overview of thesis and fixing in style

This commit is contained in:
Nicole Dresselhaus 2017-10-08 21:08:29 +02:00
parent f933369804
commit 5b2abd2fa5
Signed by: Drezil
GPG Key ID: 057D94F356F41E25
5 changed files with 104 additions and 26 deletions

View File

@ -23,10 +23,7 @@ Unless otherwise noted the following holds:
# Introduction # Introduction
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline \improvement[inline]{Mehr Bilder}
Wieso untersuchen wir das überhaupt? \cmark \newline
Aufbau der Arbeit? \xmark \newline
Mehr Bilder}
Many modern industrial design processes require advanced optimization methods Many modern industrial design processes require advanced optimization methods
do to the increased complexity. These designs have to adhere to more and more do to the increased complexity. These designs have to adhere to more and more
@ -69,12 +66,30 @@ scheme, as suspected in \cite{anrichterEvol}.
## Outline of this thesis ## Outline of this thesis
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?} First we introduce different topics in isolation in Chapter \ref{sec:back}. We
take an abstract look at the definition of \ac{FFD} for a one-dimensional line
(in \ref{sec:back:ffd}) and discuss why this is a sensible deformation function
(in \ref{sec:back:ffdgood}).
Then we establish some background-knowledge of evolutional algorithms (in
\ref{sec:back:evo}) and why this is useful in our domain (in
\ref{sec:back:evogood}).
In a third step we take a look at the definition of the different evolvability
criteria established in \cite{anrichterEvol}.
In Chapter \ref{sec:impl} we take a look at our implementation of \ac{FFD} and
the adaptation for 3D-meshes.
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we use to
evaluate the different evolvability-criteria incorporating all aspects
introduced in Chapter \ref{sec:back}. Following that, we evaluate the results in
Chapter \ref{sec:res} with further on discussion in Chapter \ref{sec:dis}.
# Background # Background
\label{sec:back}
## What is \acf{FFD}? ## What is \acf{FFD}?
\label{sec:intro:ffd} \label{sec:back:ffd}
First of all we have to establish how a \ac{FFD} works and why this is a good First of all we have to establish how a \ac{FFD} works and why this is a good
tool for deforming meshes in the first place. For simplicity we only summarize tool for deforming meshes in the first place. For simplicity we only summarize
@ -119,6 +134,7 @@ $\tau_{i+d+1}$ as can bee seen from the two coefficients in every step of the
recursion. recursion.
### Why is \ac{FFD} a good deformation function? ### Why is \ac{FFD} a good deformation function?
\label{sec:back:ffdgood}
The usage of \ac{FFD} as a tool for manipulating follows directly from the The usage of \ac{FFD} as a tool for manipulating follows directly from the
properties of the polynomials and the correspondence to the control points. properties of the polynomials and the correspondence to the control points.
@ -156,10 +172,12 @@ All in all \ac{FFD} and \ac{DM-FFD} are still good ways to deform a high-polygon
mesh albeit the downsides. mesh albeit the downsides.
## What is evolutional optimization? ## What is evolutional optimization?
\label{sec:back:evo}
\change[inline]{Write this section} \change[inline]{Write this section}
## Advantages of evolutional algorithms ## Advantages of evolutional algorithms
\label{sec:back:evogood}
\change[inline]{Needs citations} \change[inline]{Needs citations}
The main advantage of evolutional algorithms is the ability to find optima of The main advantage of evolutional algorithms is the ability to find optima of
@ -188,7 +206,7 @@ over time.
### Variability ### Variability
In \cite{anrichterEvol} variability is defined as In \cite{anrichterEvol} *variability* is defined as
$$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},$$ $$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},$$
whereby $\vec{U}$ is the $m \times n$ deformation-Matrix used to map the $m$ whereby $\vec{U}$ is the $m \times n$ deformation-Matrix used to map the $m$
control points onto the $n$ vertices. control points onto the $n$ vertices.
@ -206,7 +224,7 @@ control-points for an $d$-dimensional control mesh.
### Regularity ### Regularity
Regularity is defined\cite{anrichterEvol} as *Regularity* is defined\cite{anrichterEvol} as
$$R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$ $$R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$
where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular
value of the deformation-matrix $\vec{U}$. value of the deformation-matrix $\vec{U}$.
@ -224,7 +242,7 @@ locality\cite{weise2012evolutionary,thorhauer2014locality}.
### Improvement Potential ### Improvement Potential
In contrast to the general nature of variability and regularity, which are In contrast to the general nature of *variability* and *regularity*, which are
agnostic of the fitness-function at hand the third criterion should reflect a agnostic of the fitness-function at hand the third criterion should reflect a
notion of potential. notion of potential.
@ -232,7 +250,7 @@ As during optimization some kind of gradient $g$ is available to suggest a
direction worth pursuing we use this to guess how much change can be achieved in direction worth pursuing we use this to guess how much change can be achieved in
the given direction. the given direction.
The definition for an improvement potential $P$ is\cite{anrichterEvol}: The definition for an *improvement potential* $P$ is\cite{anrichterEvol}:
$$ $$
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
$$ $$
@ -240,6 +258,7 @@ given some approximate $n \times d$ fitness-gradient $\vec{G}$, normalized to
$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius-Norm. $\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius-Norm.
# Implementation of \acf{FFD} # Implementation of \acf{FFD}
\label{sec:impl}
The general formulation of B-Splines has two free parameters $d$ and $\tau$ The general formulation of B-Splines has two free parameters $d$ and $\tau$
which must be chosen beforehand. which must be chosen beforehand.
@ -255,7 +274,7 @@ formulas for the general case so it can be adapted quite freely.
## Adaption of \ac{FFD} ## Adaption of \ac{FFD}
As we have established in Chapter \ref{sec:intro:ffd} we can define an As we have established in Chapter \ref{sec:back:ffd} we can define an
\ac{FFD}-displacement as \ac{FFD}-displacement as
\begin{equation} \begin{equation}
\Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i \Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i
@ -363,6 +382,7 @@ linear equations.
# Scenarios for testing evolvability criteria using \acf{FFD} # Scenarios for testing evolvability criteria using \acf{FFD}
\label{sec:eval}
## Test Scenario: 1D Function Approximation ## Test Scenario: 1D Function Approximation
@ -397,6 +417,7 @@ linear equations.
- Kriterien trotzdem gut - Kriterien trotzdem gut
# Evaluation of Scenarios # Evaluation of Scenarios
\label{sec:res}
## Spearman/Pearson-Metriken ## Spearman/Pearson-Metriken
@ -437,5 +458,6 @@ linear equations.
<!-- ![Regularity vs steps](img/evolution3d/20170926_3dFit_both_regularity-vs-steps.png) --> <!-- ![Regularity vs steps](img/evolution3d/20170926_3dFit_both_regularity-vs-steps.png) -->
# Schluss # Schluss
\label{sec:dis}
HAHA .. als ob -.- HAHA .. als ob -.-

