savepoint
@ -4,7 +4,7 @@ all: ma.md bibma.bib template.tex settings/abkuerzungen.tex settings/commands.te
|
|||||||
xelatex -interaction batchmode ma.tex || true
|
xelatex -interaction batchmode ma.tex || true
|
||||||
bibtexu ma
|
bibtexu ma
|
||||||
xelatex -interaction batchmode ma.tex || true
|
xelatex -interaction batchmode ma.tex || true
|
||||||
while test `cat ma.log | grep -e "\(Rerun to get citations correct\)" | wc -l` -gt 0 ; do \
|
while test `cat ma.log | grep -e "Rerun to get \(citations correct\|cross-references right\)" | wc -l` -gt 0 ; do \
|
||||||
rm ma.log && (xelatex -interaction batchmode ma.tex || true) \
|
rm ma.log && (xelatex -interaction batchmode ma.tex || true) \
|
||||||
done
|
done
|
||||||
rm -f ma.aux ma.idx ma.lof ma.lot ma.out ma.tdo ma.toc ma.bbl ma.blg ma.loa
|
rm -f ma.aux ma.idx ma.lof ma.lot ma.out ma.tdo ma.toc ma.bbl ma.blg ma.loa
|
||||||
|
322
arbeit/ma.md
@ -61,17 +61,18 @@ strongly tied to the notion of *evolvability*\cite{wagner1996complex}, as the
|
|||||||
parametrization of the problem has serious implications on the convergence speed
|
parametrization of the problem has serious implications on the convergence speed
|
||||||
and the quality of the solution\cite{Rothlauf2006}.
|
and the quality of the solution\cite{Rothlauf2006}.
|
||||||
However, there is no consensus on how *evolvability* is defined and the meaning
|
However, there is no consensus on how *evolvability* is defined and the meaning
|
||||||
varies from context to context\cite{richter2015evolvability}, so there is need
|
varies from context to context\cite{richter2015evolvability}. As a consequence
|
||||||
for some criteria we can measure, so that we are able to compare different
|
there is need for some criteria we can measure, so that we are able to compare different
|
||||||
representations to learn and improve upon these.
|
representations to learn and improve upon these.
|
||||||
|
|
||||||
One example of such a general representation of an object is to generate random
|
One example of such a general representation of an object is to generate random
|
||||||
points and represent vertices of an object as distances to these points --- for
|
points and represent vertices of an object as distances to these points --- for
|
||||||
example via \acf{RBF}. If one (or the algorithm) would move such a point the
|
example via \acf{RBF}. If one (or the algorithm) would move such a point the
|
||||||
object will get deformed locally (due to the \ac{RBF}). As this results in a
|
object will get deformed only locally (due to the \ac{RBF}). As this results in
|
||||||
simple mapping from the parameter-space onto the object one can try out
|
a simple mapping from the parameter-space onto the object one can try out
|
||||||
different representations of the same object and evaluate the *evolvability*.
|
different representations of the same object and evaluate which criteria may be
|
||||||
This is exactly what Richter et al.\cite{anrichterEvol} have done.
|
suited to describe this notion of *evolvability*. This is exactly what Richter
|
||||||
|
et al.\cite{anrichterEvol} have done.
|
||||||
|
|
||||||
As we transfer the results of Richter et al.\cite{anrichterEvol} from using
|
As we transfer the results of Richter et al.\cite{anrichterEvol} from using
|
||||||
\acf{RBF} as a representation to manipulate geometric objects to the use of
|
\acf{RBF} as a representation to manipulate geometric objects to the use of
|
||||||
@ -94,17 +95,16 @@ take an abstract look at the definition of \ac{FFD} for a one--dimensional line
|
|||||||
(in \ref{sec:back:ffdgood}).
|
(in \ref{sec:back:ffdgood}).
|
||||||
Then we establish some background--knowledge of evolutionary algorithms (in
|
Then we establish some background--knowledge of evolutionary algorithms (in
|
||||||
\ref{sec:back:evo}) and why this is useful in our domain (in
|
\ref{sec:back:evo}) and why this is useful in our domain (in
|
||||||
\ref{sec:back:evogood}).
|
\ref{sec:back:evogood}) followed by the definition of the different evolvability
|
||||||
In a third step we take a look at the definition of the different evolvability
|
criteria established in \cite{anrichterEvol} (in \ref {sec:back:rvi}).
|
||||||
criteria established in \cite{anrichterEvol}.
|
|
||||||
|
|
||||||
In Chapter \ref{sec:impl} we take a look at our implementation of \ac{FFD} and
|
In Chapter \ref{sec:impl} we take a look at our implementation of \ac{FFD} and
|
||||||
the adaptation for 3D--meshes that were used.
|
the adaptation for 3D--meshes that were used. Next, in Chapter \ref{sec:eval},
|
||||||
|
we describe the different scenarios we use to evaluate the different
|
||||||
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we use to
|
evolvability--criteria incorporating all aspects introduced in Chapter
|
||||||
evaluate the different evolvability--criteria incorporating all aspects
|
\ref{sec:back}. Following that, we evaluate the results in
|
||||||
introduced in Chapter \ref{sec:back}. Following that, we evaluate the results in
|
Chapter \ref{sec:res} with further on discussion, summary and outlook in
|
||||||
Chapter \ref{sec:res} with further on discussion in Chapter \ref{sec:dis}.
|
Chapter \ref{sec:dis}.
|
||||||
|
|
||||||
|
|
||||||
# Background
|
# Background
|
||||||
@ -124,10 +124,10 @@ The main idea of \ac{FFD} is to create a function $s : [0,1[^d \mapsto
|
|||||||
parametrized by some special control points $p_i$ and an constant
|
parametrized by some special control points $p_i$ and an constant
|
||||||
attribution--function $a_i(u)$, so
|
attribution--function $a_i(u)$, so
|
||||||
$$
|
$$
|
||||||
s(u) = \sum_i a_i(u) p_i
|
s(\vec{u}) = \sum_i a_i(\vec{u}) \vec{p_i}
|
||||||
$$
|
$$
|
||||||
can be thought of a representation of the inside of the convex hull generated by
|
can be thought of a representation of the inside of the convex hull generated by
|
||||||
the control points where each point can be accessed by the right $u \in [0,1[$.
|
the control points where each point can be accessed by the right $u \in [0,1[^d$.
|
||||||
|
|
||||||
\begin{figure}[!ht]
|
\begin{figure}[!ht]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -138,9 +138,9 @@ corresponding deformation to generate a deformed objet}
|
|||||||
\label{fig:bspline}
|
\label{fig:bspline}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
In the example in figure \ref{fig:bspline}, the control--points are indicated as
|
In the 1--dimensional example in figure \ref{fig:bspline}, the control--points
|
||||||
red dots and the color-gradient should hint at the $u$--values ranging from
|
are indicated as red dots and the color-gradient should hint at the $u$--values
|
||||||
$0$ to $1$.
|
ranging from $0$ to $1$.
|
||||||
|
|
||||||
We now define a \acf{FFD} by the following:
|
We now define a \acf{FFD} by the following:
|
||||||
Given an arbitrary number of points $p_i$ alongside a line, we map a scalar
|
Given an arbitrary number of points $p_i$ alongside a line, we map a scalar
|
||||||
@ -299,6 +299,7 @@ that terminates the optimization.
|
|||||||
|
|
||||||
Biologically speaking the set $I$ corresponds to the set of possible *Genotypes*
|
Biologically speaking the set $I$ corresponds to the set of possible *Genotypes*
|
||||||
while $M$ represents the possible observable *Phenotypes*.
|
while $M$ represents the possible observable *Phenotypes*.
|
||||||
|
\improvement[inline]{Erklären, was das ist. Quellen!}
|
||||||
|
|
||||||
The main algorithm just repeats the following steps:
|
The main algorithm just repeats the following steps:
|
||||||
|
|
||||||
@ -318,20 +319,20 @@ The main algorithm just repeats the following steps:
|
|||||||
of $\mu$ individuals.
|
of $\mu$ individuals.
|
||||||
|
|
||||||
All these functions can (and mostly do) have a lot of hidden parameters that
|
All these functions can (and mostly do) have a lot of hidden parameters that
|
||||||
can be changed over time. One can for example start off with a high
|
can be changed over time.
|
||||||
mutation--rate that cools off over time (i.e. by lowering the variance of a
|
|
||||||
gaussian noise).
|
\improvement[inline]{Genauer: Welche? Wo? Wieso? ...}
|
||||||
|
|
||||||
|
<!--One can for example start off with a high
|
||||||
|
mutation rate that cools off over time (i.e. by lowering the variance of a
|
||||||
|
gaussian noise).-->
|
||||||
|
|
||||||
## Advantages of evolutionary algorithms
|
## Advantages of evolutionary algorithms
|
||||||
\label{sec:back:evogood}
|
\label{sec:back:evogood}
|
||||||
|
|
||||||
The main advantage of evolutionary algorithms is the ability to find optima of
|
The main advantage of evolutionary algorithms is the ability to find optima of
|
||||||
general functions just with the help of a given fitness--function. With this
|
general functions just with the help of a given fitness--function. Components
|
||||||
most problems of simple gradient--based procedures, which often target the same
|
and techniques for evolutionary algorithms are specifically known to
|
||||||
error--function which measures the fitness, as an evolutionary algorithm, but can
|
|
||||||
easily get stuck in local optima.
|
|
||||||
|
|
||||||
Components and techniques for evolutionary algorithms are specifically known to
|
|
||||||
help with different problems arising in the domain of
|
help with different problems arising in the domain of
|
||||||
optimization\cite{weise2012evolutionary}. An overview of the typical problems
|
optimization\cite{weise2012evolutionary}. An overview of the typical problems
|
||||||
are shown in figure \ref{fig:probhard}.
|
are shown in figure \ref{fig:probhard}.
|
||||||
@ -345,11 +346,14 @@ are shown in figure \ref{fig:probhard}.
|
|||||||
Most of the advantages stem from the fact that a gradient--based procedure has
|
Most of the advantages stem from the fact that a gradient--based procedure has
|
||||||
only one point of observation from where it evaluates the next steps, whereas an
|
only one point of observation from where it evaluates the next steps, whereas an
|
||||||
evolutionary strategy starts with a population of guessed solutions. Because an
|
evolutionary strategy starts with a population of guessed solutions. Because an
|
||||||
evolutionary strategy modifies the solution randomly, keeps the best solutions
|
evolutionary strategy modifies the solution randomly, keeping the best solutions
|
||||||
and purges the worst, it can also target multiple different hypothesis at the
|
and purging the worst, it can also target multiple different hypothesis at the
|
||||||
same time where the local optima die out in the face of other, better
|
same time where the local optima die out in the face of other, better
|
||||||
candidates.
|
candidates.
|
||||||
|
|
||||||
|
\improvement[inline]{Verweis auf MO-CMA etc. Vielleicht auch etwas
|
||||||
|
ausführlicher.}
|
||||||
|
|
||||||
If an analytic best solution exists and is easily computable (i.e. because the
|
If an analytic best solution exists and is easily computable (i.e. because the
|
||||||
error--function is convex) an evolutionary algorithm is not the right choice.
|
error--function is convex) an evolutionary algorithm is not the right choice.
|
||||||
Although both converge to the same solution, the analytic one is usually faster.
|
Although both converge to the same solution, the analytic one is usually faster.
|
||||||
@ -357,8 +361,9 @@ Although both converge to the same solution, the analytic one is usually faster.
|
|||||||
But in reality many problems have no analytic solution, because the problem is
|
But in reality many problems have no analytic solution, because the problem is
|
||||||
either not convex or there are so many parameters that an analytic solution
|
either not convex or there are so many parameters that an analytic solution
|
||||||
(mostly meaning the equivalence to an exhaustive search) is computationally not
|
(mostly meaning the equivalence to an exhaustive search) is computationally not
|
||||||
feasible. Here evolutionary optimization has one more advantage as you can at
|
feasible. Here evolutionary optimization has one more advantage as one can at
|
||||||
least get suboptimal solutions fast, which then refine over time.
|
least get suboptimal solutions fast, which then refine over time and still
|
||||||
|
converge to the same solution.
|
||||||
|
|
||||||
## Criteria for the evolvability of linear deformations
|
## Criteria for the evolvability of linear deformations
|
||||||
\label{sec:intro:rvi}
|
\label{sec:intro:rvi}
|
||||||
@ -366,26 +371,26 @@ least get suboptimal solutions fast, which then refine over time.
|
|||||||
As we have established in chapter \ref{sec:back:ffd}, we can describe a
|
As we have established in chapter \ref{sec:back:ffd}, we can describe a
|
||||||
deformation by the formula
|
deformation by the formula
|
||||||
$$
|
$$
|
||||||
V = UP
|
\vec{V} = \vec{U}\vec{P}
|
||||||
$$
|
$$
|
||||||
where $V$ is a $n \times d$ matrix of vertices, $U$ are the (during
|
where $\vec{V}$ is a $n \times d$ matrix of vertices, $\vec{U}$ are the (during
|
||||||
parametrization) calculated deformation--coefficients and $P$ is a $m \times d$ matrix
|
parametrization) calculated deformation--coefficients and $P$ is a $m \times d$ matrix
|
||||||
of control--points that we interact with during deformation.
|
of control--points that we interact with during deformation.
|
||||||
|
|
||||||
We can also think of the deformation in terms of differences from the original
|
We can also think of the deformation in terms of differences from the original
|
||||||
coordinates
|
coordinates
|
||||||
$$
|
$$
|
||||||
\Delta V = U \cdot \Delta P
|
\Delta \vec{V} = \vec{U} \cdot \Delta \vec{P}
|
||||||
$$
|
$$
|
||||||
which is isomorphic to the former due to the linear correlation in the
|
which is isomorphic to the former due to the linear correlation in the
|
||||||
deformation. One can see in this way, that the way the deformation behaves lies
|
deformation. One can see in this way, that the way the deformation behaves lies
|
||||||
solely in the entries of $U$, which is why the three criteria focus on this.
|
solely in the entries of $\vec{U}$, which is why the three criteria focus on this.
|
||||||
|
|
||||||
### Variability
|
### Variability
|
||||||
|
|
||||||
In \cite{anrichterEvol} *variability* is defined as
|
In \cite{anrichterEvol} *variability* is defined as
|
||||||
$$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},$$
|
$$\mathrm{variability}(\vec{U}) := \frac{\mathrm{rank}(\vec{U})}{n},$$
|
||||||
whereby $\vec{U}$ is the $n \times m$ deformation--Matrix \unsure{Nicht $(n\cdot d) \times m$? Wegen $u,v,w$?} used to map the $m$
|
whereby $\vec{U}$ is the $n \times m$ deformation--Matrix used to map the $m$
|
||||||
control points onto the $n$ vertices.
|
control points onto the $n$ vertices.
|
||||||
|
|
||||||
Given $n = m$, an identical number of control--points and vertices, this
|
Given $n = m$, an identical number of control--points and vertices, this
|
||||||
@ -395,10 +400,20 @@ the solution is to trivially move every control--point onto a target--point.
|
|||||||
In praxis the value of $V(\vec{U})$ is typically $\ll 1$, because as
|
In praxis the value of $V(\vec{U})$ is typically $\ll 1$, because as
|
||||||
there are only few control--points for many vertices, so $m \ll n$.
|
there are only few control--points for many vertices, so $m \ll n$.
|
||||||
|
|
||||||
|
This criterion should correlate to the degrees of freedom the given
|
||||||
|
parametrization has. This can be seen from the fact, that
|
||||||
|
$\mathrm{rank}(\vec{U})$ is limited by $\min(m,n)$ and --- as $n$ is constant
|
||||||
|
--- can never exceed $n$.
|
||||||
|
|
||||||
|
The rank itself is also interesting, as control--points could theoretically be
|
||||||
|
placed on top of each other or be linear dependent in another way --- but will
|
||||||
|
in both cases lower the rank below the number of control--points $m$ and are
|
||||||
|
thus measurable by the *variability*.
|
||||||
|
|
||||||
### Regularity
|
### Regularity
|
||||||
|
|
||||||
*Regularity* is defined\cite{anrichterEvol} as
|
*Regularity* is defined\cite{anrichterEvol} as
|
||||||
$$R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$
|
$$\mathrm{regularity}(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$
|
||||||
where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular
|
where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular
|
||||||
value of the deformation--matrix $\vec{U}$.
|
value of the deformation--matrix $\vec{U}$.
|
||||||
|
|
||||||
@ -416,17 +431,19 @@ the notion of locality\cite{weise2012evolutionary,thorhauer2014locality}.
|
|||||||
### Improvement Potential
|
### Improvement Potential
|
||||||
|
|
||||||
In contrast to the general nature of *variability* and *regularity*, which are
|
In contrast to the general nature of *variability* and *regularity*, which are
|
||||||
agnostic of the fitness--function at hand the third criterion should reflect a
|
agnostic of the fitness--function at hand, the third criterion should reflect a
|
||||||
notion of potential.
|
notion of the potential for optimization, taking a guess into account.
|
||||||
|
|
||||||
As during optimization some kind of gradient $g$ is available to suggest a
|
Most of the times some kind of gradient $g$ is available to suggest a
|
||||||
direction worth pursuing we use this to guess how much change can be achieved in
|
direction worth pursuing; either from a previous iteration or by educated
|
||||||
|
guessing. We use this to guess how much change can be achieved in
|
||||||
the given direction.
|
the given direction.
|
||||||
|
|
||||||
The definition for an *improvement potential* $P$ is\cite{anrichterEvol}:
|
The definition for an *improvement potential* $P$ is\cite{anrichterEvol}:
|
||||||
$$
|
$$
|
||||||
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F
|
\mathrm{potential}(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F
|
||||||
$$
|
$$
|
||||||
|
\unsure[inline]{ist das $^2$ richtig?}
|
||||||
given some approximate $n \times d$ fitness--gradient $\vec{G}$, normalized to
|
given some approximate $n \times d$ fitness--gradient $\vec{G}$, normalized to
|
||||||
$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius--Norm.
|
$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius--Norm.
|
||||||
|
|
||||||
@ -482,7 +499,9 @@ $$
|
|||||||
$$
|
$$
|
||||||
and do a gradient--descend to approximate the value of $u$ up to an $\epsilon$ of $0.0001$.
|
and do a gradient--descend to approximate the value of $u$ up to an $\epsilon$ of $0.0001$.
|
||||||
|
|
||||||
For this we use the Gauss--Newton algorithm\cite{gaussNewton} as the solution to
|
For this we use the Gauss--Newton algorithm\cite{gaussNewton}
|
||||||
|
\todo[inline]{rewrite. falsch und wischi-waschi. Least squares?}
|
||||||
|
as the solution to
|
||||||
this problem may not be deterministic, because we usually have way more vertices
|
this problem may not be deterministic, because we usually have way more vertices
|
||||||
than control points ($\#v~\gg~\#c$).
|
than control points ($\#v~\gg~\#c$).
|
||||||
|
|
||||||
@ -548,12 +567,27 @@ $$J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \ri
|
|||||||
and use Cramers rule for inverting the small Jacobian and solving this system of
|
and use Cramers rule for inverting the small Jacobian and solving this system of
|
||||||
linear equations.
|
linear equations.
|
||||||
|
|
||||||
|
As there is no strict upper bound of the number of iterations for this
|
||||||
|
algorithm, we just iterate it long enough to be within the given
|
||||||
|
$\epsilon$--error above. This takes --- depending on the shape of the object and
|
||||||
|
the grid --- about $3$ to $5$ iterations that we observed in practice.
|
||||||
|
|
||||||
|
Another issue that we observed in our implementation is, that multiple local
|
||||||
|
optima may exist on self--intersecting grids. We solve this problem by defining
|
||||||
|
self--intersecting grids to be *invalid* and do not test any of them.
|
||||||
|
|
||||||
|
This is not such a big problem as it sounds at first, as self--intersections
|
||||||
|
mean, that control--points being further away from a given vertex have more
|
||||||
|
influence over the deformation than control--points closer to this vertex. Also
|
||||||
|
this contradicts the notion of locality that we want to achieve and deemed
|
||||||
|
beneficial for a good behaviour of the evolutionary algorithm.
|
||||||
|
|
||||||
## Deformation Grid
|
## Deformation Grid
|
||||||
\label{sec:impl:grid}
|
\label{sec:impl:grid}
|
||||||
|
|
||||||
As mentioned in chapter \ref{sec:back:evo}, the way of choosing the
|
As mentioned in chapter \ref{sec:back:evo}, the way of choosing the
|
||||||
representation to map the general problem (mesh--fitting/optimization in our
|
representation to map the general problem (mesh--fitting/optimization in our
|
||||||
case) into a parameter-space it very important for the quality and runtime of
|
case) into a parameter-space is very important for the quality and runtime of
|
||||||
evolutionary algorithms\cite{Rothlauf2006}.
|
evolutionary algorithms\cite{Rothlauf2006}.
|
||||||
|
|
||||||
Because our control--points are arranged in a grid, we can accurately represent
|
Because our control--points are arranged in a grid, we can accurately represent
|
||||||
@ -561,10 +595,10 @@ each vertex--point inside the grids volume with proper B--Spline--coefficients
|
|||||||
between $[0,1[$ and --- as a consequence --- we have to embed our object into it
|
between $[0,1[$ and --- as a consequence --- we have to embed our object into it
|
||||||
(or create constant "dummy"-points outside).
|
(or create constant "dummy"-points outside).
|
||||||
|
|
||||||
The great advantage of B--Splines is the locality, direct impact of each
|
The great advantage of B--Splines is the local, direct impact of each
|
||||||
control point without having a $1:1$--correlation, and a smooth deformation.
|
control point without having a $1:1$--correlation, and a smooth deformation.
|
||||||
While the advantages are great, the issues arise from the problem to decide
|
While the advantages are great, the issues arise from the problem to decide
|
||||||
where to place the control--points and how many.
|
where to place the control--points and how many to place at all.
