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DRAFT
How to read this Thesis

As a guide through the nomenclature used in the formulas we prepend this chapter.

Unless otherwise noted the following holds:

• lowercase letters x,y,z

refer to real variables and represent a point in 3D–Space.

• lowercase letters u,v,w

refer to real variables between 0 and 1 used as coefficients in a 3D B–Spline grid.

• other lowercase letters

refer to other scalar (real) variables.

• lowercase bold letters (e.g. x,y)

refer to 3D coordinates

• uppercase BOLD letters (e.g. D,M)

refer to Matrices
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1 Introduction

Improvement: Mehr Bilder

Many modern industrial design processes require advanced optimization methods do to

the increased complexity. These designs have to adhere to more and more degrees of free-

dom as methods refine and/or other methods are used. Examples for this are physical do-

mains like aerodynamic (i.e. drag), fluid dynamics (i.e. throughput of liquid) — where the

complexity increases with the temporal and spatial resolution of the simulation — or known

hard algorithmic problems in informatics (i.e. layouting of circuit boards or stacking of 3D–

objects). Moreover these are typically not static environments but requirements shift over

time or from case to case.

Evolutional algorithms cope especially well with these problem domains while address-

ing all the issues at hand[1]. One of the main concerns in these algorithms is the formulation

of the problems in terms of a genome and a fitness function. While one can typically use

an arbitrary cost–function for the fitness–functions (i.e. amount of drag, amount of space,

etc.), the translation of the problem–domain into a simple parametric representation can be

challenging.

The quality of such a representation in biological evolution is called evolvability[2] and

is at the core of this thesis, as the parametrization of the problem has serious implications

on the convergence speed and the quality of the solution[3]. However, there is no consensus

on how evolvability is defined and the meaning varies from context to context[4].

As we transfer the results of Richter et al.[5] from using Radial Basis Function (RBF) as a

representation to manipulate a geometric mesh to the use of Freeform–Deformation (FFD)

we will use the same definition for evolvability the original author used, namely regularity,
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Chapter 1: Introduction

variability, and improvement potential. We introduce these term in detail in Chapter 2.4.

In the original publication the author used random sampled points weighted with Radial

Basis Function (RBF) to deform the mesh and showed that the mentioned criteria of reg-

ularity, variability, and improvement potential correlate with the quality and potential of

such optimization.

We will replicate the same setup on the same meshes but use Freeform–Deformation

(FFD) instead of Radial Basis Function (RBF) to create a local deformation near the control

points and evaluate if the evolution–criteria still work as a predictor given the different

deformation scheme, as suspected in [5].

1.1 Outline of this thesis

First we introduce different topics in isolation in Chapter 2. We take an abstract look at

the definition of FFD for a one–dimensional line (in 2.1) and discuss why this is a sensible

deformation function (in 2.1.1). Then we establish some background–knowledge of evolu-

tional algorithms (in 2.2) and why this is useful in our domain (in 2.3). In a third step we

take a look at the definition of the different evolvability criteria established in [5].

In Chapter 3 we take a look at our implementation of FFD and the adaptation for 3D–

meshes.

Next, in Chapter 4, we describe the different scenarios we use to evaluate the different

evolvability–criteria incorporating all aspects introduced in Chapter 2. Following that, we

evaluate the results in Chapter 5 with further on discussion in Chapter 6.
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2 Background

2.1 What is Freeform–Deformation (FFD)?

First of all we have to establish how a FFD works and why this is a good tool for deforming

meshes in the first place. For simplicity we only summarize the 1D–case from [6] here and

go into the extension to the 3D case in chapter 3.2.

Given an arbitrary number of points pi alongside a line, we map a scalar value τi ∈ [0,1[

to each point with τi < τi+1∀i. Given a degree of the target polynomial d we define the

curve Ni,d,τi(u) as follows:

Ni,0,τ (u) =

1, u ∈ [τi, τi+1[

0, otherwise
(2.1)

and

Ni,d,τ (u) =
u− τi
τi+d

Ni,d−1,τ (u) +
τi+d+1 − u

τi+d+1 − τi+1

Ni+1,d−1,τ (u) (2.2)

If we now multiply every pi with the corresponding Ni,d,τi(u) we get the contribution of

each point pi to the final curve–point parameterized only by u ∈ [0,1[. As can be seen from

(2.2) we only access points [i..i + d] for any given i1, which gives us, in combination with

choosing pi and τi in order, only a local interference of d+ 1 points.

