 0.39 to 0.91.1

For the 3D–scenario our results show a very strong, significant correlation between

variability and fitting error with 0.89 to 0.94, which are pretty much in line with

the findings of Richter et al. (0.65 to 0.95). The correlation between improvement

1We only took statistically significant results into consideration when compiling these numbers.
Details are given in the respective chapters.

53

Chapter 6: Discussion and outlook

potential and fitting error behave similar, with our findings having a significant co-

efficient of 0.3 to 0.95 depending on the grid–resolution compared to the 0.61 to

0.93 from Richter et al. In the case of the correlation of regularity and conver-

gence speed we found very different (and often not significant) correlations and

anti–correlations ranging from −0.25 to 0.46, whereas Richter et al. reported cor-

relations between 0.34 to 0.87.

Taking these results into consideration, one can say, that variability and improve-

ment potential are very good estimates for the quality of a fit using Freeform–

Deformation (FFD) as a deformation function, while we could not reproduce similar

compelling results as Richter et al. for regularity and convergence speed.

One reason for the bad or erratic behaviour of the regularity–criterion could be that

in an FFD–setting we have a likelihood of having control–points that are only con-

tributing to the whole parametrization in negligible amounts, resulting in very small

right singular values of the deformation–matrix U that influence the condition–

number and thus the regularity in a significant way. Further research is needed to

refine regularity so that these problems get addressed, like taking all singular values

into account when capturing the notion of regularity.

Richter et al. also compared the behaviour of direct and indirect manipulation in

[1], whereas we merely used an indirect FFD–approach. As direct manipulations

tend to perform better than indirect manipulations, the usage of Direct Manipula-

tion Freeform–Deformation (DM–FFD) could also work better with the criteria we

examined. This can also solve the problem of bad singular values for the regularity

as the incorporation of the parametrization of the points on the surface — which are

the essential part of a direct–manipulation — could cancel out a bad control–grid

as the bad control–points are never or negligibly used to parametrize those surface–

54

points.

55

Chapter 6: Discussion and outlook

56

Appendix

i

Chapter 6: Discussion and outlook

ii

A Bibliography

[1] RICHTER, Andreas ; ACHENBACH, Jascha ; ENZEL, Stefan ; BOTSCH, Mario:

Evolvability as a Quality Criterion for Linear Deformation Representations

in Evolutionary Optimization. In: IEEE Congress on Evolutionary Computa-

tion, IEEE, 2016, S. 901–910. – http://graphics.uni-bielefeld.

de/publications/disclaimer.php?dlurl=cec16.pdf,

https://pub.uni-bielefeld.de/publication/2902698

[2] MINAI, Ali A. ; BRAHA, Dan ; BAR-YAM, Yaneer: Com-

plex engineered systems: A new paradigm. In: Complex engi-

neered systems: Science meets technology (2006), 1–21. https:

//www.researchgate.net/profile/Yaneer_Bar-Yam/

publication/225104044_Complex_Engineered_Systems_

A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/

Complex-Engineered-Systems-A-New-Paradigm.pdf

[3] WAGNER, Gunter P. ; ALTENBERG, Lee: Complex adaptations and the evo-

lution of evolvability. In: Evolution 50 (1996), Nr. 3, 967–976. http:

//arep.med.harvard.edu/pdf/Wagner96.pdf

iii

http://graphics.uni-bielefeld.de/publications/disclaimer.php?dlurl=cec16.pdf
http://graphics.uni-bielefeld.de/publications/disclaimer.php?dlurl=cec16.pdf
https://pub.uni-bielefeld.de/publication/2902698
https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf
https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf
https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf
https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf
https://www.researchgate.net/profile/Yaneer_Bar-Yam/publication/225104044_Complex_Engineered_Systems_A_New_Paradigm/links/59107f20a6fdccbfd57eb84d/Complex-Engineered-Systems-A-New-Paradigm.pdf
http://arep.med.harvard.edu/pdf/Wagner96.pdf
http://arep.med.harvard.edu/pdf/Wagner96.pdf

A Bibliography

[4] Kapitel 2. In: ROTHLAUF, Franz: Representations for Genetic and Evolu-

tionary Algorithms. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. –

ISBN 978–3–540–32444–7, 9–32

[5] RICHTER, Andreas ; BOTSCH, Mario ; MENZEL, Stefan: Evolvability of

representations in complex system engineering: a survey. In: 2015 IEEE

Congress on Evolutionary Computation (CEC) IEEE, 2015, 1327–1335

[6] SPITZMÜLLER, Klaus: Partial derivatives of Bèzier surfaces. In: Computer-

Aided Design 28 (1996), Nr. 1, 67–72. https://doi.org/10.1016/

0010-4485(95)00044-5

[7] BRUNET, Florent: Contributions to parametric image registration and 3d sur-

face reconstruction. In: European Ph. D. in Computer Vision, Université

dAuvergne, Clérmont-Ferrand, France, and Technische Universität München,

Germany (2010). http://www.brnt.eu/phd/

[8] HSU, William M.: A direct manipulation interface to free-form deformations.