|
||||||
|
|
||||||
\begin{figure}[!tbh]
|
\begin{figure}[!tbh]
|
||||||
\centering
|
\centering
|
||||||
@ -578,8 +612,8 @@ control--points.}
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
One would normally think, that the more control--points you add, the better the
|
One would normally think, that the more control--points you add, the better the
|
||||||
result will be, but this is not the case for our B--Splines. Given any point $p$
|
result will be, but this is not the case for our B--Splines. Given any point
|
||||||
only the $2 \cdot (d-1)$ control--points contribute to the parametrization of
|
$\vec{p}$ only the $2 \cdot (d-1)$ control--points contribute to the parametrization of
|
||||||
that point^[Normally these are $d-1$ to each side, but at the boundaries the
|
that point^[Normally these are $d-1$ to each side, but at the boundaries the
|
||||||
number gets increased to the inside to meet the required smoothness].
|
number gets increased to the inside to meet the required smoothness].
|
||||||
This means, that a high resolution can have many control-points that are not
|
This means, that a high resolution can have many control-points that are not
|
||||||
@ -587,29 +621,37 @@ contributing to any point on the surface and are thus completely irrelevant to
|
|||||||
the solution.
|
the solution.
|
||||||
|
|
||||||
We illustrate this phenomenon in figure \ref{fig:enoughCP}, where the four red
|
We illustrate this phenomenon in figure \ref{fig:enoughCP}, where the four red
|
||||||
central points are not relevant for the parametrization of the circle.
|
central points are not relevant for the parametrization of the circle. This
|
||||||
|
leads to artefacts in the deformation--matrix $\vec{U}$, as the columns
|
||||||
|
corresponding to those control--points are $0$.
|
||||||
|
|
||||||
\unsure[inline]{erwähnen, dass man aus $\vec{D}$ einfach die Null--Spalten
|
This leads to useless increased complexity, as the parameters corresponding to
|
||||||
entfernen kann?}
|
those points will never have any effect, but a naive algorithm will still try to
|
||||||
|
optimize them yielding numeric artefacts in the best and non--terminating or
|
||||||
|
ill--defined solutions^[One example would be, when parts of an algorithm depend
|
||||||
|
on the inverse of the minimal right singular value leading to a division by $0$.]
|
||||||
|
at worst.
|
||||||
|
|
||||||
|
One can of course neglect those columns and their corresponding control--points,
|
||||||
|
but this raises the question why they were introduced in the first place. We
|
||||||
|
will address this in a special scenario in \ref{sec:res:3d:var}.
|
||||||
|
|
||||||
For our tests we chose different uniformly sized grids and added noise
|
For our tests we chose different uniformly sized grids and added noise
|
||||||
onto each control-point^[For the special case of the outer layer we only applied
|
onto each control-point^[For the special case of the outer layer we only applied
|
||||||
noise away from the object, so the object is still confined in the convex hull
|
noise away from the object, so the object is still confined in the convex hull
|
||||||
of the control--points.] to simulate different starting-conditions.
|
of the control--points.] to simulate different starting-conditions.
|
||||||
|
|
||||||
\unsure[inline]{verweis auf DM--FFD?}
|
# Scenarios for testing evolvability criteria using \ac{FFD}
|
||||||
|
|
||||||
# Scenarios for testing evolvability criteria using \acf{FFD}
|
|
||||||
\label{sec:eval}
|
\label{sec:eval}
|
||||||
|
|
||||||
In our experiments we use the same two testing--scenarios, that were also used
|
In our experiments we use the same two testing--scenarios, that were also used
|
||||||
by \cite{anrichterEvol}. The first scenario deforms a plane into a shape
|
by \cite{anrichterEvol}. The first scenario deforms a plane into a shape
|
||||||
originally defined in \cite{giannelli2012thb}, where we setup control-points in
|
originally defined in \cite{giannelli2012thb}, where we setup control-points in
|
||||||
a 2--dimensional manner merely deform in the height--coordinate to get the
|
a 2--dimensional manner and merely deform in the height--coordinate to get the
|
||||||
resulting shape.
|
resulting shape.
|
||||||
|
|
||||||
In the second scenario we increase the degrees of freedom significantly by using
|
In the second scenario we increase the degrees of freedom significantly by using
|
||||||
a 3--dimensional control--grid to deform a sphere into a face. So each control
|
a 3--dimensional control--grid to deform a sphere into a face, so each control
|
||||||
point has three degrees of freedom in contrast to first scenario.
|
point has three degrees of freedom in contrast to first scenario.
|
||||||
|
|
||||||
## Test Scenario: 1D Function Approximation
|
## Test Scenario: 1D Function Approximation
|
||||||
@ -642,10 +684,10 @@ As the starting-plane we used the same shape, but set all
|
|||||||
$z$--coordinates to $0$, yielding a flat plane, which is partially already
|
$z$--coordinates to $0$, yielding a flat plane, which is partially already
|
||||||
correct.
|
correct.
|
||||||
|
|
||||||
Regarding the *fitness--function* $f(\vec{p})$, we use the very simple approach
|
Regarding the *fitness--function* $\mathrm{f}(\vec{p})$, we use the very simple approach
|
||||||
of calculating the squared distances for each corresponding vertex
|
of calculating the squared distances for each corresponding vertex
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\textrm{f(\vec{p})} = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min
|
\mathrm{f}(\vec{p}) = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $t_i$ are the respective target--vertices to the parametrized
|
where $t_i$ are the respective target--vertices to the parametrized
|
||||||
source--vertices^[The parametrization is encoded in $\vec{U}$ and the initial
|
source--vertices^[The parametrization is encoded in $\vec{U}$ and the initial
|
||||||
@ -662,7 +704,7 @@ the correct gradient in which the evolutionary optimizer should move.
|
|||||||
\label{sec:test:3dfa}
|
\label{sec:test:3dfa}
|
||||||
Opposed to the 1--dimensional scenario before, the 3--dimensional scenario is
|
Opposed to the 1--dimensional scenario before, the 3--dimensional scenario is
|
||||||
much more complex --- not only because we have more degrees of freedom on each
|
much more complex --- not only because we have more degrees of freedom on each
|
||||||
control point, but also because the *fitness--function* we will use has no known
|
control point, but also, because the *fitness--function* we will use has no known
|
||||||
analytic solution and multiple local minima.
|
analytic solution and multiple local minima.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
@ -683,12 +725,13 @@ these Models can be seen in figure \ref{fig:3dtarget}.
|
|||||||
Opposed to the 1D--case we cannot map the source and target--vertices in a
|
Opposed to the 1D--case we cannot map the source and target--vertices in a
|
||||||
one--to--one--correspondence, which we especially need for the approximation of
|
one--to--one--correspondence, which we especially need for the approximation of
|
||||||
the fitting--error. Hence we state that the error of one vertex is the distance
|
the fitting--error. Hence we state that the error of one vertex is the distance
|
||||||
to the closest vertex of the other model.
|
to the closest vertex of the other model and sum up the error from the
|
||||||
|
respective source and target.
|
||||||
|
|
||||||
We therefore define the *fitness--function* to be:
|
We therefore define the *fitness--function* to be:
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
f(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} -
|
\mathrm{f}(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} -
|
||||||
\vec{s_i}\|_2^2}_{\textrm{source-to-target--distance}}
|
\vec{s_i}\|_2^2}_{\textrm{source-to-target--distance}}
|
||||||
+ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} -
|
+ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} -
|
||||||
\vec{t_i}\|_2^2}_{\textrm{target-to-source--distance}}
|
\vec{t_i}\|_2^2}_{\textrm{target-to-source--distance}}
|
||||||
@ -711,9 +754,10 @@ As regularization-term we add a weighted Laplacian of the deformation that has
|
|||||||
been used before by Aschenbach et al.\cite[Section 3.2]{aschenbach2015} on
|
been used before by Aschenbach et al.\cite[Section 3.2]{aschenbach2015} on
|
||||||
similar models and was shown to lead to a more precise fit. The Laplacian
|
similar models and was shown to lead to a more precise fit. The Laplacian
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\textrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s_j} \in \mathcal{N}(\vec{s_i})} w_j \cdot \|\Delta \vec{s_j} - \Delta \vec{\overline{s}_j}\|^2 \right)
|
\mathrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s_j} \in \mathcal{N}(\vec{s_i})} w_j \cdot \|\Delta \vec{s_j} - \Delta \vec{\overline{s}_j}\|^2 \right)
|
||||||
\label{eq:reg3d}
|
\label{eq:reg3d}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
\unsure[inline]{was ist $\vec{\overline{s}_j}$? Zentrum? eigentlich $s_i$?}
|
||||||
is determined by the cotangent weighted displacement $w_j$ of the to $s_i$
|
is determined by the cotangent weighted displacement $w_j$ of the to $s_i$
|
||||||
connected vertices $\mathcal{N}(s_i)$ and $A_i$ is the Voronoi--area of the corresponding vertex
|
connected vertices $\mathcal{N}(s_i)$ and $A_i$ is the Voronoi--area of the corresponding vertex
|
||||||
$\vec{s_i}$. We leave out the $\vec{R}_i$--term from the original paper as our
|
$\vec{s_i}$. We leave out the $\vec{R}_i$--term from the original paper as our
|
||||||
@ -731,19 +775,20 @@ To compare our results to the ones given by Richter et al.\cite{anrichterEvol},
|
|||||||
we also use Spearman's rank correlation coefficient. Opposed to other popular
|
we also use Spearman's rank correlation coefficient. Opposed to other popular
|
||||||
coefficients, like the Pearson correlation coefficient, which measures a linear
|
coefficients, like the Pearson correlation coefficient, which measures a linear
|
||||||
relationship between variables, the Spearmans's coefficient assesses \glqq how
|
relationship between variables, the Spearmans's coefficient assesses \glqq how
|
||||||
well an arbitrary monotonic function can descripbe the relationship between two
|
well an arbitrary monotonic function can describe the relationship between two
|
||||||
variables, without making any assumptions about the frequency distribution of
|
variables, without making any assumptions about the frequency distribution of
|
||||||
the variables\grqq\cite{hauke2011comparison}.
|
the variables\grqq\cite{hauke2011comparison}.
|
||||||
|
|
||||||
As we don't have any prior knowledge if any of the criteria is linear and we are
|
As we don't have any prior knowledge if any of the criteria is linear and we are
|
||||||
just interested in a monotonic relation between the criteria and their
|
just interested in a monotonic relation between the criteria and their
|
||||||
predictive power, the Spearman's coefficient seems to fit out scenario best.
|
predictive power, the Spearman's coefficient seems to fit out scenario best and
|
||||||
|
was also used before by Richter et al.\cite{anrichterEvol}
|
||||||
|
|
||||||
For interpretation of these values we follow the same interpretation used in
|
For interpretation of these values we follow the same interpretation used in
|
||||||
\cite{anrichterEvol}, based on \cite{weir2015spearman}: The coefficient
|
\cite{anrichterEvol}, based on \cite{weir2015spearman}: The coefficient
|
||||||
intervals $r_S \in [0,0.2[$, $[0.2,0.4[$, $[0.4,0.6[$, $[0.6,0.8[$, and $[0.8,1]$ are
|
intervals $r_S \in [0,0.2[$, $[0.2,0.4[$, $[0.4,0.6[$, $[0.6,0.8[$, and $[0.8,1]$ are
|
||||||
classified as *very weak*, *weak*, *moderate*, *strong* and *very strong*. We
|
classified as *very weak*, *weak*, *moderate*, *strong* and *very strong*. We
|
||||||
interpret p--values smaller than $0.1$ as *significant* and cut off the
|
interpret p--values smaller than $0.01$ as *significant* and cut off the
|
||||||
precision of p--values after four decimal digits (thus often having a p--value
|
precision of p--values after four decimal digits (thus often having a p--value
|
||||||
of $0$ given for p--values $< 10^{-4}$).
|
of $0$ given for p--values $< 10^{-4}$).
|
||||||
<!-- </> -->
|
<!-- </> -->
|
||||||
@ -772,7 +817,9 @@ $$
|
|||||||
\vec{g}_{\textrm{d}} = \frac{\vec{g}_{\textrm{c}} + \mathbb{1}}{\|\vec{g}_{\textrm{c}} + \mathbb{1}\|}
|
\vec{g}_{\textrm{d}} = \frac{\vec{g}_{\textrm{c}} + \mathbb{1}}{\|\vec{g}_{\textrm{c}} + \mathbb{1}\|}
|
||||||
$$
|
$$
|
||||||
where $\mathbb{1}$ is the vector consisting of $1$ in every dimension and
|
where $\mathbb{1}$ is the vector consisting of $1$ in every dimension and
|
||||||
$\vec{g}_\textrm{c} = \vec{p^{*}}$ the calculated correct gradient.
|
$\vec{g}_\textrm{c} = \vec{p^{*}} - \vec{p}$ the calculated correct gradient. As
|
||||||
|
we always start with a gradient of $\mathbb{0}$ this shortens to
|
||||||
|
$\vec{g}_\textrm{c} = \vec{p^{*}}$.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -787,11 +834,7 @@ We then set up a regular 2--dimensional grid around the object with the desired
|
|||||||
grid resolutions. To generate a testcase we then move the grid--vertices
|
grid resolutions. To generate a testcase we then move the grid--vertices
|
||||||
randomly inside the x--y--plane. As self-intersecting grids get tricky to solve
|
randomly inside the x--y--plane. As self-intersecting grids get tricky to solve
|
||||||
with our implemented newtons--method we avoid the generation of such
|
with our implemented newtons--method we avoid the generation of such
|
||||||
self--intersecting grids for our testcases.
|
self--intersecting grids for our testcases (see section \ref{3dffd}).
|
||||||
|
|
||||||
This is a reasonable thing to do, as self-intersecting grids violate our desired
|
|
||||||
property of locality, as the then farther away control--point has more influence
|
|
||||||
over some vertices as the next-closer.
|
|
||||||
|
|
||||||
To achieve that we select a uniform distributed number $r \in [-0.25,0.25]$ per
|
To achieve that we select a uniform distributed number $r \in [-0.25,0.25]$ per
|
||||||
dimension and shrink the distance to the neighbours (the smaller neighbour for
|
dimension and shrink the distance to the neighbours (the smaller neighbour for
|
||||||
@ -810,20 +853,22 @@ analytical solution to the given problem--set. We use this to experimentally
|
|||||||
evaluate the quality criteria we introduced before. As an evolutional
|
evaluate the quality criteria we introduced before. As an evolutional
|
||||||
optimization is partially a random process, we use the analytical solution as a
|
optimization is partially a random process, we use the analytical solution as a
|
||||||
stopping-criteria. We measure the convergence speed as number of iterations the
|
stopping-criteria. We measure the convergence speed as number of iterations the
|
||||||
evolutional algorithm needed to get within $1.05\%$ of the optimal solution.
|
evolutional algorithm needed to get within $1.05 \times$ of the optimal solution.
|
||||||
|
|
||||||
We used different regular grids that we manipulated as explained in Section
|
We used different regular grids that we manipulated as explained in Section
|
||||||
\ref{sec:proc:1d} with a different number of control points. As our grids have
|
\ref{sec:proc:1d} with a different number of control points. As our grids have
|
||||||
to be the product of two integers, we compared a $5 \times 5$--grid with $25$
|
to be the product of two integers, we compared a $5 \times 5$--grid with $25$
|
||||||
control--points to a $4 \times 7$ and $7 \times 4$--grid with $28$
|
control--points to a $4 \times 7$ and $7 \times 4$--grid with $28$
|
||||||
control--points. This was done to measure the impact an \glqq improper\grqq
|
control--points. This was done to measure the impact an \glqq improper\grqq \
|
||||||
setup could have and how well this is displayed in the criteria we are
|
setup could have and how well this is displayed in the criteria we are
|
||||||
examining.
|
examining.
|
||||||
|
|
||||||
Additionally we also measured the effect of increasing the total resolution of
|
Additionally we also measured the effect of increasing the total resolution of
|
||||||
the grid by taking a closer look at $5 \times 5$, $7 \times 7$ and $10 \times 10$ grids.
|
the grid by taking a closer look at $5 \times 5$, $7 \times 7$ and $10 \times 10$ grids.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
### Variability
|
||||||
|
|
||||||
|
\begin{figure}[tbh]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.7\textwidth]{img/evolution1d/variability_boxplot.png}
|
\includegraphics[width=0.7\textwidth]{img/evolution1d/variability_boxplot.png}
|
||||||
\caption[1D Fitting Errors for various grids]{The squared error for the various
|
\caption[1D Fitting Errors for various grids]{The squared error for the various
|
||||||
@ -832,8 +877,6 @@ Note that $7 \times 4$ and $4 \times 7$ have the same number of control--points.
|
|||||||
\label{fig:1dvar}
|
\label{fig:1dvar}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
### Variability
|
|
||||||
|
|
||||||
Variability should characterize the potential for design space exploration and
|
Variability should characterize the potential for design space exploration and
|
||||||
is defined in terms of the normalized rank of the deformation matrix $\vec{U}$:
|
is defined in terms of the normalized rank of the deformation matrix $\vec{U}$:
|
||||||
$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n}$, whereby $n$ is the number of
|
$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n}$, whereby $n$ is the number of
|
||||||
@ -844,11 +887,12 @@ grid), we have merely plotted the errors in the boxplot in figure
|
|||||||
|
|
||||||
It is also noticeable, that although the $7 \times 4$ and $4 \times 7$ grids
|
It is also noticeable, that although the $7 \times 4$ and $4 \times 7$ grids
|
||||||
have a higher variability, they perform not better than the $5 \times 5$ grid.
|
have a higher variability, they perform not better than the $5 \times 5$ grid.
|
||||||
Also the $7 \times 4$ and $4 \times 7$ grids differ distinctly from each other,
|
Also the $7 \times 4$ and $4 \times 7$ grids differ distinctly from each other
|
||||||
although they have the same number of control--points. This is an indication the
|
with a mean$\pm$sigma of $233.09 \pm 12.32$ for the former and $286.32 \pm 22.36$ for the
|
||||||
impact a proper or improper grid--setup can have. We do not draw scientific
|
latter, although they have the same number of control--points. This is an
|
||||||
conclusions from these findings, as more research on non-squared grids seem
|
indication of an impact a proper or improper grid--setup can have. We do not
|
||||||
necessary.\todo{machen wir die noch? :D}
|
draw scientific conclusions from these findings, as more research on non-squared
|
||||||
|
grids seem necessary.
|
||||||
|
|
||||||
Leaving the issue of the grid--layout aside we focused on grids having the same
|
Leaving the issue of the grid--layout aside we focused on grids having the same
|
||||||
number of prototypes in every dimension. For the $5 \times 5$, $7 \times 7$ and
|
number of prototypes in every dimension. For the $5 \times 5$, $7 \times 7$ and
|
||||||
@ -857,7 +901,7 @@ between the variability and the evolutionary error.
|
|||||||
|
|
||||||
### Regularity
|
### Regularity
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[tbh]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution1d/55_to_1010_steps.png}
|
\includegraphics[width=\textwidth]{img/evolution1d/55_to_1010_steps.png}
|
||||||
\caption[Improvement potential and regularity vs. steps]{\newline
|
\caption[Improvement potential and regularity vs. steps]{\newline
|
||||||
@ -952,12 +996,13 @@ control--points.}
|
|||||||
For the next step we then halve the regularization--impact $\lambda$ (starting
|
For the next step we then halve the regularization--impact $\lambda$ (starting
|
||||||
at $1$) of our *fitness--function* (\ref{eq:fit3d}) and calculate the next
|
at $1$) of our *fitness--function* (\ref{eq:fit3d}) and calculate the next
|
||||||
incremental solution $\vec{P^{*}} = \vec{U^+}\vec{T}$ with the updated
|
incremental solution $\vec{P^{*}} = \vec{U^+}\vec{T}$ with the updated
|
||||||
correspondences to get our next target--error. We repeat this process as long as
|
correspondences (again, mapping each vertex to its closest neighbour in the
|
||||||
the target--error keeps decreasing and use the number of these iterations as
|
respective other model) to get our next target--error. We repeat this process as
|
||||||
measure of the convergence speed. As the resulting evolutional error without
|
long as the target--error keeps decreasing and use the number of these
|
||||||
regularization is in the numeric range of $\approx 100$, whereas the
|
iterations as measure of the convergence speed. As the resulting evolutional
|
||||||
regularization is numerically $\approx 7000$ we need at least $10$ to $15$ iterations
|
error without regularization is in the numeric range of $\approx 100$, whereas
|
||||||
until the regularization--effect wears off.
|
the regularization is numerically $\approx 7000$ we need at least $10$ to $15$
|
||||||
|
iterations until the regularization--effect wears off.
|
||||||
|
|
||||||
The grid we use for our experiments is just very coarse due to computational
|
The grid we use for our experiments is just very coarse due to computational
|
||||||
limitations. We are not interested in a good reconstruction, but an estimate if
|
limitations. We are not interested in a good reconstruction, but an estimate if
|
||||||
@ -965,7 +1010,7 @@ the mentioned evolvability criteria are good.
|
|||||||
|
|
||||||
In figure \ref{fig:setup3d} we show an example setup of the scene with a
|
In figure \ref{fig:setup3d} we show an example setup of the scene with a
|
||||||
$4\times 4\times 4$--grid. Identical to the 1--dimensional scenario before, we create a
|
$4\times 4\times 4$--grid. Identical to the 1--dimensional scenario before, we create a
|
||||||
regular grid and move the control-points \todo{wie?} random between their
|
regular grid and move the control-points \improvement{Beschreiben wie} random between their
|
||||||
neighbours, but in three instead of two dimensions^[Again, we flip the signs for
|
neighbours, but in three instead of two dimensions^[Again, we flip the signs for
|
||||||
the edges, if necessary to have the object still in the convex hull.].
|
the edges, if necessary to have the object still in the convex hull.].
|
||||||
|
|
||||||
@ -1009,6 +1054,7 @@ control--points.}
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
### Variability
|
### Variability
|
||||||
|
\label{sec:res:3d:var}
|
||||||
|
|
||||||
\begin{table}[tbh]
|
\begin{table}[tbh]
|
||||||
\centering
|
\centering
|
||||||
@ -1046,13 +1092,14 @@ deformation--matrix.