We can even derive this equation straightforward for an arbitrary N 2:

1one more for each recursive step.
2Warning: in the case of d = 1 the recursion–formula yields a 0 denominator, but N is also 0. The right

solution for this case is a derivative of 0
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Chapter 2: Background

∂

∂u
Ni,d,r(u) =

d

τi+d − τi
Ni,d−1,τ (u)−

d

τi+d+1 − τi+1

Ni+1,d−1,τ (u)

For a B–Spline

s(u) =
∑
i

Ni,d,τi(u)pi

these derivations yield ∂d

∂u
s(u) = 0.

Another interesting property of these recursive polynomials is that they are continuous

(given d ≥ 1) as every pi gets blended in linearly between τi and τi+d and out linearly

between τi+1 and τi+d+1 as can bee seen from the two coefficients in every step of the

recursion.

2.1.1 Why is FFD a good deformation function?

The usage of FFD as a tool for manipulating follows directly from the properties of the

polynomials and the correspondence to the control points. Having only a few control points

gives the user a nicer high–level–interface, as she only needs to move these points and

the model follows in an intuitive manner. The deformation is smooth as the underlying

polygon is smooth as well and affects as many vertices of the model as needed. Moreover

the changes are always local so one risks not any change that a user cannot immediately

see.

But there are also disadvantages of this approach. The user loses the ability to directly

influence vertices and even seemingly simple tasks as creating a plateau can be difficult to

achieve[7, chapter 3.2][8].

This disadvantages led to the formulation of Direct Manipulation Freeform–Deformation

(DM–FFD)[7, chapter 3.3] in which the user directly interacts with the surface–mesh. All

interactions will be applied proportionally to the control–points that make up the parametriza-

tion of the interaction–point itself yielding a smooth deformation of the surface at the sur-

face without seemingly arbitrary scattered control–points. Moreover this increases the effi-

ciency of an evolutionary optimization[9], which we will use later on.

But this approach also has downsides as can be seen in figure 2.1, as the tessellation of

the invisible grid has a major impact on the deformation itself.
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2.2 What is evolutional optimization?

Figure 2.1: Figure 7 from [7].

All in all FFD and DM–FFD are still good ways to deform a high–polygon mesh albeit

the downsides.

2.2 What is evolutional optimization?

In this thesis we are using an evolutional optimization strategy to solve the problem of

finding the best parameters for our deformation. This approach, however, is very generic

and we introduce it here in a broader sense.

The general shape of an evolutional algorithm (adapted from [10]) is outlined in Algo-

rithm 1. Here, P (t) denotes the population of parameters in step t of the algorithm. The

population contains µ individuals ai that fit the shape of the parameters we are looking

for. Typically these are initialized by a random guess or just zero. Further on we need a

so–called fitness–function Φ : I 7→ M that can take each parameter to a measurable space

7
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Chapter 2: Background

Algorithm 1 An outline of evolutional algorithms
t := 0;
initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ;
evaluate F (0) : {Φ(x)|x ∈ P (0)};
while c(F (t)) ̸= true do

recombine: P (t) := r(P (t));
mutate: P ′′(t) := m(P (t));
evaluate F ′′(t) : {Φ(x)|x ∈ P ′′(t)}
select: P (t+ 1) := s(P ′′(t) ∪Q,Φ);
t := t + 1;

along a convergence–function c : I 7→ B that terminates the optimization.

The main algorithm just repeats the following steps:

• Recombine with a recombination–function r : Iµ 7→ Iλ to generate new individuals

based on the parents characteristics.

This makes sure that the next guess is close to the old guess.

• Mutate with a mutation–function m : Iλ 7→ Iλ to introduce new effects that cannot

be produced by mere recombination of the parents.

Typically this just adds minor defects to individual members of the population like

adding a random gaussian noise or amplifying/dampening random parts.

• Selection takes a selection–function s : (Iλ ∪ Iµ+λ,Φ) 7→ Iµ that selects from the

previously generated Iλ children and optionally also the parents (denoted by the set

Q in the algorithm) using the fitness–function Φ. The result of this operation is the

next Population of µ individuals.

All these functions can (and mostly do) have a lot of hidden parameters that can be

changed over time. One can for example start off with a high mutation–rate that cools off

over time (i.e. by lowering the variance of a gaussian noise).

2.3 Advantages of evolutional algorithms

The main advantage of evolutional algorithms is the ability to find optima of general func-

tions just with the help of a given fitness–function. With this most problems of simple
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2.3 Advantages of evolutional algorithms

gradient–based procedures, which often target the same error–function which measures the

fitness, as an evolutional algorithm, but can easily get stuck in local optima.