In: Master’s thesis, Brown University (1991). https://cs.brown.edu/

research/pubs/theses/masters/1991/hsu.pdf

[9] HSU, William M. ; HUGHES, John F. ; KAUFMAN, Henry: Di-

rect Manipulation of Free-Form Deformations. In: Computer Graphics

26 (1992), 2. http://graphics.cs.brown.edu/~jfh/papers/

Hsu-DMO-1992/paper.pdf

[10] MENZEL, Stefan ; OLHOFER, Markus ; SENDHOFF, Bernhard: Direct Manip-

ulation of Free Form Deformation in Evolutionary Design Optimisation. In:

Proceedings of the 9th International Conference on Parallel Problem Solving

iv

https://doi.org/10.1016/0010-4485(95)00044-5
https://doi.org/10.1016/0010-4485(95)00044-5
http://www.brnt.eu/phd/
https://cs.brown.edu/research/pubs/theses/masters/1991/hsu.pdf
https://cs.brown.edu/research/pubs/theses/masters/1991/hsu.pdf
http://graphics.cs.brown.edu/~jfh/papers/Hsu-DMO-1992/paper.pdf
http://graphics.cs.brown.edu/~jfh/papers/Hsu-DMO-1992/paper.pdf

A Bibliography

from Nature. Berlin, Heidelberg : Springer-Verlag, 2006 (PPSN’06). – ISBN

978–3–540–38990–3, 352–361

[11] BÄCK, Thomas ; SCHWEFEL, Hans-Paul: An overview of evolutionary

algorithms for parameter optimization. In: Evolutionary computation 1

(1993), Nr. 1, 1–23. https://www.researchgate.net/profile/

Hans-Paul_Schwefel/publication/220375001_An_

Overview_of_Evolutionary_Algorithms_for_Parameter_

Optimization/links/543663d00cf2dc341db30452.pdf

[12] EIBEN, Ágoston E ; HINTERDING, Robert ; MICHALEWICZ,

Zbigniew: Parameter control in evolutionary algorithms.

In: IEEE Transactions on evolutionary computation 3 (1999),

Nr. 2, 124–141. https://www.researchgate.net/

profile/Marc_Schoenauer/publication/223460374_

Parameter_Control_in_Evolutionary_Algorithms/links/

545766440cf26d5090a9b951.pdf

[13] RECHENBERG, Ingo: Evolutionsstrategie Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973

[14] WEISE, Thomas ; CHIONG, Raymond ; TANG, Ke: Evolutionary Optimiza-

tion: Pitfalls and Booby Traps. In: J. Comput. Sci. & Technol 27 (2012), Nr.

5

[15] GOLUB, Gene H. ; VAN LOAN, Charles F.: Matrix computations. Bd. 3. JHU

Press, 2012

[16] THORHAUER, Ann ; ROTHLAUF, Franz: On the locality of standard search

v

https://www.researchgate.net/profile/Hans-Paul_Schwefel/publication/220375001_An_Overview_of_Evolutionary_Algorithms_for_Parameter_Optimization/links/543663d00cf2dc341db30452.pdf
https://www.researchgate.net/profile/Hans-Paul_Schwefel/publication/220375001_An_Overview_of_Evolutionary_Algorithms_for_Parameter_Optimization/links/543663d00cf2dc341db30452.pdf
https://www.researchgate.net/profile/Hans-Paul_Schwefel/publication/220375001_An_Overview_of_Evolutionary_Algorithms_for_Parameter_Optimization/links/543663d00cf2dc341db30452.pdf
https://www.researchgate.net/profile/Hans-Paul_Schwefel/publication/220375001_An_Overview_of_Evolutionary_Algorithms_for_Parameter_Optimization/links/543663d00cf2dc341db30452.pdf
https://www.researchgate.net/profile/Marc_Schoenauer/publication/223460374_Parameter_Control_in_Evolutionary_Algorithms/links/545766440cf26d5090a9b951.pdf
https://www.researchgate.net/profile/Marc_Schoenauer/publication/223460374_Parameter_Control_in_Evolutionary_Algorithms/links/545766440cf26d5090a9b951.pdf
https://www.researchgate.net/profile/Marc_Schoenauer/publication/223460374_Parameter_Control_in_Evolutionary_Algorithms/links/545766440cf26d5090a9b951.pdf
https://www.researchgate.net/profile/Marc_Schoenauer/publication/223460374_Parameter_Control_in_Evolutionary_Algorithms/links/545766440cf26d5090a9b951.pdf

A Bibliography

operators in grammatical evolution. In: International Conference on Parallel

Problem Solving from Nature Springer, 2014, 465–475

[17] MARQUARDT, Donald W.: An Algorithm for Least-Squares Estimation of

Nonlinear Parameters. In: Journal of the Society for Industrial and Ap-

plied Mathematics 11 (1963), Nr. 2, 431-441. http://dx.doi.org/10.