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.8\textwidth]{img/evolution3d/variability2_boxplot.png}
|
\includegraphics[width=0.8\textwidth]{img/evolution3d/variability2_boxplot.png}
|
||||||
\caption[Histogram of ranks of high--resolution deformation--matrices]{
|
\caption[Histogram of ranks of high--resolution deformation--matrices]{
|
||||||
Histogram of ranks of various $10 \times 10 \times 10$ grids.
|
Histogram of ranks of various $10 \times 10 \times 10$ grids with $1000$
|
||||||
|
control--points each.
|
||||||
}
|
}
|
||||||
\label{fig:histrank3d}
|
\label{fig:histrank3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
Overall the correlation between variability and fitness--error were
|
Overall the correlation between variability and fitness--error were
|
||||||
*significantly* and showed a *very strong* correlation in all our tests.
|
*significant* and showed a *very strong* correlation in all our tests.
|
||||||
The detailed correlation--coefficients are given in table \ref{tab:3dvar}
|
The detailed correlation--coefficients are given in table \ref{tab:3dvar}
|
||||||
alongside their p--values.
|
alongside their p--values.
|
||||||
|
|
||||||
@ -1111,21 +1158,20 @@ between regularity and number of iterations for the 3D fitting scenario.
|
|||||||
Displayed are the negated Spearman coefficients with the corresponding p--values
|
Displayed are the negated Spearman coefficients with the corresponding p--values
|
||||||
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
||||||
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
||||||
\label{tab:3dvar}
|
\label{tab:3dreg}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Opposed to the predictions of variability our test on regularity gave a mixed
|
Opposed to the predictions of variability our test on regularity gave a mixed
|
||||||
result --- similar to the 1D--case.
|
result --- similar to the 1D--case.
|
||||||
|
|
||||||
In half scenarios we have a *significant*, but *weak* to *moderate* correlation
|
In roughly half of the scenarios we have a *significant*, but *weak* to *moderate*
|
||||||
between regularity and number of iterations. On the other hand in the scenarios
|
correlation between regularity and number of iterations. On the other hand in
|
||||||
where we increased the number of control--points, namely $125$ for the
|
the scenarios where we increased the number of control--points, namely $125$ for
|
||||||
$5 \times 5 \times 5$ grid and $216$ for the $6 \times 6 \times 6$ grid we found
|
the $5 \times 5 \times 5$ grid and $216$ for the $6 \times 6 \times 6$ grid we found
|
||||||
a *significant*, but *weak* anti--correlation, which seem to contradict the
|
a *significant*, but *weak* **anti**--correlation when taking all three tests into
|
||||||
findings/trends for the sets with $64$, $80$, and $112$ control--points (first
|
account^[Displayed as $Y \times Y \times Y$], which seem to contradict the
|
||||||
two rows of table \ref{tab:3dvar}).
|
findings/trends for the sets with $64$, $80$, and $112$ control--points
|
||||||
|
(first two rows of table \ref{tab:3dreg}).
|
||||||
|
|
||||||
Taking all results together we only find a *very weak*, but *significant* link
|
Taking all results together we only find a *very weak*, but *significant* link
|
||||||
between regularity and the number of iterations needed for the algorithm to
|
between regularity and the number of iterations needed for the algorithm to
|
||||||
@ -1135,21 +1181,76 @@ converge.
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution3d/regularity_montage.png}
|
\includegraphics[width=\textwidth]{img/evolution3d/regularity_montage.png}
|
||||||
\caption[Regularity for different 3D--grids]{
|
\caption[Regularity for different 3D--grids]{
|
||||||
**BLINDTEXT**
|
Plots of regularity against number of iterations for various scenarios together
|
||||||
}
|
with a linear fit to indicate trends.}
|
||||||
\label{fig:resreg3d}
|
\label{fig:resreg3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
As can be seen from figure \ref{fig:resreg3d}, we can observe\todo{things}.
|
As can be seen from figure \ref{fig:resreg3d}, we can observe that increasing
|
||||||
|
the number of control--points helps the convergence--speeds. The
|
||||||
|
regularity--criterion first behaves as we would like to, but then switches to
|
||||||
|
behave exactly opposite to our expectations, as can be seen in the first three
|
||||||
|
plots. While the number of control--points increases from red to green to blue
|
||||||
|
and the number of iterations decreases, the regularity seems to increase at
|
||||||
|
first, but then decreases again on higher grid--resolutions.
|
||||||
|
|
||||||
|
This can be an artefact of the definition of regularity, as it is defined by the
|
||||||
|
inverse condition--number of the deformation--matrix $\vec{U}$, being the
|
||||||
|
fraction $\frac{\sigma_{\mathrm{min}}}{\sigma_{\mathrm{max}}}$ between the
|
||||||
|
least and greatest right singular value.
|
||||||
|
|
||||||
|
As we observed in the previous section, we cannot
|
||||||
|
guarantee that each control--point has an effect (see figure \ref{fig:histrank3d})
|
||||||
|
and so a small minimal right singular value occurring on higher
|
||||||
|
grid--resolutions seems likely the problem.
|
||||||
|
|
||||||
|
Adding to this we also noted, that in the case of the $10 \times 10 \times
|
||||||
|
10$--grid the regularity was always $0$, as a non--contributing control-point
|
||||||
|
yields a $0$--column in the deformation--matrix, thus letting
|
||||||
|
$\sigma_\mathrm{min} = 0$. A better definition for regularity (i.e. using the
|
||||||
|
smallest non--zero right singular value) could solve this particular issue, but
|
||||||
|
not fix the trend we noticed above.
|
||||||
|
|
||||||
### Improvement Potential
|
### Improvement Potential
|
||||||
|
|
||||||
|
\begin{table}[tbh]
|
||||||
|
\centering
|
||||||
|
\begin{tabular}{c|c|c|c}
|
||||||
|
& $5 \times 4 \times 4$ & $7 \times 4 \times 4$ & $\mathrm{X} \times 4 \times 4$ \\
|
||||||
|
\cline{2-4}
|
||||||
|
& 0.3 (0.0023) & \textcolor{red}{0.23} (0.0233) & 0.89 (0) \B \\
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\hline
|
||||||
|
$4 \times 4 \times 4$ & $4 \times 4 \times 5$ & $4 \times 4 \times 7$ & $4 \times 4 \times \mathrm{X}$ \T \\
|
||||||
|
\hline
|
||||||
|
0.5 (0) & 0.38 (0) & 0.32 (0.0012) & 0.9 (0) \B \\
|
||||||
|
\hline
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\cline{2-4}
|
||||||
|
& $5 \times 5 \times 5$ & $6 \times 6 \times 6$ & $\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}$ \T \\
|
||||||
|
\cline{2-4}
|
||||||
|
& 0.47 (0) & \textcolor{red}{-0.01} (0.8803) & 0.89 (0) \B \\
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{3}{c}{} & all: 0.95 (0) \T
|
||||||
|
\end{tabular}
|
||||||
|
\caption[Correlation between improvement--potential and fitting--error for 3D]{Correlation
|
||||||
|
between improvement--potential and fitting--error for the 3D fitting scenario.
|
||||||
|
Displayed are the negated Spearman coefficients with the corresponding p--values
|
||||||
|
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
||||||
|
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
||||||
|
\label{tab:3dimp}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
\begin{figure}[!htb]
|
\begin{figure}[!htb]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution3d/improvement_montage.png}
|
\includegraphics[width=\textwidth]{img/evolution3d/improvement_montage.png}
|
||||||
\caption[Improvement potential for different 3D--grids]{
|
\caption[Improvement potential for different 3D--grids]{
|
||||||
**BLINDTEXT**
|
Plots of improvement potential against error given by our fitness--function
|
||||||
}
|
after convergence together with a linear fit of each of the plotted data to
|
||||||
|
indicate trends.}
|
||||||
\label{fig:resimp3d}
|
\label{fig:resimp3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -1160,4 +1261,5 @@ As can be seen from figure \ref{fig:resreg3d}, we can observe\todo{things}.
|
|||||||
- Regularity ist kacke für unser setup. Bessere Vorschläge? EW/EV?
|
- Regularity ist kacke für unser setup. Bessere Vorschläge? EW/EV?
|
||||||
|
|
||||||
\improvement[inline]{Bibliotheksverzeichnis links anpassen. DOI überschreibt
|
\improvement[inline]{Bibliotheksverzeichnis links anpassen. DOI überschreibt
|
||||||
Direktlinks des Autors.}
|
Direktlinks des Autors.\newline
|
||||||
|
Außerdem bricht url über Seitengrenzen den Seitenspiegel.}
|
||||||
|
BIN
arbeit/ma.pdf
374
arbeit/ma.tex
@ -210,18 +210,19 @@ evolution is strongly tied to the notion of
|
|||||||
the problem has serious implications on the convergence speed and the
|
the problem has serious implications on the convergence speed and the
|
||||||
quality of the solution\cite{Rothlauf2006}. However, there is no
|
quality of the solution\cite{Rothlauf2006}. However, there is no
|
||||||
consensus on how \emph{evolvability} is defined and the meaning varies
|
consensus on how \emph{evolvability} is defined and the meaning varies
|
||||||
from context to context\cite{richter2015evolvability}, so there is need
|
from context to context\cite{richter2015evolvability}. As a consequence
|
||||||
for some criteria we can measure, so that we are able to compare
|
there is need for some criteria we can measure, so that we are able to
|
||||||
different representations to learn and improve upon these.
|
compare different representations to learn and improve upon these.
|
||||||
|
|
||||||
One example of such a general representation of an object is to generate
|
One example of such a general representation of an object is to generate
|
||||||
random points and represent vertices of an object as distances to these
|
random points and represent vertices of an object as distances to these
|
||||||
points --- for example via \acf{RBF}. If one (or the algorithm) would
|
points --- for example via \acf{RBF}. If one (or the algorithm) would
|
||||||
move such a point the object will get deformed locally (due to the
|
move such a point the object will get deformed only locally (due to the
|
||||||
\ac{RBF}). As this results in a simple mapping from the parameter-space
|
\ac{RBF}). As this results in a simple mapping from the parameter-space
|
||||||
onto the object one can try out different representations of the same
|
onto the object one can try out different representations of the same
|
||||||
object and evaluate the \emph{evolvability}. This is exactly what
|
object and evaluate which criteria may be suited to describe this notion
|
||||||
Richter et al.\cite{anrichterEvol} have done.
|
of \emph{evolvability}. This is exactly what Richter et
|
||||||
|
al.\cite{anrichterEvol} have done.
|
||||||
|
|
||||||
As we transfer the results of Richter et al.\cite{anrichterEvol} from
|
As we transfer the results of Richter et al.\cite{anrichterEvol} from
|
||||||
using \acf{RBF} as a representation to manipulate geometric objects to
|
using \acf{RBF} as a representation to manipulate geometric objects to
|
||||||
@ -244,18 +245,17 @@ for a one--dimensional line (in \ref{sec:back:ffd}) and discuss why this
|
|||||||
is a sensible deformation function (in \ref{sec:back:ffdgood}). Then we
|
is a sensible deformation function (in \ref{sec:back:ffdgood}). Then we
|
||||||
establish some background--knowledge of evolutionary algorithms (in
|
establish some background--knowledge of evolutionary algorithms (in
|
||||||
\ref{sec:back:evo}) and why this is useful in our domain (in
|
\ref{sec:back:evo}) and why this is useful in our domain (in
|
||||||
\ref{sec:back:evogood}). In a third step we take a look at the
|
\ref{sec:back:evogood}) followed by the definition of the different
|
||||||
definition of the different evolvability criteria established in
|
evolvability criteria established in \cite{anrichterEvol} (in
|
||||||
\cite{anrichterEvol}.
|
\ref {sec:back:rvi}).
|
||||||
|
|
||||||
In Chapter \ref{sec:impl} we take a look at our implementation of
|
In Chapter \ref{sec:impl} we take a look at our implementation of
|
||||||
\ac{FFD} and the adaptation for 3D--meshes that were used.
|
\ac{FFD} and the adaptation for 3D--meshes that were used. Next, in
|
||||||
|
Chapter \ref{sec:eval}, we describe the different scenarios we use to
|
||||||
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we
|
evaluate the different evolvability--criteria incorporating all aspects
|
||||||
use to evaluate the different evolvability--criteria incorporating all
|
introduced in Chapter \ref{sec:back}. Following that, we evaluate the
|
||||||
aspects introduced in Chapter \ref{sec:back}. Following that, we
|
results in Chapter \ref{sec:res} with further on discussion, summary and
|
||||||
evaluate the results in Chapter \ref{sec:res} with further on discussion
|
outlook in Chapter \ref{sec:dis}.
|
||||||
in Chapter \ref{sec:dis}.
|
|
||||||
|
|
||||||
\chapter{Background}\label{background}
|
\chapter{Background}\label{background}
|
||||||
|
|
||||||
@ -275,10 +275,10 @@ The main idea of \ac{FFD} is to create a function
|
|||||||
\(s : [0,1[^d \mapsto \mathbb{R}^d\) that spans a certain part of a
|
\(s : [0,1[^d \mapsto \mathbb{R}^d\) that spans a certain part of a
|
||||||
vector--space and is only linearly parametrized by some special control
|
vector--space and is only linearly parametrized by some special control
|
||||||
points \(p_i\) and an constant attribution--function \(a_i(u)\), so \[
|
points \(p_i\) and an constant attribution--function \(a_i(u)\), so \[
|
||||||
s(u) = \sum_i a_i(u) p_i
|
s(\vec{u}) = \sum_i a_i(\vec{u}) \vec{p_i}
|
||||||
\] can be thought of a representation of the inside of the convex hull
|
\] can be thought of a representation of the inside of the convex hull
|
||||||
generated by the control points where each point can be accessed by the
|
generated by the control points where each point can be accessed by the
|
||||||
right \(u \in [0,1[\).
|
right \(u \in [0,1[^d\).
|
||||||
|
|
||||||
\begin{figure}[!ht]
|
\begin{figure}[!ht]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -289,9 +289,9 @@ corresponding deformation to generate a deformed objet}
|
|||||||
\label{fig:bspline}
|
\label{fig:bspline}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
In the example in figure~\ref{fig:bspline}, the control--points are
|
In the 1--dimensional example in figure~\ref{fig:bspline}, the
|
||||||
indicated as red dots and the color-gradient should hint at the
|
control--points are indicated as red dots and the color-gradient should
|
||||||
\(u\)--values ranging from \(0\) to \(1\).
|
hint at the \(u\)--values ranging from \(0\) to \(1\).
|
||||||
|
|
||||||
We now define a \acf{FFD} by the following:\\
|
We now define a \acf{FFD} by the following:\\
|
||||||
Given an arbitrary number of points \(p_i\) alongside a line, we map a
|
Given an arbitrary number of points \(p_i\) alongside a line, we map a
|
||||||
@ -458,7 +458,7 @@ space \(M\) (usually \(M = \mathbb{R}\)) along a convergence--function
|
|||||||
|
|
||||||
Biologically speaking the set \(I\) corresponds to the set of possible
|
Biologically speaking the set \(I\) corresponds to the set of possible
|
||||||
\emph{Genotypes} while \(M\) represents the possible observable
|
\emph{Genotypes} while \(M\) represents the possible observable
|
||||||
\emph{Phenotypes}.
|
\emph{Phenotypes}. \improvement[inline]{Erklären, was das ist. Quellen!}
|
||||||
|
|
||||||
The main algorithm just repeats the following steps:
|
The main algorithm just repeats the following steps:
|
||||||
|
|
||||||
@ -486,9 +486,9 @@ The main algorithm just repeats the following steps:
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
All these functions can (and mostly do) have a lot of hidden parameters
|
All these functions can (and mostly do) have a lot of hidden parameters
|
||||||
that can be changed over time. One can for example start off with a high
|
that can be changed over time.
|
||||||
mutation--rate that cools off over time (i.e.~by lowering the variance
|
|
||||||
of a gaussian noise).
|
\improvement[inline]{Genauer: Welche? Wo? Wieso? ...}
|
||||||
|
|
||||||
\section{Advantages of evolutionary
|
\section{Advantages of evolutionary
|
||||||
algorithms}\label{advantages-of-evolutionary-algorithms}
|
algorithms}\label{advantages-of-evolutionary-algorithms}
|
||||||
@ -497,15 +497,10 @@ algorithms}\label{advantages-of-evolutionary-algorithms}
|
|||||||
|
|
||||||
The main advantage of evolutionary algorithms is the ability to find
|
The main advantage of evolutionary algorithms is the ability to find
|
||||||
optima of general functions just with the help of a given
|
optima of general functions just with the help of a given
|
||||||
fitness--function. With this most problems of simple gradient--based
|
fitness--function. Components and techniques for evolutionary algorithms
|
||||||
procedures, which often target the same error--function which measures
|
are specifically known to help with different problems arising in the
|
||||||
the fitness, as an evolutionary algorithm, but can easily get stuck in
|
domain of optimization\cite{weise2012evolutionary}. An overview of the
|
||||||
local optima.
|
typical problems are shown in figure \ref{fig:probhard}.
|
||||||
|
|
||||||
Components and techniques for evolutionary algorithms are specifically
|
|
||||||
known to help with different problems arising in the domain of
|
|
||||||
optimization\cite{weise2012evolutionary}. An overview of the typical
|
|
||||||
problems are shown in figure \ref{fig:probhard}.
|
|
||||||
|
|
||||||
\begin{figure}[!ht]
|
\begin{figure}[!ht]
|
||||||
\includegraphics[width=\textwidth]{img/weise_fig3.png}
|
\includegraphics[width=\textwidth]{img/weise_fig3.png}
|
||||||
@ -517,10 +512,13 @@ Most of the advantages stem from the fact that a gradient--based
|
|||||||
procedure has only one point of observation from where it evaluates the
|
procedure has only one point of observation from where it evaluates the
|
||||||
next steps, whereas an evolutionary strategy starts with a population of
|
next steps, whereas an evolutionary strategy starts with a population of
|
||||||
guessed solutions. Because an evolutionary strategy modifies the
|
guessed solutions. Because an evolutionary strategy modifies the
|
||||||
solution randomly, keeps the best solutions and purges the worst, it can
|
solution randomly, keeping the best solutions and purging the worst, it
|
||||||
also target multiple different hypothesis at the same time where the
|
can also target multiple different hypothesis at the same time where the
|
||||||
local optima die out in the face of other, better candidates.
|
local optima die out in the face of other, better candidates.
|
||||||
|
|
||||||
|
\improvement[inline]{Verweis auf MO-CMA etc. Vielleicht auch etwas
|
||||||
|
ausführlicher.}
|
||||||
|
|
||||||
If an analytic best solution exists and is easily computable
|
If an analytic best solution exists and is easily computable
|
||||||
(i.e.~because the error--function is convex) an evolutionary algorithm
|
(i.e.~because the error--function is convex) an evolutionary algorithm
|
||||||
is not the right choice. Although both converge to the same solution,
|
is not the right choice. Although both converge to the same solution,
|
||||||
@ -530,8 +528,9 @@ But in reality many problems have no analytic solution, because the
|
|||||||
problem is either not convex or there are so many parameters that an
|
problem is either not convex or there are so many parameters that an
|
||||||
analytic solution (mostly meaning the equivalence to an exhaustive
|
analytic solution (mostly meaning the equivalence to an exhaustive
|
||||||
search) is computationally not feasible. Here evolutionary optimization
|
search) is computationally not feasible. Here evolutionary optimization
|
||||||
has one more advantage as you can at least get suboptimal solutions
|
has one more advantage as one can at least get suboptimal solutions
|
||||||
fast, which then refine over time.
|
fast, which then refine over time and still converge to the same
|
||||||
|
solution.
|
||||||
|
|
||||||
\section{Criteria for the evolvability of linear
|
\section{Criteria for the evolvability of linear
|
||||||
deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
|
deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
|
||||||
@ -540,27 +539,26 @@ deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
|
|||||||
|
|
||||||
As we have established in chapter \ref{sec:back:ffd}, we can describe a
|
As we have established in chapter \ref{sec:back:ffd}, we can describe a
|
||||||
deformation by the formula \[
|
deformation by the formula \[
|
||||||
V = UP
|
\vec{V} = \vec{U}\vec{P}
|
||||||
\] where \(V\) is a \(n \times d\) matrix of vertices, \(U\) are the
|
\] where \(\vec{V}\) is a \(n \times d\) matrix of vertices, \(\vec{U}\)
|
||||||
(during parametrization) calculated deformation--coefficients and \(P\)
|
are the (during parametrization) calculated deformation--coefficients
|
||||||
is a \(m \times d\) matrix of control--points that we interact with
|
and \(P\) is a \(m \times d\) matrix of control--points that we interact
|
||||||
during deformation.
|
with during deformation.
|
||||||
|
|
||||||
We can also think of the deformation in terms of differences from the
|
We can also think of the deformation in terms of differences from the
|
||||||
original coordinates \[
|
original coordinates \[
|
||||||
\Delta V = U \cdot \Delta P
|
\Delta \vec{V} = \vec{U} \cdot \Delta \vec{P}
|
||||||
\] which is isomorphic to the former due to the linear correlation in
|
\] which is isomorphic to the former due to the linear correlation in
|
||||||
the deformation. One can see in this way, that the way the deformation
|
the deformation. One can see in this way, that the way the deformation
|
||||||
behaves lies solely in the entries of \(U\), which is why the three
|
behaves lies solely in the entries of \(\vec{U}\), which is why the
|
||||||
criteria focus on this.
|
three criteria focus on this.
|
||||||
|
|
||||||
\subsection{Variability}\label{variability}
|
\subsection{Variability}\label{variability}
|
||||||
|
|
||||||
In \cite{anrichterEvol} \emph{variability} is defined as
|
In \cite{anrichterEvol} \emph{variability} is defined as
|
||||||
\[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\)
|
\[\mathrm{variability}(\vec{U}) := \frac{\mathrm{rank}(\vec{U})}{n},\]
|
||||||
is the \(n \times m\) deformation--Matrix
|
whereby \(\vec{U}\) is the \(n \times m\) deformation--Matrix used to
|
||||||
\unsure{Nicht $(n\cdot d) \times m$? Wegen $u,v,w$?} used to map the
|
map the \(m\) control points onto the \(n\) vertices.