Components and techniques for evolutional algorithms are specifically known to help

with different problems arising in the domain of optimization[11]. An overview of the

typical problems are shown in figure 2.2.

Figure 2.2: Fig. 3. taken from [11]

Most of the advantages stem from the fact that a gradient–based procedure has only one

point of observation from where it evaluates the next steps, whereas an evolutional strategy

starts with a population of guessed solutions. Because an evolutional strategy modifies the

solution randomly, keeps the best solutions and purges the worst, it can also target multiple

different hypothesis at the same time where the local optima die out in the face of other,

better candidates.

If an analytic best solution exists and is easily computable (i.e. because the error–function

is convex) an evolutional algorithm is not the right choice. Although both converge to the

same solution, the analytic one is usually faster.

But in reality many problems have no analytic solution, because the problem is either

not convex or there are so many parameters that an analytic solution (mostly meaning the

equivalence to an exhaustive search) is computationally not feasible. Here evolutional opti-

mization has one more advantage as you can at least get a suboptimal solutions fast, which

then refine over time.

9
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Chapter 2: Background

2.4 Criteria for the evolvability of linear deformations

2.4.1 Variability

In [5] variability is defined as

V (U) :=
rank(U)

n
,

whereby U is the m × n deformation–Matrix used to map the m control points onto the n

vertices.

Given n = m, an identical number of control–points and vertices, this quotient will be

= 1 if all control points are independent of each other and the solution is to trivially move

every control–point onto a target–point.

In praxis the value of V (U) is typically ≪ 1, because as there are only few control–points

for many vertices, so m ≪ n.

Additionally in our setup we connect neighbouring control–points in a grid so each

control point is not independent, but typically depends on 4d control–points for an d–

dimensional control mesh.

2.4.2 Regularity

Regularity is defined[5] as

R(U) :=
1

κ(U)
=

σmin

σmax

where σmin and σmax are the smallest and greatest right singular value of the deformation–

matrix U.

As we deform the given Object only based on the parameters as p 7→ f(x + Up) this

makes sure that ∥Up∥ ∝ ∥p∥ when κ(U) ≈ 1. The inversion of κ(U) is only performed to

map the criterion–range to [0..1], whereas 1 is the optimal value and 0 is the worst value.

This criterion should be characteristic for numeric stability on the on hand[12, chapter

2.7] and for convergence speed of evolutional algorithms on the other hand[5] as it is tied

to the notion of locality[11, 13].

10
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2.4 Criteria for the evolvability of linear deformations

2.4.3 Improvement Potential

In contrast to the general nature of variability and regularity, which are agnostic of the

fitness–function at hand the third criterion should reflect a notion of potential.

As during optimization some kind of gradient g is available to suggest a direction worth

pursuing we use this to guess how much change can be achieved in the given direction.

The definition for an improvement potential P is[5]:

P (U) := 1− ∥(1 − UU+)(G)∥2F

given some approximate n×d fitness–gradient G, normalized to ∥G∥F = 1, whereby ∥ ·∥F
denotes the Frobenius–Norm.
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Chapter 2: Background
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3 Implementation of Freeform–

Deformation (FFD)

The general formulation of B–Splines has two free parameters d and τ which must be

chosen beforehand.

As we usually work with regular grids in our FFD we define τ statically as τi = i/n

whereby n is the number of control–points in that direction.

d defines the degree of the B–Spline–Function (the number of times this function is

differentiable) and for our purposes we fix d to 3, but give the formulas for the general case

so it can be adapted quite freely.

3.1 Adaption of FFD

As we have established in Chapter 2.1 we can define an FFD–displacement as

∆x(u) =
∑
i

Ni,d,τi(u)∆xci (3.1)

Note that we only sum up the ∆–displacements in the control points ci to get the change

in position of the point we are interested in.

In this way every deformed vertex is defined by

Deform(vx) = vx +∆x(u)

with u ∈ [0..1[ being the variable that connects the high–detailed vertex–mesh to the low–

detailed control–grid. To actually calculate the new position of the vertex we first have to

13
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Chapter 3: Implementation of Freeform–Deformation (FFD)

calculate the u–value for each vertex. This is achieved by finding out the parametrization

of v in terms of ci

vx
!
=

∑
i

Ni,d,τi(u)ci

so we can minimize the error between those two:

argmin
u

Err(u,vx) = argmin
u

2 · ∥vx −
∑
i

Ni,d,τi(u)ci∥22

As this error–term is quadratic we just derive by u yielding

∂
∂u

vx −
∑

iNi,d,τi(u)ci

= −
∑

i

(
d

τi+d−τi
Ni,d−1,τ (u)− d

τi+d+1−τi+1
Ni+1,d−1,τ (u)

)
ci

and do a gradient–descend to approximate the value of u up to an ε of 0.0001.