1137/0111030. – DOI 10.1137/0111030

[18] GIANNELLI, Carlotta ; JÜTTLER, Bert ; SPELEERS, Hendrik: THB-

splines: The truncated basis for hierarchical splines. In: Com-

puter Aided Geometric Design 29 (2012), Nr. 7, S. 485–498.

http://dx.doi.org/10.1016/j.cagd.2012.03.025. – DOI

10.1016/j.cagd.2012.03.025. – https://pdfs.semanticscholar.

org/a858/aa68da617ad9d41de021f6807cc422002258.pdf

[19] ACHENBACH, Jascha ; ZELL, Eduard ; BOTSCH, Mario: Accurate Face

Reconstruction through Anisotropic Fitting and Eye Correction. In: Vision,

Modeling & Visualization, Eurographics Association, 2015. – ISBN 978–

3–905674–95–8, S. 1–8. – http://graphics.uni-bielefeld.de/

publications/disclaimer.php?dlurl=vmv15.pdf

[20] HAUKE, Jan ; KOSSOWSKI, Tomasz: Comparison of values of Pear-

son’s and Spearman’s correlation coefficients on the same sets of

data. In: Quaestiones geographicae 30 (2011), Nr. 2, 87. https:

//www.degruyter.com/downloadpdf/j/quageo.2011.30.

issue-2/v10117-011-0021-1/v10117-011-0021-1.pdf

[21] WEIR, I: Spearmans correlation. In: Retrieved from stat-

stutor (2015). http://www.statstutor.ac.uk/resources/

uploaded/spearmans.pdf

vi

http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/j.cagd.2012.03.025
https://pdfs.semanticscholar.org/a858/aa68da617ad9d41de021f6807cc422002258.pdf
https://pdfs.semanticscholar.org/a858/aa68da617ad9d41de021f6807cc422002258.pdf
http://graphics.uni-bielefeld.de/publications/disclaimer.php?dlurl=vmv15.pdf
http://graphics.uni-bielefeld.de/publications/disclaimer.php?dlurl=vmv15.pdf
https://www.degruyter.com/downloadpdf/j/quageo.2011.30.issue-2/v10117-011-0021-1/v10117-011-0021-1.pdf
https://www.degruyter.com/downloadpdf/j/quageo.2011.30.issue-2/v10117-011-0021-1/v10117-011-0021-1.pdf
https://www.degruyter.com/downloadpdf/j/quageo.2011.30.issue-2/v10117-011-0021-1/v10117-011-0021-1.pdf
http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf

A Bibliography

[22] IGEL, Christian ; HEIDRICH-MEISNER, Verena ; GLASMACHERS, Tobias:

Shark. In: Journal of Machine Learning Research 9 (2008), 993-996. http:

//image.diku.dk/shark/index.html

[23] HANSEN, Nikolaus: The CMA evolution strategy: A tutorial. In: arXiv

preprint arXiv:1604.00772 (2016). https://arxiv.org/abs/1604.

00772

vii

http://image.diku.dk/shark/index.html
http://image.diku.dk/shark/index.html
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772

A Bibliography

viii

B Abbreviations

CMA–ES Covariance Matrix Adaption Evolution Strategy

DM–FFD Direct Manipulation Freeform–Deformation

FFD Freeform–Deformation

RBF Radial Basis Function

ix

Chapter B: Abbreviations

x

C List of Figures

1.1 Example of the use of evolutionary algorithms in automotive design

(from [1]). 3

1.2 Example of RBF–based deformation and FFD targeting the same

mesh. 5

2.1 Example of B–Splines . 8

2.2 B–spline–basis–function as partition of unity 10

2.3 Figure 7 from [8]. 12

2.4 Fig. 3. taken from [14] . 16

3.1 Example of a high resolution control–grid 27

4.1 The 1D–target–shape . 30

4.2 3D source and target meshes . 32

5.1 Example of a 1D–grid . 37

5.2 1D Fitting Errors for various grids 39

5.3 Improvement potential and regularity against iterations 40

5.4 Correlation 1D Improvement vs. Error 41

xi

Chapter C: List of Figures

5.5 Example of a 3D–grid . 43

5.6 Different resolution of 3D grids . 44

5.7 3D Fitting Errors for various grids 45

5.8 Histogram of ranks of high–resolution deformation–matrices 47

5.9 Regularity for different 3D–grids 49

5.10 Improvement potential for different 3D–grids 51

5.11 Improvement potential and convergence speed

for 1D and 3D–scenarios . 52

xii

Declaration of own work

I hereby declare that this thesis is my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Bielefeld, October 30, 2017 .

Stefan Dresselhaus

	Introduction
	Background
	What is ?
	What is evolutionary optimization?
	Advantages of evolutionary algorithms
	Criteria for the evolvability of linear deformations

	Implementation of
	Adaption of
	Adaption of for a 3D–Mesh
	Deformation Grid

	Scenarios for testing evolvability–criteria using
	Test Scenario: 1D Function Approximation
	Test Scenario: 3D Function Approximation

	Evaluation of Scenarios
	Procedure: 1D Function Approximation
	Results of 1D Function Approximation
	Procedure: 3D Function Approximation
	Results of 3D Function Approximation

	Discussion and outlook
	Appendix
	Bibliography
	Abbreviations
	List of Figures