|
||||||
\(m\) control points onto the \(n\) vertices.
|
|
||||||
|
|
||||||
Given \(n = m\), an identical number of control--points and vertices,
|
Given \(n = m\), an identical number of control--points and vertices,
|
||||||
this quotient will be \(=1\) if all control points are independent of
|
this quotient will be \(=1\) if all control points are independent of
|
||||||
@ -570,10 +568,21 @@ onto a target--point.
|
|||||||
In praxis the value of \(V(\vec{U})\) is typically \(\ll 1\), because as
|
In praxis the value of \(V(\vec{U})\) is typically \(\ll 1\), because as
|
||||||
there are only few control--points for many vertices, so \(m \ll n\).
|
there are only few control--points for many vertices, so \(m \ll n\).
|
||||||
|
|
||||||
|
This criterion should correlate to the degrees of freedom the given
|
||||||
|
parametrization has. This can be seen from the fact, that
|
||||||
|
\(\mathrm{rank}(\vec{U})\) is limited by \(\min(m,n)\) and --- as \(n\)
|
||||||
|
is constant --- can never exceed \(n\).
|
||||||
|
|
||||||
|
The rank itself is also interesting, as control--points could
|
||||||
|
theoretically be placed on top of each other or be linear dependent in
|
||||||
|
another way --- but will in both cases lower the rank below the number
|
||||||
|
of control--points \(m\) and are thus measurable by the
|
||||||
|
\emph{variability}.
|
||||||
|
|
||||||
\subsection{Regularity}\label{regularity}
|
\subsection{Regularity}\label{regularity}
|
||||||
|
|
||||||
\emph{Regularity} is defined\cite{anrichterEvol} as
|
\emph{Regularity} is defined\cite{anrichterEvol} as
|
||||||
\[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\]
|
\[\mathrm{regularity}(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\]
|
||||||
where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and
|
where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and
|
||||||
greatest right singular value of the deformation--matrix \(\vec{U}\).
|
greatest right singular value of the deformation--matrix \(\vec{U}\).
|
||||||
|
|
||||||
@ -593,18 +602,21 @@ locality\cite{weise2012evolutionary,thorhauer2014locality}.
|
|||||||
\subsection{Improvement Potential}\label{improvement-potential}
|
\subsection{Improvement Potential}\label{improvement-potential}
|
||||||
|
|
||||||
In contrast to the general nature of \emph{variability} and
|
In contrast to the general nature of \emph{variability} and
|
||||||
\emph{regularity}, which are agnostic of the fitness--function at hand
|
\emph{regularity}, which are agnostic of the fitness--function at hand,
|
||||||
the third criterion should reflect a notion of potential.
|
the third criterion should reflect a notion of the potential for
|
||||||
|
optimization, taking a guess into account.
|
||||||
|
|
||||||
As during optimization some kind of gradient \(g\) is available to
|
Most of the times some kind of gradient \(g\) is available to suggest a
|
||||||
suggest a direction worth pursuing we use this to guess how much change
|
direction worth pursuing; either from a previous iteration or by
|
||||||
can be achieved in the given direction.
|
educated guessing. We use this to guess how much change can be achieved
|
||||||
|
in the given direction.
|
||||||
|
|
||||||
The definition for an \emph{improvement potential} \(P\)
|
The definition for an \emph{improvement potential} \(P\)
|
||||||
is\cite{anrichterEvol}: \[
|
is\cite{anrichterEvol}: \[
|
||||||
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F
|
\mathrm{potential}(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F
|
||||||
\] given some approximate \(n \times d\) fitness--gradient \(\vec{G}\),
|
\] \unsure[inline]{ist das $^2$ richtig?} given some approximate
|
||||||
normalized to \(\|\vec{G}\|_F = 1\), whereby \(\|\cdot\|_F\) denotes the
|
\(n \times d\) fitness--gradient \(\vec{G}\), normalized to
|
||||||
|
\(\|\vec{G}\|_F = 1\), whereby \(\|\cdot\|_F\) denotes the
|
||||||
Frobenius--Norm.
|
Frobenius--Norm.
|
||||||
|
|
||||||
\chapter{\texorpdfstring{Implementation of
|
\chapter{\texorpdfstring{Implementation of
|
||||||
@ -658,7 +670,8 @@ v_x \overset{!}{=} \sum_i N_{i,d,\tau_i}(u) c_i
|
|||||||
\] and do a gradient--descend to approximate the value of \(u\) up to an
|
\] and do a gradient--descend to approximate the value of \(u\) up to an
|
||||||
\(\epsilon\) of \(0.0001\).
|
\(\epsilon\) of \(0.0001\).
|
||||||
|
|
||||||
For this we use the Gauss--Newton algorithm\cite{gaussNewton} as the
|
For this we use the Gauss--Newton algorithm\cite{gaussNewton}
|
||||||
|
\todo[inline]{rewrite. falsch und wischi-waschi. Least squares?} as the
|
||||||
solution to this problem may not be deterministic, because we usually
|
solution to this problem may not be deterministic, because we usually
|
||||||
have way more vertices than control points (\(\#v~\gg~\#c\)).
|
have way more vertices than control points (\(\#v~\gg~\#c\)).
|
||||||
|
|
||||||
@ -727,13 +740,31 @@ With the Gauss--Newton algorithm we iterate via the formula
|
|||||||
and use Cramers rule for inverting the small Jacobian and solving this
|
and use Cramers rule for inverting the small Jacobian and solving this
|
||||||
system of linear equations.
|
system of linear equations.
|
||||||
|
|
||||||
|
As there is no strict upper bound of the number of iterations for this
|
||||||
|
algorithm, we just iterate it long enough to be within the given
|
||||||
|
\(\epsilon\)--error above. This takes --- depending on the shape of the
|
||||||
|
object and the grid --- about \(3\) to \(5\) iterations that we observed
|
||||||
|
in practice.
|
||||||
|
|
||||||
|
Another issue that we observed in our implementation is, that multiple
|
||||||
|
local optima may exist on self--intersecting grids. We solve this
|
||||||
|
problem by defining self--intersecting grids to be \emph{invalid} and do
|
||||||
|
not test any of them.
|
||||||
|
|
||||||
|
This is not such a big problem as it sounds at first, as
|
||||||
|
self--intersections mean, that control--points being further away from a
|
||||||
|
given vertex have more influence over the deformation than
|
||||||
|
control--points closer to this vertex. Also this contradicts the notion
|
||||||
|
of locality that we want to achieve and deemed beneficial for a good
|
||||||
|
behaviour of the evolutionary algorithm.
|
||||||
|
|
||||||
\section{Deformation Grid}\label{deformation-grid}
|
\section{Deformation Grid}\label{deformation-grid}
|
||||||
|
|
||||||
\label{sec:impl:grid}
|
\label{sec:impl:grid}
|
||||||
|
|
||||||
As mentioned in chapter \ref{sec:back:evo}, the way of choosing the
|
As mentioned in chapter \ref{sec:back:evo}, the way of choosing the
|
||||||
representation to map the general problem (mesh--fitting/optimization in
|
representation to map the general problem (mesh--fitting/optimization in
|
||||||
our case) into a parameter-space it very important for the quality and
|
our case) into a parameter-space is very important for the quality and
|
||||||
runtime of evolutionary algorithms\cite{Rothlauf2006}.
|
runtime of evolutionary algorithms\cite{Rothlauf2006}.
|
||||||
|
|
||||||
Because our control--points are arranged in a grid, we can accurately
|
Because our control--points are arranged in a grid, we can accurately
|
||||||
@ -742,10 +773,11 @@ B--Spline--coefficients between \([0,1[\) and --- as a consequence ---
|
|||||||
we have to embed our object into it (or create constant ``dummy''-points
|
we have to embed our object into it (or create constant ``dummy''-points
|
||||||
outside).
|
outside).
|
||||||
|
|
||||||
The great advantage of B--Splines is the locality, direct impact of each
|
The great advantage of B--Splines is the local, direct impact of each
|
||||||
control point without having a \(1:1\)--correlation, and a smooth
|
control point without having a \(1:1\)--correlation, and a smooth
|
||||||
deformation. While the advantages are great, the issues arise from the
|
deformation. While the advantages are great, the issues arise from the
|
||||||
problem to decide where to place the control--points and how many.
|
problem to decide where to place the control--points and how many to
|
||||||
|
place at all.
|
||||||
|
|
||||||
\begin{figure}[!tbh]
|
\begin{figure}[!tbh]
|
||||||
\centering
|
\centering
|
||||||
@ -760,7 +792,7 @@ control--points.}
|
|||||||
|
|
||||||
One would normally think, that the more control--points you add, the
|
One would normally think, that the more control--points you add, the
|
||||||
better the result will be, but this is not the case for our B--Splines.
|
better the result will be, but this is not the case for our B--Splines.
|
||||||
Given any point \(p\) only the \(2 \cdot (d-1)\) control--points
|
Given any point \(\vec{p}\) only the \(2 \cdot (d-1)\) control--points
|
||||||
contribute to the parametrization of that point\footnote{Normally these
|
contribute to the parametrization of that point\footnote{Normally these
|
||||||
are \(d-1\) to each side, but at the boundaries the number gets
|
are \(d-1\) to each side, but at the boundaries the number gets
|
||||||
increased to the inside to meet the required smoothness}. This means,
|
increased to the inside to meet the required smoothness}. This means,
|
||||||
@ -770,10 +802,21 @@ irrelevant to the solution.
|
|||||||
|
|
||||||
We illustrate this phenomenon in figure \ref{fig:enoughCP}, where the
|
We illustrate this phenomenon in figure \ref{fig:enoughCP}, where the
|
||||||
four red central points are not relevant for the parametrization of the
|
four red central points are not relevant for the parametrization of the
|
||||||
circle.
|
circle. This leads to artefacts in the deformation--matrix \(\vec{U}\),
|
||||||
|
as the columns corresponding to those control--points are \(0\).
|
||||||
|
|
||||||
\unsure[inline]{erwähnen, dass man aus $\vec{D}$ einfach die Null--Spalten
|
This leads to useless increased complexity, as the parameters
|
||||||
entfernen kann?}
|
corresponding to those points will never have any effect, but a naive
|
||||||
|
algorithm will still try to optimize them yielding numeric artefacts in
|
||||||
|
the best and non--terminating or ill--defined solutions\footnote{One
|
||||||
|
example would be, when parts of an algorithm depend on the inverse of
|
||||||
|
the minimal right singular value leading to a division by \(0\).} at
|
||||||
|
worst.
|
||||||
|
|
||||||
|
One can of course neglect those columns and their corresponding
|
||||||
|
control--points, but this raises the question why they were introduced
|
||||||
|
in the first place. We will address this in a special scenario in
|
||||||
|
\ref{sec:res:3d:var}.
|
||||||
|
|
||||||
For our tests we chose different uniformly sized grids and added noise
|
For our tests we chose different uniformly sized grids and added noise
|
||||||
onto each control-point\footnote{For the special case of the outer layer
|
onto each control-point\footnote{For the special case of the outer layer
|
||||||
@ -781,23 +824,21 @@ onto each control-point\footnote{For the special case of the outer layer
|
|||||||
confined in the convex hull of the control--points.} to simulate
|
confined in the convex hull of the control--points.} to simulate
|
||||||
different starting-conditions.
|
different starting-conditions.
|
||||||
|
|
||||||
\unsure[inline]{verweis auf DM--FFD?}
|
|
||||||
|
|
||||||
\chapter{\texorpdfstring{Scenarios for testing evolvability criteria
|
\chapter{\texorpdfstring{Scenarios for testing evolvability criteria
|
||||||
using
|
using
|
||||||
\acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
|
\ac{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
|
||||||
|
|
||||||
\label{sec:eval}
|
\label{sec:eval}
|
||||||
|
|
||||||
In our experiments we use the same two testing--scenarios, that were
|
In our experiments we use the same two testing--scenarios, that were
|
||||||
also used by \cite{anrichterEvol}. The first scenario deforms a plane
|
also used by \cite{anrichterEvol}. The first scenario deforms a plane
|
||||||
into a shape originally defined in \cite{giannelli2012thb}, where we
|
into a shape originally defined in \cite{giannelli2012thb}, where we
|
||||||
setup control-points in a 2--dimensional manner merely deform in the
|
setup control-points in a 2--dimensional manner and merely deform in the
|
||||||
height--coordinate to get the resulting shape.
|
height--coordinate to get the resulting shape.
|
||||||
|
|
||||||
In the second scenario we increase the degrees of freedom significantly
|
In the second scenario we increase the degrees of freedom significantly
|
||||||
by using a 3--dimensional control--grid to deform a sphere into a face.
|
by using a 3--dimensional control--grid to deform a sphere into a face,
|
||||||
So each control point has three degrees of freedom in contrast to first
|
so each control point has three degrees of freedom in contrast to first
|
||||||
scenario.
|
scenario.
|
||||||
|
|
||||||
\section{Test Scenario: 1D Function
|
\section{Test Scenario: 1D Function
|
||||||
@ -835,12 +876,12 @@ As the starting-plane we used the same shape, but set all
|
|||||||
\(z\)--coordinates to \(0\), yielding a flat plane, which is partially
|
\(z\)--coordinates to \(0\), yielding a flat plane, which is partially
|
||||||
already correct.
|
already correct.
|
||||||
|
|
||||||
Regarding the \emph{fitness--function} \(f(\vec{p})\), we use the very
|
Regarding the \emph{fitness--function} \(\mathrm{f}(\vec{p})\), we use
|
||||||
simple approach of calculating the squared distances for each
|
the very simple approach of calculating the squared distances for each
|
||||||
corresponding vertex
|
corresponding vertex
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\textrm{f(\vec{p})} = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min
|
\mathrm{f}(\vec{p}) = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
where \(t_i\) are the respective target--vertices to the parametrized
|
where \(t_i\) are the respective target--vertices to the parametrized
|
||||||
@ -862,9 +903,9 @@ Approximation}\label{test-scenario-3d-function-approximation}
|
|||||||
|
|
||||||
\label{sec:test:3dfa} Opposed to the 1--dimensional scenario before, the
|
\label{sec:test:3dfa} Opposed to the 1--dimensional scenario before, the
|
||||||
3--dimensional scenario is much more complex --- not only because we
|
3--dimensional scenario is much more complex --- not only because we
|
||||||
have more degrees of freedom on each control point, but also because the
|
have more degrees of freedom on each control point, but also, because
|
||||||
\emph{fitness--function} we will use has no known analytic solution and
|
the \emph{fitness--function} we will use has no known analytic solution
|
||||||
multiple local minima.
|
and multiple local minima.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -884,12 +925,13 @@ Both of these Models can be seen in figure \ref{fig:3dtarget}.
|
|||||||
Opposed to the 1D--case we cannot map the source and target--vertices in
|
Opposed to the 1D--case we cannot map the source and target--vertices in
|
||||||
a one--to--one--correspondence, which we especially need for the
|
a one--to--one--correspondence, which we especially need for the
|
||||||
approximation of the fitting--error. Hence we state that the error of
|
approximation of the fitting--error. Hence we state that the error of
|
||||||
one vertex is the distance to the closest vertex of the other model.
|
one vertex is the distance to the closest vertex of the other model and
|
||||||
|
sum up the error from the respective source and target.
|
||||||
|
|
||||||
We therefore define the \emph{fitness--function} to be:
|
We therefore define the \emph{fitness--function} to be:
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
f(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} -
|
\mathrm{f}(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} -
|
||||||
\vec{s_i}\|_2^2}_{\textrm{source-to-target--distance}}
|
\vec{s_i}\|_2^2}_{\textrm{source-to-target--distance}}
|
||||||
+ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} -
|
+ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} -
|
||||||
\vec{t_i}\|_2^2}_{\textrm{target-to-source--distance}}
|
\vec{t_i}\|_2^2}_{\textrm{target-to-source--distance}}
|
||||||
@ -916,10 +958,11 @@ al.\cite[Section 3.2]{aschenbach2015} on similar models and was shown to
|
|||||||
lead to a more precise fit. The Laplacian
|
lead to a more precise fit. The Laplacian
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\textrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s_j} \in \mathcal{N}(\vec{s_i})} w_j \cdot \|\Delta \vec{s_j} - \Delta \vec{\overline{s}_j}\|^2 \right)
|
\mathrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s_j} \in \mathcal{N}(\vec{s_i})} w_j \cdot \|\Delta \vec{s_j} - \Delta \vec{\overline{s}_j}\|^2 \right)
|
||||||
\label{eq:reg3d}
|
\label{eq:reg3d}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
\unsure[inline]{was ist $\vec{\overline{s}_j}$? Zentrum? eigentlich $s_i$?}
|
||||||
is determined by the cotangent weighted displacement \(w_j\) of the to
|
is determined by the cotangent weighted displacement \(w_j\) of the to
|
||||||
\(s_i\) connected vertices \(\mathcal{N}(s_i)\) and \(A_i\) is the
|
\(s_i\) connected vertices \(\mathcal{N}(s_i)\) and \(A_i\) is the
|
||||||
Voronoi--area of the corresponding vertex \(\vec{s_i}\). We leave out
|
Voronoi--area of the corresponding vertex \(\vec{s_i}\). We leave out
|
||||||
@ -941,21 +984,22 @@ al.\cite{anrichterEvol}, we also use Spearman's rank correlation
|
|||||||
coefficient. Opposed to other popular coefficients, like the Pearson
|
coefficient. Opposed to other popular coefficients, like the Pearson
|
||||||
correlation coefficient, which measures a linear relationship between
|
correlation coefficient, which measures a linear relationship between
|
||||||
variables, the Spearmans's coefficient assesses \glqq how well an
|
variables, the Spearmans's coefficient assesses \glqq how well an
|
||||||
arbitrary monotonic function can descripbe the relationship between two
|
arbitrary monotonic function can describe the relationship between two
|
||||||
variables, without making any assumptions about the frequency
|
variables, without making any assumptions about the frequency
|
||||||
distribution of the variables\grqq\cite{hauke2011comparison}.
|
distribution of the variables\grqq\cite{hauke2011comparison}.
|
||||||
|
|
||||||
As we don't have any prior knowledge if any of the criteria is linear
|
As we don't have any prior knowledge if any of the criteria is linear
|
||||||
and we are just interested in a monotonic relation between the criteria
|
and we are just interested in a monotonic relation between the criteria
|
||||||
and their predictive power, the Spearman's coefficient seems to fit out
|
and their predictive power, the Spearman's coefficient seems to fit out
|
||||||
scenario best.
|
scenario best and was also used before by Richter et
|
||||||
|
al.\cite{anrichterEvol}
|
||||||
|
|
||||||
For interpretation of these values we follow the same interpretation
|
For interpretation of these values we follow the same interpretation
|
||||||
used in \cite{anrichterEvol}, based on \cite{weir2015spearman}: The
|
used in \cite{anrichterEvol}, based on \cite{weir2015spearman}: The
|
||||||
coefficient intervals \(r_S \in [0,0.2[\), \([0.2,0.4[\), \([0.4,0.6[\),
|
coefficient intervals \(r_S \in [0,0.2[\), \([0.2,0.4[\), \([0.4,0.6[\),
|
||||||
\([0.6,0.8[\), and \([0.8,1]\) are classified as \emph{very weak},
|
\([0.6,0.8[\), and \([0.8,1]\) are classified as \emph{very weak},
|
||||||
\emph{weak}, \emph{moderate}, \emph{strong} and \emph{very strong}. We
|
\emph{weak}, \emph{moderate}, \emph{strong} and \emph{very strong}. We
|
||||||
interpret p--values smaller than \(0.1\) as \emph{significant} and cut
|
interpret p--values smaller than \(0.01\) as \emph{significant} and cut
|
||||||
off the precision of p--values after four decimal digits (thus often
|
off the precision of p--values after four decimal digits (thus often
|
||||||
having a p--value of \(0\) given for p--values \(< 10^{-4}\)).
|
having a p--value of \(0\) given for p--values \(< 10^{-4}\)).
|
||||||
|
|
||||||
@ -984,8 +1028,9 @@ use as guess for the \emph{improvement potential}. To check we also
|
|||||||
consider a distorted gradient \(\vec{g}_{\textrm{d}}\) \[
|
consider a distorted gradient \(\vec{g}_{\textrm{d}}\) \[
|
||||||
\vec{g}_{\textrm{d}} = \frac{\vec{g}_{\textrm{c}} + \mathbb{1}}{\|\vec{g}_{\textrm{c}} + \mathbb{1}\|}
|
\vec{g}_{\textrm{d}} = \frac{\vec{g}_{\textrm{c}} + \mathbb{1}}{\|\vec{g}_{\textrm{c}} + \mathbb{1}\|}
|
||||||
\] where \(\mathbb{1}\) is the vector consisting of \(1\) in every
|
\] where \(\mathbb{1}\) is the vector consisting of \(1\) in every
|
||||||
dimension and \(\vec{g}_\textrm{c} = \vec{p^{*}}\) the calculated
|
dimension and \(\vec{g}_\textrm{c} = \vec{p^{*}} - \vec{p}\) the
|
||||||
correct gradient.
|
calculated correct gradient. As we always start with a gradient of
|
||||||
|
\(\mathbb{0}\) this shortens to \(\vec{g}_\textrm{c} = \vec{p^{*}}\).