For this we use the Gauss–Newton algorithm[14] as the solution to this problem may not

be deterministic, because we usually have way more vertices than control points (#v ≫ #c).

3.2 Adaption of FFD for a 3D–Mesh

This is a straightforward extension of the 1D–method presented in the last chapter. But this

time things get a bit more complicated. As we have a 3–dimensional grid we may have a

different amount of control–points in each direction.

Given n,m,o control points in x,y,z–direction each Point on the curve is defined by

V (u,v,w) =
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · Cijk.

In this case we have three different B–Splines (one for each dimension) and also 3 vari-

ables u,v,w for each vertex we want to approximate.

Given a target vertex p∗ and an initial guess p = V (u,v,w) we define the error–function

for the gradient–descent as:

Err(u,v,w,p∗) = p∗ − V (u,v,w)

14
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3.3 Parametrisierung sinnvoll?

And the partial version for just one direction as

Errx(u,v,w,p∗) = p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

To solve this we derive partially, like before:

∂Errx
∂u

p∗x −
∑
i

∑
j

∑
k

Ni,d,τi(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

= −
∑
i

∑
j

∑
k

N ′
i,d,τi

(u)Nj,d,τj(v)Nk,d,τk(w) · cijkx

The other partial derivatives follow the same pattern yielding the Jacobian:

J(Err(u,v,w)) =


∂Errx
∂u

∂Errx
∂v

∂Errx
∂w

∂Erry
∂u

∂Erry
∂v

∂Erry
∂w

∂Errz
∂u

∂Errz
∂v

∂Errz
∂w



=


−

∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkx

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkx

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijky

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijky

−
∑
i,j,k

N ′
i(u)Nj(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)N
′
j(v)Nk(w) · cijkz

−
∑
i,j,k

Ni(u)Nj(v)N
′
k(w) · cijkz


With the Gauss–Newton algorithm we iterate via the formula

J(Err(u,v,w)) ·∆


u

v

w

 = −Err(u,v,w)

and use Cramers rule for inverting the small Jacobian and solving this system of linear

equations.

3.3 Parametrisierung sinnvoll?

• Nachteile von Parametrisierung

• wie in kap. 2.2 zu sehen, ist Parametrisierung wichtig[3].

• Parametrisierung zwar lokal, aber nicht 1:1
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Chapter 3: Implementation of Freeform–Deformation (FFD)

• Deformation ist um einen Kontrollpunkt viel direkter zu steuern.

• => DM–FFD kann abhelfen, further study.

• Schlechte Parametrisierung sorgt dafür, dass CP u.U. nicht zur Parametrisierung ver-

wendet werden.

16
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4 Scenarios for testing evolvabil-

ity criteria using Freeform–

Deformation (FFD)

4.1 Test Scenario: 1D Function Approximation

4.1.1 Optimierungszenario

• Ebene -> Template–Fit

4.1.2 Matching in 1D

• Trivial

4.1.3 Besonderheiten der Auswertung

• Analytische Lösung einzig beste

• Ergebnis auch bei Rauschen konstant?

• normierter 1–Vektor auf den Gradienten addieren

– Kegel entsteht

17
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Chapter 4: Scenarios for testing evolvability criteria using Freeform–Deformation (FFD)

4.2 Test Scenario: 3D Function Approximation

4.2.1 Optimierungsszenario

• Ball zu Mario

4.2.2 Matching in 3D

• alternierende Optimierung

4.2.3 Besonderheiten der Optimierung

• Analytische Lösung nur bis zur Optimierung der ersten Punkte gültig

• Kriterien trotzdem gut

18
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5 Evaluation of Scenarios

5.1 Spearman/Pearson–Metriken

• Was ist das?

• Wieso sollte uns das interessieren?

• Wieso reicht Monotonie?

• Haben wir das gezeigt?

• Statistik, Bilder, blah!

5.2 Results of 1D Function Approximation

5.3 Results of 3D Function Approximation

19
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Chapter 5: Evaluation of Scenarios

Figure 5.1: Results 1D
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5.3 Results of 3D Function Approximation

Figure 5.2: Results 3D
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Chapter 5: Evaluation of Scenarios

22



DRAFT
6 Schluss

HAHA .. als ob -.-
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