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[ht]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -1000,11 +1045,8 @@ We then set up a regular 2--dimensional grid around the object with the
|
|||||||
desired grid resolutions. To generate a testcase we then move the
|
desired grid resolutions. To generate a testcase we then move the
|
||||||
grid--vertices randomly inside the x--y--plane. As self-intersecting
|
grid--vertices randomly inside the x--y--plane. As self-intersecting
|
||||||
grids get tricky to solve with our implemented newtons--method we avoid
|
grids get tricky to solve with our implemented newtons--method we avoid
|
||||||
the generation of such self--intersecting grids for our testcases.
|
the generation of such self--intersecting grids for our testcases (see
|
||||||
|
section \ref{3dffd}).
|
||||||
This is a reasonable thing to do, as self-intersecting grids violate our
|
|
||||||
desired property of locality, as the then farther away control--point
|
|
||||||
has more influence over some vertices as the next-closer.
|
|
||||||
|
|
||||||
To achieve that we select a uniform distributed number
|
To achieve that we select a uniform distributed number
|
||||||
\(r \in [-0.25,0.25]\) per dimension and shrink the distance to the
|
\(r \in [-0.25,0.25]\) per dimension and shrink the distance to the
|
||||||
@ -1026,22 +1068,23 @@ to experimentally evaluate the quality criteria we introduced before. As
|
|||||||
an evolutional optimization is partially a random process, we use the
|
an evolutional optimization is partially a random process, we use the
|
||||||
analytical solution as a stopping-criteria. We measure the convergence
|
analytical solution as a stopping-criteria. We measure the convergence
|
||||||
speed as number of iterations the evolutional algorithm needed to get
|
speed as number of iterations the evolutional algorithm needed to get
|
||||||
within \(1.05\%\) of the optimal solution.
|
within \(1.05 \times\) of the optimal solution.
|
||||||
|
|
||||||
We used different regular grids that we manipulated as explained in
|
We used different regular grids that we manipulated as explained in
|
||||||
Section \ref{sec:proc:1d} with a different number of control points. As
|
Section \ref{sec:proc:1d} with a different number of control points. As
|
||||||
our grids have to be the product of two integers, we compared a
|
our grids have to be the product of two integers, we compared a
|
||||||
\(5 \times 5\)--grid with \(25\) control--points to a \(4 \times 7\) and
|
\(5 \times 5\)--grid with \(25\) control--points to a \(4 \times 7\) and
|
||||||
\(7 \times 4\)--grid with \(28\) control--points. This was done to
|
\(7 \times 4\)--grid with \(28\) control--points. This was done to
|
||||||
measure the impact an \glqq improper\grqq
|
measure the impact an \glqq improper\grqq ~ setup could have and how
|
||||||
setup could have and how well this is displayed in the criteria we are
|
well this is displayed in the criteria we are examining.
|
||||||
examining.
|
|
||||||
|
|
||||||
Additionally we also measured the effect of increasing the total
|
Additionally we also measured the effect of increasing the total
|
||||||
resolution of the grid by taking a closer look at \(5 \times 5\),
|
resolution of the grid by taking a closer look at \(5 \times 5\),
|
||||||
\(7 \times 7\) and \(10 \times 10\) grids.
|
\(7 \times 7\) and \(10 \times 10\) grids.
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\subsection{Variability}\label{variability-1}
|
||||||
|
|
||||||
|
\begin{figure}[tbh]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.7\textwidth]{img/evolution1d/variability_boxplot.png}
|
\includegraphics[width=0.7\textwidth]{img/evolution1d/variability_boxplot.png}
|
||||||
\caption[1D Fitting Errors for various grids]{The squared error for the various
|
\caption[1D Fitting Errors for various grids]{The squared error for the various
|
||||||
@ -1050,8 +1093,6 @@ Note that $7 \times 4$ and $4 \times 7$ have the same number of control--points.
|
|||||||
\label{fig:1dvar}
|
\label{fig:1dvar}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\subsection{Variability}\label{variability-1}
|
|
||||||
|
|
||||||
Variability should characterize the potential for design space
|
Variability should characterize the potential for design space
|
||||||
exploration and is defined in terms of the normalized rank of the
|
exploration and is defined in terms of the normalized rank of the
|
||||||
deformation matrix \(\vec{U}\):
|
deformation matrix \(\vec{U}\):
|
||||||
@ -1063,11 +1104,12 @@ plotted the errors in the boxplot in figure \ref{fig:1dvar}
|
|||||||
It is also noticeable, that although the \(7 \times 4\) and
|
It is also noticeable, that although the \(7 \times 4\) and
|
||||||
\(4 \times 7\) grids have a higher variability, they perform not better
|
\(4 \times 7\) grids have a higher variability, they perform not better
|
||||||
than the \(5 \times 5\) grid. Also the \(7 \times 4\) and \(4 \times 7\)
|
than the \(5 \times 5\) grid. Also the \(7 \times 4\) and \(4 \times 7\)
|
||||||
grids differ distinctly from each other, although they have the same
|
grids differ distinctly from each other with a mean\(\pm\)sigma of
|
||||||
number of control--points. This is an indication the impact a proper or
|
\(233.09 \pm 12.32\) for the former and \(286.32 \pm 22.36\) for the
|
||||||
improper grid--setup can have. We do not draw scientific conclusions
|
latter, although they have the same number of control--points. This is
|
||||||
from these findings, as more research on non-squared grids seem
|
an indication of an impact a proper or improper grid--setup can have. We
|
||||||
necessary.\todo{machen wir die noch? :D}
|
do not draw scientific conclusions from these findings, as more research
|
||||||
|
on non-squared grids seem necessary.
|
||||||
|
|
||||||
Leaving the issue of the grid--layout aside we focused on grids having
|
Leaving the issue of the grid--layout aside we focused on grids having
|
||||||
the same number of prototypes in every dimension. For the
|
the same number of prototypes in every dimension. For the
|
||||||
@ -1077,7 +1119,7 @@ variability and the evolutionary error.
|
|||||||
|
|
||||||
\subsection{Regularity}\label{regularity-1}
|
\subsection{Regularity}\label{regularity-1}
|
||||||
|
|
||||||
\begin{figure}[ht]
|
\begin{figure}[tbh]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution1d/55_to_1010_steps.png}
|
\includegraphics[width=\textwidth]{img/evolution1d/55_to_1010_steps.png}
|
||||||
\caption[Improvement potential and regularity vs. steps]{\newline
|
\caption[Improvement potential and regularity vs. steps]{\newline
|
||||||
@ -1185,14 +1227,15 @@ control--points.}
|
|||||||
For the next step we then halve the regularization--impact \(\lambda\)
|
For the next step we then halve the regularization--impact \(\lambda\)
|
||||||
(starting at \(1\)) of our \emph{fitness--function} (\ref{eq:fit3d}) and
|
(starting at \(1\)) of our \emph{fitness--function} (\ref{eq:fit3d}) and
|
||||||
calculate the next incremental solution
|
calculate the next incremental solution
|
||||||
\(\vec{P^{*}} = \vec{U^+}\vec{T}\) with the updated correspondences to
|
\(\vec{P^{*}} = \vec{U^+}\vec{T}\) with the updated correspondences
|
||||||
get our next target--error. We repeat this process as long as the
|
(again, mapping each vertex to its closest neighbour in the respective
|
||||||
target--error keeps decreasing and use the number of these iterations as
|
other model) to get our next target--error. We repeat this process as
|
||||||
measure of the convergence speed. As the resulting evolutional error
|
long as the target--error keeps decreasing and use the number of these
|
||||||
without regularization is in the numeric range of \(\approx 100\),
|
iterations as measure of the convergence speed. As the resulting
|
||||||
whereas the regularization is numerically \(\approx 7000\) we need at
|
evolutional error without regularization is in the numeric range of
|
||||||
least \(10\) to \(15\) iterations until the regularization--effect wears
|
\(\approx 100\), whereas the regularization is numerically
|
||||||
off.
|
\(\approx 7000\) we need at least \(10\) to \(15\) iterations until the
|
||||||
|
regularization--effect wears off.
|
||||||
|
|
||||||
The grid we use for our experiments is just very coarse due to
|
The grid we use for our experiments is just very coarse due to
|
||||||
computational limitations. We are not interested in a good
|
computational limitations. We are not interested in a good
|
||||||
@ -1201,10 +1244,10 @@ are good.
|
|||||||
|
|
||||||
In figure \ref{fig:setup3d} we show an example setup of the scene with a
|
In figure \ref{fig:setup3d} we show an example setup of the scene with a
|
||||||
\(4\times 4\times 4\)--grid. Identical to the 1--dimensional scenario
|
\(4\times 4\times 4\)--grid. Identical to the 1--dimensional scenario
|
||||||
before, we create a regular grid and move the control-points \todo{wie?}
|
before, we create a regular grid and move the control-points
|
||||||
random between their neighbours, but in three instead of two
|
\improvement{Beschreiben wie} random between their neighbours, but in
|
||||||
dimensions\footnote{Again, we flip the signs for the edges, if necessary
|
three instead of two dimensions\footnote{Again, we flip the signs for
|
||||||
to have the object still in the convex hull.}.
|
the edges, if necessary to have the object still in the convex hull.}.
|
||||||
|
|
||||||
\begin{figure}[!htb]
|
\begin{figure}[!htb]
|
||||||
\includegraphics[width=\textwidth]{img/3d_grid_resolution.png}
|
\includegraphics[width=\textwidth]{img/3d_grid_resolution.png}
|
||||||
@ -1250,6 +1293,8 @@ control--points.}
|
|||||||
|
|
||||||
\subsection{Variability}\label{variability-2}
|
\subsection{Variability}\label{variability-2}
|
||||||
|
|
||||||
|
\label{sec:res:3d:var}
|
||||||
|
|
||||||
\begin{table}[tbh]
|
\begin{table}[tbh]
|
||||||
\centering
|
\centering
|
||||||
\begin{tabular}{c|c|c|c}
|
\begin{tabular}{c|c|c|c}
|
||||||
@ -1288,13 +1333,14 @@ the variability via the rank of the deformation--matrix.
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.8\textwidth]{img/evolution3d/variability2_boxplot.png}
|
\includegraphics[width=0.8\textwidth]{img/evolution3d/variability2_boxplot.png}
|
||||||
\caption[Histogram of ranks of high--resolution deformation--matrices]{
|
\caption[Histogram of ranks of high--resolution deformation--matrices]{
|
||||||
Histogram of ranks of various $10 \times 10 \times 10$ grids.
|
Histogram of ranks of various $10 \times 10 \times 10$ grids with $1000$
|
||||||
|
control--points each.
|
||||||
}
|
}
|
||||||
\label{fig:histrank3d}
|
\label{fig:histrank3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
Overall the correlation between variability and fitness--error were
|
Overall the correlation between variability and fitness--error were
|
||||||
\emph{significantly} and showed a \emph{very strong} correlation in all
|
\emph{significant} and showed a \emph{very strong} correlation in all
|
||||||
our tests. The detailed correlation--coefficients are given in table
|
our tests. The detailed correlation--coefficients are given in table
|
||||||
\ref{tab:3dvar} alongside their p--values.
|
\ref{tab:3dvar} alongside their p--values.
|
||||||
|
|
||||||
@ -1354,20 +1400,22 @@ between regularity and number of iterations for the 3D fitting scenario.
|
|||||||
Displayed are the negated Spearman coefficients with the corresponding p--values
|
Displayed are the negated Spearman coefficients with the corresponding p--values
|
||||||
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
||||||
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
||||||
\label{tab:3dvar}
|
\label{tab:3dreg}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
Opposed to the predictions of variability our test on regularity gave a
|
Opposed to the predictions of variability our test on regularity gave a
|
||||||
mixed result --- similar to the 1D--case.
|
mixed result --- similar to the 1D--case.
|
||||||
|
|
||||||
In half scenarios we have a \emph{significant}, but \emph{weak} to
|
In roughly half of the scenarios we have a \emph{significant}, but
|
||||||
\emph{moderate} correlation between regularity and number of iterations.
|
\emph{weak} to \emph{moderate} correlation between regularity and number
|
||||||
On the other hand in the scenarios where we increased the number of
|
of iterations. On the other hand in the scenarios where we increased the
|
||||||
control--points, namely \(125\) for the \(5 \times 5 \times 5\) grid and
|
number of control--points, namely \(125\) for the
|
||||||
\(216\) for the \(6 \times 6 \times 6\) grid we found a
|
\(5 \times 5 \times 5\) grid and \(216\) for the \(6 \times 6 \times 6\)
|
||||||
\emph{significant}, but \emph{weak} anti--correlation, which seem to
|
grid we found a \emph{significant}, but \emph{weak}
|
||||||
|
\textbf{anti}--correlation when taking all three tests into
|
||||||
|
account\footnote{Displayed as \(Y \times Y \times Y\)}, which seem to
|
||||||
contradict the findings/trends for the sets with \(64\), \(80\), and
|
contradict the findings/trends for the sets with \(64\), \(80\), and
|
||||||
\(112\) control--points (first two rows of table \ref{tab:3dvar}).
|
\(112\) control--points (first two rows of table \ref{tab:3dreg}).
|
||||||
|
|
||||||
Taking all results together we only find a \emph{very weak}, but
|
Taking all results together we only find a \emph{very weak}, but
|
||||||
\emph{significant} link between regularity and the number of iterations
|
\emph{significant} link between regularity and the number of iterations
|
||||||
@ -1377,22 +1425,79 @@ needed for the algorithm to converge.
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution3d/regularity_montage.png}
|
\includegraphics[width=\textwidth]{img/evolution3d/regularity_montage.png}
|
||||||
\caption[Regularity for different 3D--grids]{
|
\caption[Regularity for different 3D--grids]{
|
||||||
**BLINDTEXT**
|
Plots of regularity against number of iterations for various scenarios together
|
||||||
}
|
with a linear fit to indicate trends.}
|
||||||
\label{fig:resreg3d}
|
\label{fig:resreg3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
As can be seen from figure \ref{fig:resreg3d}, we can
|
As can be seen from figure \ref{fig:resreg3d}, we can observe that
|
||||||
observe\todo{things}.
|
increasing the number of control--points helps the convergence--speeds.
|
||||||
|
The regularity--criterion first behaves as we would like to, but then
|
||||||
|
switches to behave exactly opposite to our expectations, as can be seen
|
||||||
|
in the first three plots. While the number of control--points increases
|
||||||
|
from red to green to blue and the number of iterations decreases, the
|
||||||
|
regularity seems to increase at first, but then decreases again on
|
||||||
|
higher grid--resolutions.
|
||||||
|
|
||||||
|
This can be an artefact of the definition of regularity, as it is
|
||||||
|
defined by the inverse condition--number of the deformation--matrix
|
||||||
|
\(\vec{U}\), being the fraction
|
||||||
|
\(\frac{\sigma_{\mathrm{min}}}{\sigma_{\mathrm{max}}}\) between the
|
||||||
|
least and greatest right singular value.
|
||||||
|
|
||||||
|
As we observed in the previous section, we cannot guarantee that each
|
||||||
|
control--point has an effect (see figure \ref{fig:histrank3d}) and so a
|
||||||
|
small minimal right singular value occurring on higher grid--resolutions
|
||||||
|
seems likely the problem.
|
||||||
|
|
||||||
|
Adding to this we also noted, that in the case of the
|
||||||
|
\(10 \times 10 \times 10\)--grid the regularity was always \(0\), as a
|
||||||
|
non--contributing control-point yields a \(0\)--column in the
|
||||||
|
deformation--matrix, thus letting \(\sigma_\mathrm{min} = 0\). A better
|
||||||
|
definition for regularity (i.e.~using the smallest non--zero right
|
||||||
|
singular value) could solve this particular issue, but not fix the trend
|
||||||
|
we noticed above.
|
||||||
|
|
||||||
\subsection{Improvement Potential}\label{improvement-potential-2}
|
\subsection{Improvement Potential}\label{improvement-potential-2}
|
||||||
|
|
||||||
|
\begin{table}[tbh]
|
||||||
|
\centering
|
||||||
|
\begin{tabular}{c|c|c|c}
|
||||||
|
& $5 \times 4 \times 4$ & $7 \times 4 \times 4$ & $\mathrm{X} \times 4 \times 4$ \\
|
||||||
|
\cline{2-4}
|
||||||
|
& 0.3 (0.0023) & \textcolor{red}{0.23} (0.0233) & 0.89 (0) \B \\
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\hline
|
||||||
|
$4 \times 4 \times 4$ & $4 \times 4 \times 5$ & $4 \times 4 \times 7$ & $4 \times 4 \times \mathrm{X}$ \T \\
|
||||||
|
\hline
|
||||||
|
0.5 (0) & 0.38 (0) & 0.32 (0.0012) & 0.9 (0) \B \\
|
||||||
|
\hline
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\cline{2-4}
|
||||||
|
& $5 \times 5 \times 5$ & $6 \times 6 \times 6$ & $\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}$ \T \\
|
||||||
|
\cline{2-4}
|
||||||
|
& 0.47 (0) & \textcolor{red}{-0.01} (0.8803) & 0.89 (0) \B \\
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{4}{c}{} \\[-1.4em]
|
||||||
|
\cline{2-4}
|
||||||
|
\multicolumn{3}{c}{} & all: 0.95 (0) \T
|
||||||
|
\end{tabular}
|
||||||
|
\caption[Correlation between improvement--potential and fitting--error for 3D]{Correlation
|
||||||
|
between improvement--potential and fitting--error for the 3D fitting scenario.
|
||||||
|
Displayed are the negated Spearman coefficients with the corresponding p--values
|
||||||
|
in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$).
|
||||||
|
\newline Note: Not significant results are marked in \textcolor{red}{red}.}
|
||||||
|
\label{tab:3dimp}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
\begin{figure}[!htb]
|
\begin{figure}[!htb]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{img/evolution3d/improvement_montage.png}
|
\includegraphics[width=\textwidth]{img/evolution3d/improvement_montage.png}
|
||||||
\caption[Improvement potential for different 3D--grids]{
|
\caption[Improvement potential for different 3D--grids]{
|
||||||
**BLINDTEXT**
|
Plots of improvement potential against error given by our fitness--function
|
||||||
}
|
after convergence together with a linear fit of each of the plotted data to
|
||||||
|
indicate trends.}
|
||||||
\label{fig:resimp3d}
|
\label{fig:resimp3d}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -1407,7 +1512,8 @@ observe\todo{things}.
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\improvement[inline]{Bibliotheksverzeichnis links anpassen. DOI überschreibt
|
\improvement[inline]{Bibliotheksverzeichnis links anpassen. DOI überschreibt
|
||||||
Direktlinks des Autors.}
|
Direktlinks des Autors.\newline
|
||||||
|
Außerdem bricht url über Seitengrenzen den Seitenspiegel.}
|
||||||
|
|
||||||
% \backmatter
|
% \backmatter
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
26
dokumentation/evolution1d/R_mean_med_sigma.sh
Executable file
@ -0,0 +1,26 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# regularity,variability,improvement,"Evolution error",steps
|
||||||
|
# 6.57581e-05,0.00592209,0.622392,113.016,2368
|
||||||
|
|
||||||
|
if [[ -f "$2" ]]; then
|
||||||
|
|
||||||
|
R -q --slave --vanilla <<EOF
|
||||||
|
print("================ Analyzing $2")
|
||||||
|
#library(Hmisc)
|
||||||
|
DF=as.matrix(read.csv("$2",header=TRUE))
|
||||||
|
print("Mean:")
|
||||||
|
mean(DF[,$1])
|
||||||
|
print("Median:")
|
||||||
|
median(DF[,$1])
|
||||||
|
print("Sigma:")
|
||||||
|
sd(DF[,$1])
|
||||||
|
print("Range:")
|
||||||
|
range(DF[,$1])
|
||||||
|
EOF
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
echo "Usage: $0 <column> <Filename.csv>"
|
||||||
|
fi
|
||||||
|
|
@ -1,4 +1,4 @@
|
|||||||
"5x5","7x4","4x7","7x7","10x10"
|
"5x5","4x7","7x4","7x7","10x10"
|
||||||
218.554,280.917,211.096,126.241,15.0742
|
218.554,280.917,211.096,126.241,15.0742
|
||||||
215.888,315.729,233.828,110.962,19.0281
|
215.888,315.729,233.828,110.962,19.0281
|
||||||
274.375,264.639,205.276,125.853,11.8948
|
274.375,264.639,205.276,125.853,11.8948
|
||||||
|
|
Before Width: | Height: | Size: 5.1 KiB After Width: | Height: | Size: 5.1 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:40 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5
|
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.992 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:40 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5
|
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -1.000 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:40 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4
|
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4
|
||||||
@ -136,3 +136,49 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.39893e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707119
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 2447.69
|
||||||
|
rel. change during last iteration : -3.53005e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 4.99764
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 24.9765
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.69981 +/- 9.656e+16 (5.681e+18%)
|
||||||
|
bbbb = 119.169 +/- 5.718e+14 (4.798e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
@ -270,3 +270,69 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.39893e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707119
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 2482.26 delta(WSSR)/WSSR : -562.573
|
||||||
|
delta(WSSR) : -1.39645e+06 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707119
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.69632
|
||||||
|
bbbb = 118.581
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 2447.69 delta(WSSR)/WSSR : -0.0141217
|
||||||
|
delta(WSSR) : -34.5656 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707119
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.69981
|
||||||
|
bbbb = 119.169
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 2447.69 delta(WSSR)/WSSR : -3.53005e-11
|
||||||
|
delta(WSSR) : -8.64047e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707119
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.69981
|
||||||
|
bbbb = 119.169
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 2447.69
|
||||||
|
rel. change during last iteration : -3.53005e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 4.99764
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 24.9765
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.69981 +/- 9.656e+16 (5.681e+18%)
|
||||||
|
bbbb = 119.169 +/- 5.718e+14 (4.798e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.00592209:0.00592209], adjusting to [0.00586287:0.00598131]
|
||||||
|
@ -2,19 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20170926_3dFit_4x4x4_100times_regularity-vs-steps.png"
|
set output "20170926_3dFit_4x4x4_100times_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20170926_3dFit_4x4x4_100times_improvement-vs-steps.png"
|
set output "20170926_3dFit_4x4x4_100times_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20170926_3dFit_4x4x4_100times_improvement-vs-evo-error.png"
|
set output "20170926_3dFit_4x4x4_100times_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20170926_3dFit_4x4x4_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.4 KiB |
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.2 KiB |
Before Width: | Height: | Size: 5.6 KiB After Width: | Height: | Size: 5.9 KiB |
After Width: | Height: | Size: 5.0 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:42 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5
|
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.970 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:42 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5
|
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -1.000 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sun Oct 1 20:12:42 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4
|
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4
|
||||||
@ -136,3 +136,49 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 582860 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707154
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4883.49
|
||||||
|
rel. change during last iteration : -7.32216e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.05915
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 49.8315
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.87923 +/- 6.796e+16 (3.616e+18%)
|
||||||
|
bbbb = 77.0146 +/- 7.861e+14 (1.021e+15%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
@ -226,3 +226,69 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 582860 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707154
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 4897.8 delta(WSSR)/WSSR : -118.005
|
||||||
|
delta(WSSR) : -577962 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707154
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.87486
|
||||||
|
bbbb = 76.6364
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 4883.49 delta(WSSR)/WSSR : -0.00292946
|
||||||
|
delta(WSSR) : -14.306 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707154
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.87923
|
||||||
|
bbbb = 77.0146
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 4883.49 delta(WSSR)/WSSR : -7.32216e-12
|
||||||
|
delta(WSSR) : -3.57577e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707154
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.87923
|
||||||
|
bbbb = 77.0146
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4883.49
|
||||||
|
rel. change during last iteration : -7.32216e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.05915
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 49.8315
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.87923 +/- 6.796e+16 (3.616e+18%)
|
||||||
|
bbbb = 77.0146 +/- 7.861e+14 (1.021e+15%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.0115666:0.0115666], adjusting to [0.0114509:0.0116823]
|
||||||
|
@ -2,19 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20170926_3dFit_5x5x5_100times_regularity-vs-steps.png"
|
set output "20170926_3dFit_5x5x5_100times_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20170926_3dFit_5x5x5_100times_improvement-vs-steps.png"
|
set output "20170926_3dFit_5x5x5_100times_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20170926_3dFit_5x5x5_100times_improvement-vs-evo-error.png"
|
set output "20170926_3dFit_5x5x5_100times_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20170926_3dFit_5x5x5_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.3 KiB |
Before Width: | Height: | Size: 5.3 KiB After Width: | Height: | Size: 5.6 KiB |
Before Width: | Height: | Size: 5.0 KiB After Width: | Height: | Size: 5.4 KiB |
After Width: | Height: | Size: 4.9 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:52 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5
|
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.986 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:52 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5
|
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -1.000 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:52 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4
|
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4
|
||||||
@ -136,3 +136,49 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.04253e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707126
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4497.91
|
||||||
|
rel. change during last iteration : -1.42792e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.77474
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 45.8971
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.75417 +/- 1.135e+17 (6.469e+18%)
|
||||||
|
bbbb = 102.878 +/- 8.4e+14 (8.165e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
@ -270,3 +270,69 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.04253e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707126
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 4523.61 delta(WSSR)/WSSR : -229.464
|
||||||
|
delta(WSSR) : -1.03801e+06 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.75041
|
||||||
|
bbbb = 102.371
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 4497.91 delta(WSSR)/WSSR : -0.00571226
|
||||||
|
delta(WSSR) : -25.6932 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.75417
|
||||||
|
bbbb = 102.878
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 4497.91 delta(WSSR)/WSSR : -1.42792e-11
|
||||||
|
delta(WSSR) : -6.42267e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.75417
|
||||||
|
bbbb = 102.878
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4497.91
|
||||||
|
rel. change during last iteration : -1.42792e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.77474
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 45.8971
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.75417 +/- 1.135e+17 (6.469e+18%)
|
||||||
|
bbbb = 102.878 +/- 8.4e+14 (8.165e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.00740261:0.00740261], adjusting to [0.00732858:0.00747664]
|
||||||
|
@ -2,19 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171005_3dFit_4x4x5_100times_regularity-vs-steps.png"
|
set output "20171005_3dFit_4x4x5_100times_regularity-vs-steps.png"
|
||||||
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171005_3dFit_4x4x5_100times_improvement-vs-steps.png"
|
set output "20171005_3dFit_4x4x5_100times_improvement-vs-steps.png"
|
||||||
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171005_3dFit_4x4x5_100times_improvement-vs-evo-error.png"
|
set output "20171005_3dFit_4x4x5_100times_improvement-vs-evo-error.png"
|
||||||
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171005_3dFit_4x4x5_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.4 KiB |
Before Width: | Height: | Size: 5.6 KiB After Width: | Height: | Size: 5.9 KiB |
Before Width: | Height: | Size: 5.3 KiB After Width: | Height: | Size: 5.7 KiB |
After Width: | Height: | Size: 5.1 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:58 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5
|
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.972 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:58 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5
|
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -1.000 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 11:48:58 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4
|
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4
|
||||||
@ -136,3 +136,49 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 716707 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707145
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5014.73
|
||||||
|
rel. change during last iteration : -8.78131e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.15337
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 51.1707
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.87421 +/- 6.575e+16 (3.508e+18%)
|
||||||
|
bbbb = 85.3528 +/- 6.814e+14 (7.983e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
@ -259,3 +259,69 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 716707 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707145
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 5032.35 delta(WSSR)/WSSR : -141.42
|
||||||
|
delta(WSSR) : -711675 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.86986
|
||||||
|
bbbb = 84.9331
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 5014.73 delta(WSSR)/WSSR : -0.00351279
|
||||||
|
delta(WSSR) : -17.6157 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.87421
|
||||||
|
bbbb = 85.3528
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 5014.73 delta(WSSR)/WSSR : -8.78131e-12
|
||||||
|
delta(WSSR) : -4.40359e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.87421
|
||||||
|
bbbb = 85.3528
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5014.73
|
||||||
|
rel. change during last iteration : -8.78131e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.15337
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 51.1707
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.87421 +/- 6.575e+16 (3.508e+18%)
|
||||||
|
bbbb = 85.3528 +/- 6.814e+14 (7.983e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.0103637:0.0103637], adjusting to [0.0102601:0.0104673]
|
||||||
|
@ -2,19 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171005_3dFit_7x4x4_100times_regularity-vs-steps.png"
|
set output "20171005_3dFit_7x4x4_100times_regularity-vs-steps.png"
|
||||||
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171005_3dFit_7x4x4_100times_improvement-vs-steps.png"
|
set output "20171005_3dFit_7x4x4_100times_improvement-vs-steps.png"
|
||||||
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171005_3dFit_7x4x4_100times_improvement-vs-evo-error.png"
|
set output "20171005_3dFit_7x4x4_100times_improvement-vs-evo-error.png"
|
||||||
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171005_3dFit_7x4x4_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.3 KiB |
Before Width: | Height: | Size: 5.5 KiB After Width: | Height: | Size: 5.8 KiB |
Before Width: | Height: | Size: 5.4 KiB After Width: | Height: | Size: 5.8 KiB |
After Width: | Height: | Size: 4.9 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 12:11:35 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 1:5
|
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.945 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 12:11:35 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 3:5
|
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -0.997 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 12:11:35 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 3:4
|
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 3:4
|
||||||
@ -139,7 +139,7 @@ bbb -0.997 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Sat Oct 7 12:11:35 2017
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 2:4
|
FIT: data read from "20171007_3dFit_all.csv" every ::1 using 2:4
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20171007_3dFit_all.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20171007_3dFit_all.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171007_3dFit_all_regularity-vs-steps.png"
|
set output "20171007_3dFit_all_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "20170926_3dFit_4x4x4_100times.csv", "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "20170926_3dFit_5x5x5_100times.csv", "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "20171005_3dFit_4x4x5_100times.csv", "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "20171005_3dFit_7x4x4_100times.csv", f(x) title "lin. fit" lc rgb "black"
|
plot "20171007_3dFit_all.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20171007_3dFit_all.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20171007_3dFit_all.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171007_3dFit_all_improvement-vs-steps.png"
|
set output "20171007_3dFit_all_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "20170926_3dFit_4x4x4_100times.csv", "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "20170926_3dFit_5x5x5_100times.csv", "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "20171005_3dFit_4x4x5_100times.csv", "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "20171005_3dFit_7x4x4_100times.csv", g(x) title "lin. fit" lc rgb "black"
|
plot "20171007_3dFit_all.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20171007_3dFit_all.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20171007_3dFit_all.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171007_3dFit_all_improvement-vs-evo-error.png"
|
set output "20171007_3dFit_all_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "20170926_3dFit_4x4x4_100times.csv", "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "20170926_3dFit_5x5x5_100times.csv", "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "20171005_3dFit_4x4x5_100times.csv", "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "20171005_3dFit_7x4x4_100times.csv", h(x) title "lin. fit" lc rgb "black"
|
plot "20171007_3dFit_all.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "20171007_3dFit_all.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "20171007_3dFit_all.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171007_3dFit_all_variability-vs-evo-error.png"
|
set output "20171007_3dFit_all_variability-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "20170926_3dFit_4x4x4_100times.csv", "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "20170926_3dFit_5x5x5_100times.csv", "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "20171005_3dFit_4x4x5_100times.csv", "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "20171005_3dFit_7x4x4_100times.csv", i(x) title "lin. fit" lc rgb "black"
|
plot "20171007_3dFit_all.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 8.4 KiB |
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 8.3 KiB |
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 6.1 KiB |
@ -0,0 +1,184 @@
|
|||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: f(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 4.17059e+08 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707107
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
|
||||||
|
After 7 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 1.87465e+07
|
||||||
|
rel. change during last iteration : -3.45833e-09
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 437.368
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 191291
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -1.04278e+07 +/- 2.15e+06 (20.62%)
|
||||||
|
b = 2804.5 +/- 174.4 (6.22%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.968 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: g(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 4.16784e+08 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.860178
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 2.30326e+07
|
||||||
|
rel. change during last iteration : -2.46431e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 484.795
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 235026
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 7203.94 +/- 7544 (104.7%)
|
||||||
|
bb = -3004.38 +/- 5226 (173.9%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: h(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 770224 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.860178
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
|
||||||
|
After 5 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 3831.77
|
||||||
|
rel. change during last iteration : -2.81552e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.25298
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 39.0997
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -284.393 +/- 97.31 (34.22%)
|
||||||
|
bbb = 286.203 +/- 67.4 (23.55%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 782212 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707145
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4165.76
|
||||||
|
rel. change during last iteration : -1.15562e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51979
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.5077
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.91405 +/- 1.245e+17 (6.505e+18%)
|
||||||
|
bbbb = 89.1974 +/- 1.29e+15 (1.447e+15%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
@ -0,0 +1,338 @@
|
|||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 4.17059e+08 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707107
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 2.32566e+07 delta(WSSR)/WSSR : -16.9329
|
||||||
|
delta(WSSR) : -3.93802e+08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = 0.291954
|
||||||
|
b = 1975.6
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 2.32468e+07 delta(WSSR)/WSSR : -0.000422514
|
||||||
|
delta(WSSR) : -9822.08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -86.0202
|
||||||
|
b = 1985.48
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 2.32393e+07 delta(WSSR)/WSSR : -0.000320176
|
||||||
|
delta(WSSR) : -7440.69 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -8710.18
|
||||||
|
b = 1986.15
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 2.25787e+07 delta(WSSR)/WSSR : -0.0292598
|
||||||
|
delta(WSSR) : -660649 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -805199
|
||||||
|
b = 2048.71
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 1.87911e+07 delta(WSSR)/WSSR : -0.201566
|
||||||
|
delta(WSSR) : -3.78764e+06 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-06
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -9.39061e+06
|
||||||
|
b = 2723.04
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 1.87465e+07 delta(WSSR)/WSSR : -0.00237512
|
||||||
|
delta(WSSR) : -44525.2 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-07
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -1.04266e+07
|
||||||
|
b = 2804.4
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 7
|
||||||
|
WSSR : 1.87465e+07 delta(WSSR)/WSSR : -3.45833e-09
|
||||||
|
delta(WSSR) : -0.0648317 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-08
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -1.04278e+07
|
||||||
|
b = 2804.5
|
||||||
|
|
||||||
|
After 7 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 1.87465e+07
|
||||||
|
rel. change during last iteration : -3.45833e-09
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 437.368
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 191291
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -1.04278e+07 +/- 2.15e+06 (20.62%)
|
||||||
|
b = 2804.5 +/- 174.4 (6.22%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.968 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 4.16784e+08 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.860178
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 2.32036e+07 delta(WSSR)/WSSR : -16.962
|
||||||
|
delta(WSSR) : -3.9358e+08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 948.6
|
||||||
|
bb = 1318.67
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 2.31176e+07 delta(WSSR)/WSSR : -0.00372074
|
||||||
|
delta(WSSR) : -86014.6 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 2665.07
|
||||||
|
bb = 139.584
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 2.30326e+07 delta(WSSR)/WSSR : -0.00369116
|
||||||
|
delta(WSSR) : -85017 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 7086.74
|
||||||
|
bb = -2923.19
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 2.30326e+07 delta(WSSR)/WSSR : -2.46431e-06
|
||||||
|
delta(WSSR) : -56.7593 limit for stopping : 1e-05
|
||||||
|
lambda : 8.60178e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 7203.94
|
||||||
|
bb = -3004.38
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 2.30326e+07
|
||||||
|
rel. change during last iteration : -2.46431e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 484.795
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 235026
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 7203.94 +/- 7544 (104.7%)
|
||||||
|
bb = -3004.38 +/- 5226 (173.9%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 770224 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.860178
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 4287.26 delta(WSSR)/WSSR : -178.654
|
||||||
|
delta(WSSR) : -765937 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = 40.5365
|
||||||
|
bbb = 60.6977
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 4061.95 delta(WSSR)/WSSR : -0.0554706
|
||||||
|
delta(WSSR) : -225.318 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -48.3014
|
||||||
|
bbb = 122.669
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 3831.93 delta(WSSR)/WSSR : -0.0600269
|
||||||
|
delta(WSSR) : -230.019 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000860178
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -278.294
|
||||||
|
bbb = 281.979
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 3831.77 delta(WSSR)/WSSR : -4.00769e-05
|
||||||
|
delta(WSSR) : -0.153566 limit for stopping : 1e-05
|
||||||
|
lambda : 8.60178e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -284.391
|
||||||
|
bbb = 286.202
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 3831.77 delta(WSSR)/WSSR : -2.81552e-12
|
||||||
|
delta(WSSR) : -1.07884e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 8.60178e-06
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -284.393
|
||||||
|
bbb = 286.203
|
||||||
|
|
||||||
|
After 5 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 3831.77
|
||||||
|
rel. change during last iteration : -2.81552e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.25298
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 39.0997
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -284.393 +/- 97.31 (34.22%)
|
||||||
|
bbb = 286.203 +/- 67.4 (23.55%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 782212 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707145
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 4185.02 delta(WSSR)/WSSR : -185.908
|
||||||
|
delta(WSSR) : -778027 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.9095
|
||||||
|
bbbb = 88.7586
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 4165.76 delta(WSSR)/WSSR : -0.00462295
|
||||||
|
delta(WSSR) : -19.2581 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.91405
|
||||||
|
bbbb = 89.1974
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 4165.76 delta(WSSR)/WSSR : -1.15562e-11
|
||||||
|
delta(WSSR) : -4.81405e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707145
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.91405
|
||||||
|
bbbb = 89.1974
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4165.76
|
||||||
|
rel. change during last iteration : -1.15562e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51979
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.5077
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.91405 +/- 1.245e+17 (6.505e+18%)
|
||||||
|
bbbb = 89.1974 +/- 1.29e+15 (1.447e+15%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.0103637:0.0103637], adjusting to [0.0102601:0.0104673]
|
@ -0,0 +1,26 @@
|
|||||||
|
set datafile separator ","
|
||||||
|
f(x)=a*x+b
|
||||||
|
fit f(x) "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 via a,b
|
||||||
|
set terminal png
|
||||||
|
set xlabel 'Regularity'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171013_3dFit_4x4x7_100times_regularity-vs-steps.png"
|
||||||
|
plot "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
|
g(x)=aa*x+bb
|
||||||
|
fit g(x) "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171013_3dFit_4x4x7_100times_improvement-vs-steps.png"
|
||||||
|
plot "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
|
h(x)=aaa*x+bbb
|
||||||
|
fit h(x) "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171013_3dFit_4x4x7_100times_improvement-vs-evo-error.png"
|
||||||
|
plot "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171013_3dFit_4x4x7_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
After Width: | Height: | Size: 6.1 KiB |
After Width: | Height: | Size: 5.7 KiB |
After Width: | Height: | Size: 6.2 KiB |
After Width: | Height: | Size: 4.8 KiB |
@ -0,0 +1,184 @@
|
|||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: f(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 8.41899e+07 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707107
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
|
||||||
|
After 7 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 8.72636e+06
|
||||||
|
rel. change during last iteration : -9.16821e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 298.403
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 89044.5
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -1.15579e+06 +/- 1.468e+06 (127%)
|
||||||
|
b = 1020.47 +/- 194.2 (19.03%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.988 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:07 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: g(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 8.40737e+07 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.850561
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 7.83163e+06
|
||||||
|
rel. change during last iteration : -4.61976e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 282.692
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 79914.6
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 10438.1 +/- 3028 (29%)
|
||||||
|
bb = -6107.9 +/- 2024 (33.14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: h(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 997151 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.850561
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4984.54
|
||||||
|
rel. change during last iteration : -5.99309e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.1318
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 50.8626
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -241.373 +/- 76.38 (31.64%)
|
||||||
|
bbb = 262.595 +/- 51.06 (19.44%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.01036e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707126
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5492.5
|
||||||
|
rel. change during last iteration : -1.13205e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.48638
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 56.0459
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.74202 +/- 9.406e+16 (5.4e+18%)
|
||||||
|
bbbb = 101.237 +/- 6.963e+14 (6.878e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
@ -0,0 +1,327 @@
|
|||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 8.41899e+07 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707107
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 8.78343e+06 delta(WSSR)/WSSR : -8.58509
|
||||||
|
delta(WSSR) : -7.54065e+07 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = 1.01743
|
||||||
|
b = 865.06
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 8.78156e+06 delta(WSSR)/WSSR : -0.000212651
|
||||||
|
delta(WSSR) : -1867.41 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -8.53399
|
||||||
|
b = 869.381
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 8.78147e+06 delta(WSSR)/WSSR : -1.03771e-05
|
||||||
|
delta(WSSR) : -91.1264 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707107
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -962.938
|
||||||
|
b = 869.506
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 8.77338e+06 delta(WSSR)/WSSR : -0.000922382
|
||||||
|
delta(WSSR) : -8092.41 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -89117.8
|
||||||
|
b = 881.03
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 8.72691e+06 delta(WSSR)/WSSR : -0.00532471
|
||||||
|
delta(WSSR) : -46468.3 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-06
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -1.04065e+06
|
||||||
|
b = 1005.42
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 8.72636e+06 delta(WSSR)/WSSR : -6.27725e-05
|
||||||
|
delta(WSSR) : -547.775 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-07
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -1.15565e+06
|
||||||
|
b = 1020.45
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 7
|
||||||
|
WSSR : 8.72636e+06 delta(WSSR)/WSSR : -9.16821e-11
|
||||||
|
delta(WSSR) : -0.000800051 limit for stopping : 1e-05
|
||||||
|
lambda : 7.07107e-08
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -1.15579e+06
|
||||||
|
b = 1020.47
|
||||||
|
|
||||||
|
After 7 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 8.72636e+06
|
||||||
|
rel. change during last iteration : -9.16821e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 298.403
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 89044.5
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -1.15579e+06 +/- 1.468e+06 (127%)
|
||||||
|
b = 1020.47 +/- 194.2 (19.03%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.988 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 8.40737e+07 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.850561
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 8.69722e+06 delta(WSSR)/WSSR : -8.66674
|
||||||
|
delta(WSSR) : -7.53765e+07 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 483.004
|
||||||
|
bb = 542.6
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 8.08871e+06 delta(WSSR)/WSSR : -0.0752288
|
||||||
|
delta(WSSR) : -608504 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 5007.98
|
||||||
|
bb = -2477.97
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 7.83167e+06 delta(WSSR)/WSSR : -0.0328215
|
||||||
|
delta(WSSR) : -257047 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 10373.7
|
||||||
|
bb = -6064.85
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 7.83163e+06 delta(WSSR)/WSSR : -4.61976e-06
|
||||||
|
delta(WSSR) : -36.1803 limit for stopping : 1e-05
|
||||||
|
lambda : 8.50561e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 10438.1
|
||||||
|
bb = -6107.9
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 7.83163e+06
|
||||||
|
rel. change during last iteration : -4.61976e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 282.692
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 79914.6
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 10438.1 +/- 3028 (29%)
|
||||||
|
bb = -6107.9 +/- 2024 (33.14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 997151 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.850561
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 5722.22 delta(WSSR)/WSSR : -173.259
|
||||||
|
delta(WSSR) : -991429 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = 44.3933
|
||||||
|
bbb = 71.0688
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 5196.8 delta(WSSR)/WSSR : -0.101105
|
||||||
|
delta(WSSR) : -525.422 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -85.3429
|
||||||
|
bbb = 158.291
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 4984.57 delta(WSSR)/WSSR : -0.0425783
|
||||||
|
delta(WSSR) : -212.235 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000850561
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -239.522
|
||||||
|
bbb = 261.358
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 4984.54 delta(WSSR)/WSSR : -5.99309e-06
|
||||||
|
delta(WSSR) : -0.0298728 limit for stopping : 1e-05
|
||||||
|
lambda : 8.50561e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -241.373
|
||||||
|
bbb = 262.595
|
||||||
|
|
||||||
|
After 4 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4984.54
|
||||||
|
rel. change during last iteration : -5.99309e-06
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.1318
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 50.8626
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -241.373 +/- 76.38 (31.64%)
|
||||||
|
bbb = 262.595 +/- 51.06 (19.44%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 1.01036e+06 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707126
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 5517.37 delta(WSSR)/WSSR : -182.123
|
||||||
|
delta(WSSR) : -1.00484e+06 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.73833
|
||||||
|
bbbb = 100.739
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 5492.5 delta(WSSR)/WSSR : -0.00452841
|
||||||
|
delta(WSSR) : -24.8723 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.74202
|
||||||
|
bbbb = 101.237
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 5492.5 delta(WSSR)/WSSR : -1.13205e-11
|
||||||
|
delta(WSSR) : -6.21776e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707126
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 1.74202
|
||||||
|
bbbb = 101.237
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5492.5
|
||||||
|
rel. change during last iteration : -1.13205e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.48638
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 56.0459
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 1.74202 +/- 9.406e+16 (5.4e+18%)
|
||||||
|
bbbb = 101.237 +/- 6.963e+14 (6.878e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.00740261:0.00740261], adjusting to [0.00732858:0.00747664]
|
@ -0,0 +1,26 @@
|
|||||||
|
set datafile separator ","
|
||||||
|
f(x)=a*x+b
|
||||||
|
fit f(x) "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 via a,b
|
||||||
|
set terminal png
|
||||||
|
set xlabel 'Regularity'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171013_3dFit_5x4x4_100times_regularity-vs-steps.png"
|
||||||
|
plot "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
|
g(x)=aa*x+bb
|
||||||
|
fit g(x) "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 via aa,bb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171013_3dFit_5x4x4_100times_improvement-vs-steps.png"
|
||||||
|
plot "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
|
h(x)=aaa*x+bbb
|
||||||
|
fit h(x) "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171013_3dFit_5x4x4_100times_improvement-vs-evo-error.png"
|
||||||
|
plot "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171013_3dFit_5x4x4_100times_variability-vs-evo-error.png"
|
||||||
|
plot "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
After Width: | Height: | Size: 6.4 KiB |
After Width: | Height: | Size: 6.0 KiB |
After Width: | Height: | Size: 5.7 KiB |
After Width: | Height: | Size: 5.2 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Mon Oct 23 12:06:26 2017
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5
|
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.995 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Mon Oct 23 12:06:26 2017
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5
|
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -1.000 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Mon Oct 23 12:06:26 2017
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4
|
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4
|
||||||
@ -136,3 +136,49 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 110
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 423824 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707248
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 3576.05
|
||||||
|
rel. change during last iteration : -4.97138e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 108
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 5.75426
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 33.1115
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 2.2349 +/- 2.531e+16 (1.133e+18%)
|
||||||
|
bbbb = 62.785 +/- 5.059e+14 (8.058e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
@ -226,3 +226,69 @@ correlation matrix of the fit parameters:
|
|||||||
aaa bbb
|
aaa bbb
|
||||||
aaa 1.000
|
aaa 1.000
|
||||||
bbb -1.000 1.000
|
bbb -1.000 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 423824 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 0.707248
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 3584.65 delta(WSSR)/WSSR : -117.233
|
||||||
|
delta(WSSR) : -420239 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0707248
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 2.22931
|
||||||
|
bbbb = 62.5054
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 3576.05 delta(WSSR)/WSSR : -0.00240612
|
||||||
|
delta(WSSR) : -8.6044 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00707248
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 2.2349
|
||||||
|
bbbb = 62.785
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 3576.05 delta(WSSR)/WSSR : -4.97138e-12
|
||||||
|
delta(WSSR) : -1.77779e-08 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000707248
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 2.2349
|
||||||
|
bbbb = 62.785
|
||||||
|
|
||||||
|
After 3 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 3576.05
|
||||||
|
rel. change during last iteration : -4.97138e-12
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 108
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 5.75426
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 33.1115
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = 2.2349 +/- 2.531e+16 (1.133e+18%)
|
||||||
|
bbbb = 62.785 +/- 5.059e+14 (8.058e+14%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -1.000 1.000
|
||||||
|
Warning: empty x range [0.019987:0.019987], adjusting to [0.0197871:0.0201869]
|
||||||
|
@ -2,19 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171021-evolution3D_6x6_100Times_regularity-vs-steps.png"
|
set output "20171021-evolution3D_6x6_100Times_regularity-vs-steps.png"
|
||||||
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171021-evolution3D_6x6_100Times_improvement-vs-steps.png"
|
set output "20171021-evolution3D_6x6_100Times_improvement-vs-steps.png"
|
||||||
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171021-evolution3D_6x6_100Times_improvement-vs-evo-error.png"
|
set output "20171021-evolution3D_6x6_100Times_improvement-vs-evo-error.png"
|
||||||
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171021-evolution3D_6x6_100Times_variability-vs-evo-error.png"
|
||||||
|
plot "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 5.3 KiB After Width: | Height: | Size: 5.7 KiB |
Before Width: | Height: | Size: 5.4 KiB After Width: | Height: | Size: 5.7 KiB |
Before Width: | Height: | Size: 5.1 KiB After Width: | Height: | Size: 5.4 KiB |
After Width: | Height: | Size: 5.0 KiB |
@ -1,184 +1,10 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 16:01:21 2017
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5
|
FIT: data read from "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5
|
||||||
format = x:z
|
format = x:z
|
||||||
#datapoints = 6
|
BREAK: No data to fit
|
||||||
residuals are weighted equally (unit weight)
|
|
||||||
|
|
||||||
function used for fitting: f(x)
|
|
||||||
fitted parameters initialized with current variable values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.03463 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.800174
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
a = 1
|
|
||||||
b = 1
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.760112
|
|
||||||
rel. change during last iteration : -7.81424e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.435922
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190028
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
a = -0.500504 +/- 0.4333 (86.58%)
|
|
||||||
b = 0.50226 +/- 0.2295 (45.7%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
a b
|
|
||||||
a 1.000
|
|
||||||
b -0.632 1.000
|
|
||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
|
||||||
Wed Oct 25 16:01:21 2017
|
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:5
|
|
||||||
format = x:z
|
|
||||||
#datapoints = 6
|
|
||||||
residuals are weighted equally (unit weight)
|
|
||||||
|
|
||||||
function used for fitting: g(x)
|
|
||||||
fitted parameters initialized with current variable values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.042 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.80039
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aa = 1
|
|
||||||
bb = 1
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.760537
|
|
||||||
rel. change during last iteration : -7.73688e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436044
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190134
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aa = -0.499395 +/- 0.4329 (86.68%)
|
|
||||||
bb = 0.502057 +/- 0.2296 (45.72%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aa bb
|
|
||||||
aa 1.000
|
|
||||||
bb -0.631 1.000
|
|
||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
|
||||||
Wed Oct 25 16:01:21 2017
|
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:4
|
|
||||||
format = x:z
|
|
||||||
#datapoints = 6
|
|
||||||
residuals are weighted equally (unit weight)
|
|
||||||
|
|
||||||
function used for fitting: h(x)
|
|
||||||
fitted parameters initialized with current variable values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.04152 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.80039
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aaa = 1
|
|
||||||
bbb = 1
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.763537
|
|
||||||
rel. change during last iteration : -7.73556e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436903
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190884
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aaa = -0.501106 +/- 0.4337 (86.55%)
|
|
||||||
bbb = 0.503355 +/- 0.23 (45.7%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aaa bbb
|
|
||||||
aaa 1.000
|
|
||||||
bbb -0.631 1.000
|
|
||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
|
||||||
Wed Oct 25 16:01:21 2017
|
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 2:4
|
|
||||||
format = x:z
|
|
||||||
#datapoints = 6
|
|
||||||
residuals are weighted equally (unit weight)
|
|
||||||
|
|
||||||
function used for fitting: i(x)
|
|
||||||
fitted parameters initialized with current variable values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.04263 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.800411
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aaaa = 1
|
|
||||||
bbbb = 1
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.763697
|
|
||||||
rel. change during last iteration : -7.7194e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436949
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190924
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aaaa = -0.50098 +/- 0.4338 (86.59%)
|
|
||||||
bbbb = 0.50338 +/- 0.2301 (45.71%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aaaa bbbb
|
|
||||||
aaaa 1.000
|
|
||||||
bbbb -0.632 1.000
|
|
||||||
|
@ -1,304 +1,3 @@
|
|||||||
|
No data to fit
|
||||||
|
"20171025-evolution3D_10x10x10_noFit.gnuplot.script", line 3:
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.03463 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.800174
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
a = 1
|
|
||||||
b = 1
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 1
|
|
||||||
WSSR : 1.04136 delta(WSSR)/WSSR : -7.67579
|
|
||||||
delta(WSSR) : -7.99327 limit for stopping : 1e-05
|
|
||||||
lambda : 0.0800174
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
a = 0.00294917
|
|
||||||
b = 0.398082
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 2
|
|
||||||
WSSR : 0.760123 delta(WSSR)/WSSR : -0.36999
|
|
||||||
delta(WSSR) : -0.281238 limit for stopping : 1e-05
|
|
||||||
lambda : 0.00800174
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
a = -0.497122
|
|
||||||
b = 0.501019
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 3
|
|
||||||
WSSR : 0.760112 delta(WSSR)/WSSR : -1.53218e-05
|
|
||||||
delta(WSSR) : -1.16463e-05 limit for stopping : 1e-05
|
|
||||||
lambda : 0.000800174
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
a = -0.500504
|
|
||||||
b = 0.50226
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 4
|
|
||||||
WSSR : 0.760112 delta(WSSR)/WSSR : -7.81424e-14
|
|
||||||
delta(WSSR) : -5.93969e-14 limit for stopping : 1e-05
|
|
||||||
lambda : 8.00174e-05
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
a = -0.500504
|
|
||||||
b = 0.50226
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.760112
|
|
||||||
rel. change during last iteration : -7.81424e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.435922
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190028
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
a = -0.500504 +/- 0.4333 (86.58%)
|
|
||||||
b = 0.50226 +/- 0.2295 (45.7%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
a b
|
|
||||||
a 1.000
|
|
||||||
b -0.632 1.000
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.042 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.80039
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aa = 1
|
|
||||||
bb = 1
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 1
|
|
||||||
WSSR : 1.04131 delta(WSSR)/WSSR : -7.68331
|
|
||||||
delta(WSSR) : -8.0007 limit for stopping : 1e-05
|
|
||||||
lambda : 0.080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aa = 0.00287365
|
|
||||||
bb = 0.398135
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 2
|
|
||||||
WSSR : 0.760548 delta(WSSR)/WSSR : -0.369155
|
|
||||||
delta(WSSR) : -0.28076 limit for stopping : 1e-05
|
|
||||||
lambda : 0.0080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aa = -0.496029
|
|
||||||
bb = 0.50082
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 3
|
|
||||||
WSSR : 0.760537 delta(WSSR)/WSSR : -1.52182e-05
|
|
||||||
delta(WSSR) : -1.1574e-05 limit for stopping : 1e-05
|
|
||||||
lambda : 0.00080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aa = -0.499395
|
|
||||||
bb = 0.502057
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 4
|
|
||||||
WSSR : 0.760537 delta(WSSR)/WSSR : -7.73688e-14
|
|
||||||
delta(WSSR) : -5.88418e-14 limit for stopping : 1e-05
|
|
||||||
lambda : 8.0039e-05
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aa = -0.499395
|
|
||||||
bb = 0.502057
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.760537
|
|
||||||
rel. change during last iteration : -7.73688e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436044
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190134
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aa = -0.499395 +/- 0.4329 (86.68%)
|
|
||||||
bb = 0.502057 +/- 0.2296 (45.72%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aa bb
|
|
||||||
aa 1.000
|
|
||||||
bb -0.631 1.000
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.04152 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.80039
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aaa = 1
|
|
||||||
bbb = 1
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 1
|
|
||||||
WSSR : 1.04503 delta(WSSR)/WSSR : -7.65191
|
|
||||||
delta(WSSR) : -7.99648 limit for stopping : 1e-05
|
|
||||||
lambda : 0.080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaa = 0.00194603
|
|
||||||
bbb = 0.399071
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 2
|
|
||||||
WSSR : 0.763548 delta(WSSR)/WSSR : -0.36865
|
|
||||||
delta(WSSR) : -0.281482 limit for stopping : 1e-05
|
|
||||||
lambda : 0.0080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaa = -0.497734
|
|
||||||
bbb = 0.502116
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 3
|
|
||||||
WSSR : 0.763537 delta(WSSR)/WSSR : -1.52098e-05
|
|
||||||
delta(WSSR) : -1.16133e-05 limit for stopping : 1e-05
|
|
||||||
lambda : 0.00080039
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaa = -0.501106
|
|
||||||
bbb = 0.503355
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 4
|
|
||||||
WSSR : 0.763537 delta(WSSR)/WSSR : -7.73556e-14
|
|
||||||
delta(WSSR) : -5.90639e-14 limit for stopping : 1e-05
|
|
||||||
lambda : 8.0039e-05
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaa = -0.501106
|
|
||||||
bbb = 0.503355
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.763537
|
|
||||||
rel. change during last iteration : -7.73556e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436903
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190884
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aaa = -0.501106 +/- 0.4337 (86.55%)
|
|
||||||
bbb = 0.503355 +/- 0.23 (45.7%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aaa bbb
|
|
||||||
aaa 1.000
|
|
||||||
bbb -0.631 1.000
|
|
||||||
|
|
||||||
|
|
||||||
Iteration 0
|
|
||||||
WSSR : 9.04263 delta(WSSR)/WSSR : 0
|
|
||||||
delta(WSSR) : 0 limit for stopping : 1e-05
|
|
||||||
lambda : 0.800411
|
|
||||||
|
|
||||||
initial set of free parameter values
|
|
||||||
|
|
||||||
aaaa = 1
|
|
||||||
bbbb = 1
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 1
|
|
||||||
WSSR : 1.04513 delta(WSSR)/WSSR : -7.65212
|
|
||||||
delta(WSSR) : -7.99749 limit for stopping : 1e-05
|
|
||||||
lambda : 0.0800411
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaaa = 0.00204362
|
|
||||||
bbbb = 0.399044
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 2
|
|
||||||
WSSR : 0.763709 delta(WSSR)/WSSR : -0.368499
|
|
||||||
delta(WSSR) : -0.281426 limit for stopping : 1e-05
|
|
||||||
lambda : 0.00800411
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaaa = -0.497607
|
|
||||||
bbbb = 0.50214
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 3
|
|
||||||
WSSR : 0.763697 delta(WSSR)/WSSR : -1.52103e-05
|
|
||||||
delta(WSSR) : -1.16161e-05 limit for stopping : 1e-05
|
|
||||||
lambda : 0.000800411
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaaa = -0.50098
|
|
||||||
bbbb = 0.50338
|
|
||||||
/
|
|
||||||
|
|
||||||
Iteration 4
|
|
||||||
WSSR : 0.763697 delta(WSSR)/WSSR : -7.7194e-14
|
|
||||||
delta(WSSR) : -5.89528e-14 limit for stopping : 1e-05
|
|
||||||
lambda : 8.00411e-05
|
|
||||||
|
|
||||||
resultant parameter values
|
|
||||||
|
|
||||||
aaaa = -0.50098
|
|
||||||
bbbb = 0.50338
|
|
||||||
|
|
||||||
After 4 iterations the fit converged.
|
|
||||||
final sum of squares of residuals : 0.763697
|
|
||||||
rel. change during last iteration : -7.7194e-14
|
|
||||||
|
|
||||||
degrees of freedom (FIT_NDF) : 4
|
|
||||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.436949
|
|
||||||
variance of residuals (reduced chisquare) = WSSR/ndf : 0.190924
|
|
||||||
|
|
||||||
Final set of parameters Asymptotic Standard Error
|
|
||||||
======================= ==========================
|
|
||||||
|
|
||||||
aaaa = -0.50098 +/- 0.4338 (86.59%)
|
|
||||||
bbbb = 0.50338 +/- 0.2301 (45.71%)
|
|
||||||
|
|
||||||
|
|
||||||
correlation matrix of the fit parameters:
|
|
||||||
|
|
||||||
aaaa bbbb
|
|
||||||
aaaa 1.000
|
|
||||||
bbbb -0.632 1.000
|
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5 via a,b
|
fit f(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171025-evolution3D_10x10x10_noFit_regularity-vs-steps.png"
|
set output "20171025-evolution3D_10x10x10_noFit_regularity-vs-steps.png"
|
||||||
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "20171025-evolution3D_10x10x10_noFit_improvement-vs-steps.png"
|
set output "20171025-evolution3D_10x10x10_noFit_improvement-vs-steps.png"
|
||||||
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171025-evolution3D_10x10x10_noFit_improvement-vs-evo-error.png"
|
set output "20171025-evolution3D_10x10x10_noFit_improvement-vs-evo-error.png"
|
||||||
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'error given by fitness-function'
|
||||||
set output "20171025-evolution3D_10x10x10_noFit_variability-vs-evo-error.png"
|
set output "20171025-evolution3D_10x10x10_noFit_variability-vs-evo-error.png"
|
||||||
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
plot "20171025-evolution3D_10x10x10_noFit.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
||||||
|
@ -0,0 +1,10 @@
|
|||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 1:5
|
||||||
|
format = x:z
|
||||||
|
BREAK: No data to fit
|
||||||
|
|
@ -0,0 +1,3 @@
|
|||||||
|
No data to fit
|
||||||
|
"20171025-evolution3D_10x10x10_noFit_100Times.gnuplot.script", line 3:
|
||||||
|
|
@ -0,0 +1,26 @@
|
|||||||
|
set datafile separator ","
|
||||||
|
f(x)=a*x+b
|
||||||
|
fit f(x) "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 1:5 via a,b
|
||||||
|
set terminal png
|
||||||
|
set xlabel 'Regularity'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171025-evolution3D_10x10x10_noFit_100Times_regularity-vs-steps.png"
|
||||||
|
plot "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
|
g(x)=aa*x+bb
|
||||||
|
fit g(x) "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 3:5 via aa,bb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "20171025-evolution3D_10x10x10_noFit_100Times_improvement-vs-steps.png"
|
||||||
|
plot "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
|
h(x)=aaa*x+bbb
|
||||||
|
fit h(x) "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171025-evolution3D_10x10x10_noFit_100Times_improvement-vs-evo-error.png"
|
||||||
|
plot "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "20171025-evolution3D_10x10x10_noFit_100Times_variability-vs-evo-error.png"
|
||||||
|
plot "20171025-evolution3D_10x10x10_noFit_100Times.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:24 2017
|
Fri Oct 27 14:11:51 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "4x4xX.csv" every ::1 using 1:5
|
FIT: data read from "4x4xX.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.938 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:24 2017
|
Fri Oct 27 14:11:51 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "4x4xX.csv" every ::1 using 3:5
|
FIT: data read from "4x4xX.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -0.999 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:24 2017
|
Fri Oct 27 14:11:51 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "4x4xX.csv" every ::1 using 3:4
|
FIT: data read from "4x4xX.csv" every ::1 using 3:4
|
||||||
@ -139,7 +139,7 @@ bbb -0.999 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:24 2017
|
Fri Oct 27 14:11:51 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "4x4xX.csv" every ::1 using 2:4
|
FIT: data read from "4x4xX.csv" every ::1 using 2:4
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "4x4xX.csv" every ::1 using 1:5 via a,b
|
fit f(x) "4x4xX.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "4x4xX_regularity-vs-steps.png"
|
set output "4x4xX_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 title "4x4x7" pt 2, f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 title "4x4x7" pt 2, f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "4x4xX.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "4x4xX.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "4x4xX_improvement-vs-steps.png"
|
set output "4x4xX_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 title "4x4x7" pt 2, g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 title "4x4x7" pt 2, g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "4x4xX.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "4x4xX.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "4x4xX_improvement-vs-evo-error.png"
|
set output "4x4xX_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 title "4x4x7" pt 2, h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 title "4x4x7" pt 2, h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "4x4xX.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "4x4xX.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "4x4xX_variability-vs-evo-error.png"
|
set output "4x4xX_variability-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 title "4x4x7" pt 2, i(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 title "4x4x7" pt 2, i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 9.0 KiB After Width: | Height: | Size: 9.4 KiB |
Before Width: | Height: | Size: 8.5 KiB After Width: | Height: | Size: 8.8 KiB |
Before Width: | Height: | Size: 8.8 KiB After Width: | Height: | Size: 9.1 KiB |
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 6.4 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:30 2017
|
Fri Oct 27 14:12:05 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "Xx4x4.csv" every ::1 using 1:5
|
FIT: data read from "Xx4x4.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.934 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:30 2017
|
Fri Oct 27 14:12:05 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "Xx4x4.csv" every ::1 using 3:5
|
FIT: data read from "Xx4x4.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -0.999 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:30 2017
|
Fri Oct 27 14:12:05 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "Xx4x4.csv" every ::1 using 3:4
|
FIT: data read from "Xx4x4.csv" every ::1 using 3:4
|
||||||
@ -139,7 +139,7 @@ bbb -0.999 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:30 2017
|
Fri Oct 27 14:12:05 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "Xx4x4.csv" every ::1 using 2:4
|
FIT: data read from "Xx4x4.csv" every ::1 using 2:4
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "Xx4x4.csv" every ::1 using 1:5 via a,b
|
fit f(x) "Xx4x4.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "Xx4x4_regularity-vs-steps.png"
|
set output "Xx4x4_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "7x4x4" pt 2, f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "7x4x4" pt 2, f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "Xx4x4.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "Xx4x4.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "Xx4x4_improvement-vs-steps.png"
|
set output "Xx4x4_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "7x4x4" pt 2, g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "7x4x4" pt 2, g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "Xx4x4.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "Xx4x4.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "Xx4x4_improvement-vs-evo-error.png"
|
set output "Xx4x4_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "7x4x4" pt 2, h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "7x4x4" pt 2, h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "Xx4x4.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "Xx4x4.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "Xx4x4_variability-vs-evo-error.png"
|
set output "Xx4x4_variability-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "7x4x4" pt 2, i(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "7x4x4" pt 2, i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 9.0 KiB After Width: | Height: | Size: 9.4 KiB |
Before Width: | Height: | Size: 8.5 KiB After Width: | Height: | Size: 8.8 KiB |
Before Width: | Height: | Size: 8.8 KiB After Width: | Height: | Size: 9.2 KiB |
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.4 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:34 2017
|
Fri Oct 27 14:12:17 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "YxYxY.csv" every ::1 using 1:5
|
FIT: data read from "YxYxY.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.937 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:34 2017
|
Fri Oct 27 14:12:17 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "YxYxY.csv" every ::1 using 3:5
|
FIT: data read from "YxYxY.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -0.994 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:34 2017
|
Fri Oct 27 14:12:17 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "YxYxY.csv" every ::1 using 3:4
|
FIT: data read from "YxYxY.csv" every ::1 using 3:4
|
||||||
@ -139,7 +139,7 @@ bbb -0.994 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:14:34 2017
|
Fri Oct 27 14:12:17 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "YxYxY.csv" every ::1 using 2:4
|
FIT: data read from "YxYxY.csv" every ::1 using 2:4
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "YxYxY.csv" every ::1 using 1:5 via a,b
|
fit f(x) "YxYxY.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "YxYxY_regularity-vs-steps.png"
|
set output "YxYxY_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "6x6x6" pt 2, f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "6x6x6" pt 2, f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "YxYxY.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "YxYxY.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "YxYxY_improvement-vs-steps.png"
|
set output "YxYxY_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "6x6x6" pt 2, g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "6x6x6" pt 2, g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "YxYxY.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "YxYxY.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "YxYxY_improvement-vs-evo-error.png"
|
set output "YxYxY_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "6x6x6" pt 2, h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "6x6x6" pt 2, h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "YxYxY.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "YxYxY.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "YxYxY_variability-vs-evo-error.png"
|
set output "YxYxY_variability-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 title "6x6x6" pt 2, i(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 title "6x6x6" pt 2, i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 8.0 KiB After Width: | Height: | Size: 8.5 KiB |
Before Width: | Height: | Size: 7.6 KiB After Width: | Height: | Size: 7.9 KiB |
Before Width: | Height: | Size: 8.2 KiB After Width: | Height: | Size: 8.5 KiB |
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.4 KiB |
@ -1,7 +1,7 @@
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:09:05 2017
|
Fri Oct 27 14:12:27 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "all.csv" every ::1 using 1:5
|
FIT: data read from "all.csv" every ::1 using 1:5
|
||||||
@ -47,7 +47,7 @@ b -0.932 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:09:05 2017
|
Fri Oct 27 14:12:27 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "all.csv" every ::1 using 3:5
|
FIT: data read from "all.csv" every ::1 using 3:5
|
||||||
@ -93,7 +93,7 @@ bb -0.995 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:09:05 2017
|
Fri Oct 27 14:12:27 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "all.csv" every ::1 using 3:4
|
FIT: data read from "all.csv" every ::1 using 3:4
|
||||||
@ -139,7 +139,7 @@ bbb -0.995 1.000
|
|||||||
|
|
||||||
|
|
||||||
*******************************************************************************
|
*******************************************************************************
|
||||||
Wed Oct 25 19:09:05 2017
|
Fri Oct 27 14:12:27 2017
|
||||||
|
|
||||||
|
|
||||||
FIT: data read from "all.csv" every ::1 using 2:4
|
FIT: data read from "all.csv" every ::1 using 2:4
|
||||||
|
@ -2,25 +2,25 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "all.csv" every ::1 using 1:5 via a,b
|
fit f(x) "all.csv" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "all_regularity-vs-steps.png"
|
set output "all_regularity-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "6x6x6" pt 2, f(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 1:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 1:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 1:5 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 1:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 1:5 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 1:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 1:5 title "6x6x6" pt 2, f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "all.csv" every ::1 using 3:5 via aa,bb
|
fit g(x) "all.csv" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "all_improvement-vs-steps.png"
|
set output "all_improvement-vs-steps.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "6x6x6" pt 2, g(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:5 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:5 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:5 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:5 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:5 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:5 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:5 title "6x6x6" pt 2, g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "all.csv" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "all.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "all_improvement-vs-evo-error.png"
|
set output "all_improvement-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "6x6x6" pt 2, h(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 3:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 3:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 3:4 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 3:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 3:4 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 3:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 3:4 title "6x6x6" pt 2, h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "all.csv" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "all.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "all_variability-vs-evo-error.png"
|
set output "all_variability-vs-evo-error.png"
|
||||||
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 title "6x6x6" pt 2, i(x) title "lin. fit" lc rgb "black"
|
plot "20170926_3dFit_4x4x4_100times.csv" every ::1 using 2:4 title "4x4x4" pt 2, "20171013_3dFit_5x4x4_100times.csv" every ::1 using 2:4 title "5x4x4" pt 2, "20171005_3dFit_7x4x4_100times.csv" every ::1 using 2:4 title "7x4x4" pt 2, "20171005_3dFit_4x4x5_100times.csv" every ::1 using 2:4 title "4x4x5" pt 2, "20171013_3dFit_4x4x7_100times.csv" every ::1 using 2:4 title "4x4x7" pt 2, "20170926_3dFit_5x5x5_100times.csv" every ::1 using 2:4 title "5x5x5" pt 2, "20171021-evolution3D_6x6_100Times.csv" every ::1 using 2:4 title "6x6x6" pt 2, i(x) title "lin. fit" lc rgb "black"
|
||||||
|
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 7.7 KiB |
@ -10,8 +10,8 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "$data" every ::1 using 1:5 via a,b
|
fit f(x) "$data" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "${png}_regularity-vs-steps.png"
|
set output "${png}_regularity-vs-steps.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 1:5 title "$3" pt 2, \
|
"$2" every ::1 using 1:5 title "$3" pt 2, \
|
||||||
@ -20,8 +20,8 @@ plot \
|
|||||||
f(x) title "lin. fit" lc rgb "black"
|
f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "$data" every ::1 using 3:5 via aa,bb
|
fit g(x) "$data" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "${png}_improvement-vs-steps.png"
|
set output "${png}_improvement-vs-steps.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 3:5 title "$3" pt 2, \
|
"$2" every ::1 using 3:5 title "$3" pt 2, \
|
||||||
@ -30,8 +30,8 @@ plot \
|
|||||||
g(x) title "lin. fit" lc rgb "black"
|
g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "$data" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "$data" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "${png}_improvement-vs-evo-error.png"
|
set output "${png}_improvement-vs-evo-error.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 3:4 title "$3" pt 2, \
|
"$2" every ::1 using 3:4 title "$3" pt 2, \
|
||||||
@ -40,8 +40,8 @@ plot \
|
|||||||
h(x) title "lin. fit" lc rgb "black"
|
h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "$data" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "$data" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "${png}_variability-vs-evo-error.png"
|
set output "${png}_variability-vs-evo-error.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 2:4 title "$3" pt 2, \
|
"$2" every ::1 using 2:4 title "$3" pt 2, \
|
||||||
|
@ -10,8 +10,8 @@ set datafile separator ","
|
|||||||
f(x)=a*x+b
|
f(x)=a*x+b
|
||||||
fit f(x) "$data" every ::1 using 1:5 via a,b
|
fit f(x) "$data" every ::1 using 1:5 via a,b
|
||||||
set terminal png
|
set terminal png
|
||||||
set xlabel 'regularity'
|
set xlabel 'Regularity'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "${png}_regularity-vs-steps.png"
|
set output "${png}_regularity-vs-steps.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 1:5 title "$3" pt 2, \
|
"$2" every ::1 using 1:5 title "$3" pt 2, \
|
||||||
@ -24,8 +24,8 @@ plot \
|
|||||||
f(x) title "lin. fit" lc rgb "black"
|
f(x) title "lin. fit" lc rgb "black"
|
||||||
g(x)=aa*x+bb
|
g(x)=aa*x+bb
|
||||||
fit g(x) "$data" every ::1 using 3:5 via aa,bb
|
fit g(x) "$data" every ::1 using 3:5 via aa,bb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'steps'
|
set ylabel 'Number of iterations'
|
||||||
set output "${png}_improvement-vs-steps.png"
|
set output "${png}_improvement-vs-steps.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 3:5 title "$3" pt 2, \
|
"$2" every ::1 using 3:5 title "$3" pt 2, \
|
||||||
@ -38,8 +38,8 @@ plot \
|
|||||||
g(x) title "lin. fit" lc rgb "black"
|
g(x) title "lin. fit" lc rgb "black"
|
||||||
h(x)=aaa*x+bbb
|
h(x)=aaa*x+bbb
|
||||||
fit h(x) "$data" every ::1 using 3:4 via aaa,bbb
|
fit h(x) "$data" every ::1 using 3:4 via aaa,bbb
|
||||||
set xlabel 'improvement potential'
|
set xlabel 'Improvement potential'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "${png}_improvement-vs-evo-error.png"
|
set output "${png}_improvement-vs-evo-error.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 3:4 title "$3" pt 2, \
|
"$2" every ::1 using 3:4 title "$3" pt 2, \
|
||||||
@ -52,8 +52,8 @@ plot \
|
|||||||
h(x) title "lin. fit" lc rgb "black"
|
h(x) title "lin. fit" lc rgb "black"
|
||||||
i(x)=aaaa*x+bbbb
|
i(x)=aaaa*x+bbbb
|
||||||
fit i(x) "$data" every ::1 using 2:4 via aaaa,bbbb
|
fit i(x) "$data" every ::1 using 2:4 via aaaa,bbbb
|
||||||
set xlabel 'variability'
|
set xlabel 'Variability'
|
||||||
set ylabel 'evolution error'
|
set ylabel 'Error given by fitness-function'
|
||||||
set output "${png}_variability-vs-evo-error.png"
|
set output "${png}_variability-vs-evo-error.png"
|
||||||
plot \
|
plot \
|
||||||
"$2" every ::1 using 2:4 title "$3" pt 2, \
|
"$2" every ::1 using 2:4 title "$3" pt 2, \
|
||||||
|
184
dokumentation/evolution3d/errors.gnuplot.fit.log
Normal file
@ -0,0 +1,184 @@
|
|||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "errors.csv" every ::1 using 1:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: f(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 129069 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 84.3477
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4993.5
|
||||||
|
rel. change during last iteration : -5.46363e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.13821
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 50.9541
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -0.0931363 +/- 0.1443 (154.9%)
|
||||||
|
b = 96.4721 +/- 17.21 (17.84%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.999 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "errors.csv" every ::1 using 3:5
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: g(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 38697.6 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 71.7898
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5010.73
|
||||||
|
rel. change during last iteration : -1.443e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.15052
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 51.1299
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 0.0270058 +/- 0.09648 (357.3%)
|
||||||
|
bb = 82.6379 +/- 9.795 (11.85%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -0.997 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "errors.csv" every ::1 using 3:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: h(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 27023.7 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 71.7898
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4159.2
|
||||||
|
rel. change during last iteration : -2.19108e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51466
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.4408
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -0.0345469 +/- 0.0879 (254.4%)
|
||||||
|
bbb = 92.7152 +/- 8.924 (9.625%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -0.997 1.000
|
||||||
|
|
||||||
|
|
||||||
|
*******************************************************************************
|
||||||
|
Fri Oct 27 14:09:08 2017
|
||||||
|
|
||||||
|
|
||||||
|
FIT: data read from "errors.csv" every ::1 using 2:4
|
||||||
|
format = x:z
|
||||||
|
#datapoints = 100
|
||||||
|
residuals are weighted equally (unit weight)
|
||||||
|
|
||||||
|
function used for fitting: i(x)
|
||||||
|
fitted parameters initialized with current variable values
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 30294.4 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 72.9129
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4165.22
|
||||||
|
rel. change during last iteration : -6.01785e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51938
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.5023
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = -0.0109066 +/- 0.09721 (891.3%)
|
||||||
|
bbbb = 90.3395 +/- 10.02 (11.09%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -0.998 1.000
|
392
dokumentation/evolution3d/errors.gnuplot.log
Normal file
@ -0,0 +1,392 @@
|
|||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 129069 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 84.3477
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
a = 1
|
||||||
|
b = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 6564.6 delta(WSSR)/WSSR : -18.6613
|
||||||
|
delta(WSSR) : -122504 limit for stopping : 1e-05
|
||||||
|
lambda : 8.43477
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = 0.708029
|
||||||
|
b = 0.999863
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 6554.01 delta(WSSR)/WSSR : -0.00161544
|
||||||
|
delta(WSSR) : -10.5876 limit for stopping : 1e-05
|
||||||
|
lambda : 0.843477
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = 0.70464
|
||||||
|
b = 1.23013
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 6005.48 delta(WSSR)/WSSR : -0.0913382
|
||||||
|
delta(WSSR) : -548.53 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0843477
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = 0.549306
|
||||||
|
b = 19.7746
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 4995.1 delta(WSSR)/WSSR : -0.202276
|
||||||
|
delta(WSSR) : -1010.39 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00843477
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -0.067621
|
||||||
|
b = 93.426
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 4993.5 delta(WSSR)/WSSR : -0.000319669
|
||||||
|
delta(WSSR) : -1.59627 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000843477
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -0.0931258
|
||||||
|
b = 96.4708
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 4993.5 delta(WSSR)/WSSR : -5.46363e-11
|
||||||
|
delta(WSSR) : -2.72827e-07 limit for stopping : 1e-05
|
||||||
|
lambda : 8.43477e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
a = -0.0931363
|
||||||
|
b = 96.4721
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4993.5
|
||||||
|
rel. change during last iteration : -5.46363e-11
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.13821
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 50.9541
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
a = -0.0931363 +/- 0.1443 (154.9%)
|
||||||
|
b = 96.4721 +/- 17.21 (17.84%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
a b
|
||||||
|
a 1.000
|
||||||
|
b -0.999 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 38697.6 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 71.7898
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aa = 1
|
||||||
|
bb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 8562.61 delta(WSSR)/WSSR : -3.51936
|
||||||
|
delta(WSSR) : -30134.9 limit for stopping : 1e-05
|
||||||
|
lambda : 7.17898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.829791
|
||||||
|
bb = 1.00677
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 8489.56 delta(WSSR)/WSSR : -0.00860526
|
||||||
|
delta(WSSR) : -73.0548 limit for stopping : 1e-05
|
||||||
|
lambda : 0.717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.820734
|
||||||
|
bb = 1.84213
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 5851.66 delta(WSSR)/WSSR : -0.450794
|
||||||
|
delta(WSSR) : -2637.9 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.41725
|
||||||
|
bb = 42.9138
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 5010.8 delta(WSSR)/WSSR : -0.167809
|
||||||
|
delta(WSSR) : -840.86 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.030744
|
||||||
|
bb = 82.2573
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 5010.73 delta(WSSR)/WSSR : -1.54001e-05
|
||||||
|
delta(WSSR) : -0.0771658 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.0270062
|
||||||
|
bb = 82.6378
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 5010.73 delta(WSSR)/WSSR : -1.443e-13
|
||||||
|
delta(WSSR) : -7.23048e-10 limit for stopping : 1e-05
|
||||||
|
lambda : 7.17898e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aa = 0.0270058
|
||||||
|
bb = 82.6379
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 5010.73
|
||||||
|
rel. change during last iteration : -1.443e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 7.15052
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 51.1299
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aa = 0.0270058 +/- 0.09648 (357.3%)
|
||||||
|
bb = 82.6379 +/- 9.795 (11.85%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aa bb
|
||||||
|
aa 1.000
|
||||||
|
bb -0.997 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 27023.7 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 71.7898
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaa = 1
|
||||||
|
bbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 8641.55 delta(WSSR)/WSSR : -2.12719
|
||||||
|
delta(WSSR) : -18382.2 limit for stopping : 1e-05
|
||||||
|
lambda : 7.17898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = 0.867036
|
||||||
|
bbb = 1.00818
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 8549.83 delta(WSSR)/WSSR : -0.0107272
|
||||||
|
delta(WSSR) : -91.716 limit for stopping : 1e-05
|
||||||
|
lambda : 0.717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = 0.857153
|
||||||
|
bbb = 1.94665
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 5220.55 delta(WSSR)/WSSR : -0.637727
|
||||||
|
delta(WSSR) : -3329.29 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = 0.403866
|
||||||
|
bbb = 48.0879
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 4159.3 delta(WSSR)/WSSR : -0.255151
|
||||||
|
delta(WSSR) : -1061.25 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -0.0303472
|
||||||
|
bbb = 92.2877
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 4159.2 delta(WSSR)/WSSR : -2.34157e-05
|
||||||
|
delta(WSSR) : -0.0973908 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000717898
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -0.0345465
|
||||||
|
bbb = 92.7151
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 4159.2 delta(WSSR)/WSSR : -2.19108e-13
|
||||||
|
delta(WSSR) : -9.11314e-10 limit for stopping : 1e-05
|
||||||
|
lambda : 7.17898e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaa = -0.0345469
|
||||||
|
bbb = 92.7152
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4159.2
|
||||||
|
rel. change during last iteration : -2.19108e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51466
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.4408
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaa = -0.0345469 +/- 0.0879 (254.4%)
|
||||||
|
bbb = 92.7152 +/- 8.924 (9.625%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaa bbb
|
||||||
|
aaa 1.000
|
||||||
|
bbb -0.997 1.000
|
||||||
|
|
||||||
|
|
||||||
|
Iteration 0
|
||||||
|
WSSR : 30294.4 delta(WSSR)/WSSR : 0
|
||||||
|
delta(WSSR) : 0 limit for stopping : 1e-05
|
||||||
|
lambda : 72.9129
|
||||||
|
|
||||||
|
initial set of free parameter values
|
||||||
|
|
||||||
|
aaaa = 1
|
||||||
|
bbbb = 1
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 1
|
||||||
|
WSSR : 7542.11 delta(WSSR)/WSSR : -3.0167
|
||||||
|
delta(WSSR) : -22752.3 limit for stopping : 1e-05
|
||||||
|
lambda : 7.29129
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 0.854383
|
||||||
|
bbbb = 1.0057
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 2
|
||||||
|
WSSR : 7488.45 delta(WSSR)/WSSR : -0.00716584
|
||||||
|
delta(WSSR) : -53.661 limit for stopping : 1e-05
|
||||||
|
lambda : 0.729129
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 0.84683
|
||||||
|
bbbb = 1.71093
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 3
|
||||||
|
WSSR : 5195.8 delta(WSSR)/WSSR : -0.44125
|
||||||
|
delta(WSSR) : -2292.65 limit for stopping : 1e-05
|
||||||
|
lambda : 0.0729129
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = 0.466748
|
||||||
|
bbbb = 40.9842
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 4
|
||||||
|
WSSR : 4165.38 delta(WSSR)/WSSR : -0.247377
|
||||||
|
delta(WSSR) : -1030.42 limit for stopping : 1e-05
|
||||||
|
lambda : 0.00729129
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = -0.00497837
|
||||||
|
bbbb = 89.7269
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 5
|
||||||
|
WSSR : 4165.22 delta(WSSR)/WSSR : -3.81126e-05
|
||||||
|
delta(WSSR) : -0.158748 limit for stopping : 1e-05
|
||||||
|
lambda : 0.000729129
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = -0.0109059
|
||||||
|
bbbb = 90.3394
|
||||||
|
/
|
||||||
|
|
||||||
|
Iteration 6
|
||||||
|
WSSR : 4165.22 delta(WSSR)/WSSR : -6.01785e-13
|
||||||
|
delta(WSSR) : -2.50657e-09 limit for stopping : 1e-05
|
||||||
|
lambda : 7.29129e-05
|
||||||
|
|
||||||
|
resultant parameter values
|
||||||
|
|
||||||
|
aaaa = -0.0109066
|
||||||
|
bbbb = 90.3395
|
||||||
|
|
||||||
|
After 6 iterations the fit converged.
|
||||||
|
final sum of squares of residuals : 4165.22
|
||||||
|
rel. change during last iteration : -6.01785e-13
|
||||||
|
|
||||||
|
degrees of freedom (FIT_NDF) : 98
|
||||||
|
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 6.51938
|
||||||
|
variance of residuals (reduced chisquare) = WSSR/ndf : 42.5023
|
||||||
|
|
||||||
|
Final set of parameters Asymptotic Standard Error
|
||||||
|
======================= ==========================
|
||||||
|
|
||||||
|
aaaa = -0.0109066 +/- 0.09721 (891.3%)
|
||||||
|
bbbb = 90.3395 +/- 10.02 (11.09%)
|
||||||
|
|
||||||
|
|
||||||
|
correlation matrix of the fit parameters:
|
||||||
|
|
||||||
|
aaaa bbbb
|
||||||
|
aaaa 1.000
|
||||||
|
bbbb -0.998 1.000
|
26
dokumentation/evolution3d/errors.gnuplot.script
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
set datafile separator ","
|
||||||
|
f(x)=a*x+b
|
||||||
|
fit f(x) "errors.csv" every ::1 using 1:5 via a,b
|
||||||
|
set terminal png
|
||||||
|
set xlabel 'Regularity'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "errors_regularity-vs-steps.png"
|
||||||
|
plot "errors.csv" every ::1 using 1:5 title "data", f(x) title "lin. fit" lc rgb "black"
|
||||||
|
g(x)=aa*x+bb
|
||||||
|
fit g(x) "errors.csv" every ::1 using 3:5 via aa,bb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'Number of iterations'
|
||||||
|
set output "errors_improvement-vs-steps.png"
|
||||||
|
plot "errors.csv" every ::1 using 3:5 title "data", g(x) title "lin. fit" lc rgb "black"
|
||||||
|
h(x)=aaa*x+bbb
|
||||||
|
fit h(x) "errors.csv" every ::1 using 3:4 via aaa,bbb
|
||||||
|
set xlabel 'Improvement potential'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "errors_improvement-vs-evo-error.png"
|
||||||
|
plot "errors.csv" every ::1 using 3:4 title "data", h(x) title "lin. fit" lc rgb "black"
|
||||||
|
i(x)=aaaa*x+bbbb
|
||||||
|
fit i(x) "errors.csv" every ::1 using 2:4 via aaaa,bbbb
|
||||||
|
set xlabel 'Variability'
|
||||||
|
set ylabel 'error given by fitness-function'
|
||||||
|
set output "errors_variability-vs-evo-error.png"
|
||||||
|
plot "errors.csv" every ::1 using 2:4 title "data", i(x) title "lin. fit" lc rgb "black"
|
BIN
dokumentation/evolution3d/errors_improvement-vs-evo-error.png
Normal file
After Width: | Height: | Size: 5.9 KiB |
BIN
dokumentation/evolution3d/errors_improvement-vs-steps.png
Normal file
After Width: | Height: | Size: 5.6 KiB |
BIN
dokumentation/evolution3d/errors_regularity-vs-steps.png
Normal file
After Width: | Height: | Size: 5.3 KiB |