Binary file not shown.

View File

@ -45,6 +45,19 @@ xcolor=dvipsnames,
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark \fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade \fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
% ###### Title ######
\usepackage[explicit]{titlesec}
\newcommand{\hsp}{\hspace{20pt}}
% \titleformat{\chapter}[hang]{\Huge\bfseries\ }{\textcolor{CadetBlue}{\thechapter} #1}{20pt}{\Huge\bfseries\ }
\titleformat{name=\chapter,numberless}[hang]{\Huge\bfseries\ }{#1}{20pt}{\Huge\bfseries\ }
\titleformat{\chapter}[hang]{\Huge\bfseries\ }{\color{CadetBlue}\thechapter}{20pt}{\begin{tabular}[t]{@{\color{CadetBlue}\vrule width 2pt}>{\hangindent=20pt\hsp}p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
\titleformat{name=\section,numberless}[hang]{\large\bfseries\ }{#1}{32pt}{\large\bfseries\ }
\titleformat{\section}[hang]{\large\bfseries\ }{\color{CadetBlue}\thesection}{32pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
\titleformat{name=\subsection,numberless}[hang]{\bfseries\ }{#1}{27pt}{\bfseries\ }
\titleformat{\subsection}[hang]{\bfseries\ }{\color{CadetBlue}\thesubsection}{27pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
% ### fr 1 seitig % ### fr 1 seitig
%\usepackage{fancyhdr} % %\usepackage{fancyhdr} %
%\lhead{\textsf{\noupercase\leftmark}} %\lhead{\textsf{\noupercase\leftmark}}
@ -148,10 +161,7 @@ Unless otherwise noted the following holds:
\chapter{Introduction}\label{introduction} \chapter{Introduction}\label{introduction}
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline \improvement[inline]{Mehr Bilder}
Wieso untersuchen wir das überhaupt? \cmark \newline
Aufbau der Arbeit? \xmark \newline
Mehr Bilder}
Many modern industrial design processes require advanced optimization Many modern industrial design processes require advanced optimization
methods do to the increased complexity. These designs have to adhere to methods do to the increased complexity. These designs have to adhere to
@ -199,13 +209,32 @@ given the different deformation scheme, as suspected in
\section{Outline of this thesis}\label{outline-of-this-thesis} \section{Outline of this thesis}\label{outline-of-this-thesis}
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?} First we introduce different topics in isolation in Chapter
\ref{sec:back}. We take an abstract look at the definition of \ac{FFD}
for a one-dimensional line (in \ref{sec:back:ffd}) and discuss why this
is a sensible deformation function (in \ref{sec:back:ffdgood}). Then we
establish some background-knowledge of evolutional algorithms (in
\ref{sec:back:evo}) and why this is useful in our domain (in
\ref{sec:back:evogood}). In a third step we take a look at the
definition of the different evolvability criteria established in
\cite{anrichterEvol}.
In Chapter \ref{sec:impl} we take a look at our implementation of
\ac{FFD} and the adaptation for 3D-meshes.
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we
use to evaluate the different evolvability-criteria incorporating all
aspects introduced in Chapter \ref{sec:back}. Following that, we
evaluate the results in Chapter \ref{sec:res} with further on discussion
in Chapter \ref{sec:dis}.
\chapter{Background}\label{background} \chapter{Background}\label{background}
\label{sec:back}
\section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is} \section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is}
\label{sec:intro:ffd} \label{sec:back:ffd}
First of all we have to establish how a \ac{FFD} works and why this is a First of all we have to establish how a \ac{FFD} works and why this is a
good tool for deforming meshes in the first place. For simplicity we good tool for deforming meshes in the first place. For simplicity we
@ -254,6 +283,8 @@ coefficients in every step of the recursion.
\subsection{\texorpdfstring{Why is \ac{FFD} a good deformation \subsection{\texorpdfstring{Why is \ac{FFD} a good deformation
function?}{Why is a good deformation function?}}\label{why-is-a-good-deformation-function} function?}{Why is a good deformation function?}}\label{why-is-a-good-deformation-function}
\label{sec:back:ffdgood}
The usage of \ac{FFD} as a tool for manipulating follows directly from The usage of \ac{FFD} as a tool for manipulating follows directly from
the properties of the polynomials and the correspondence to the control the properties of the polynomials and the correspondence to the control
points. Having only a few control points gives the user a nicer points. Having only a few control points gives the user a nicer
@ -293,11 +324,15 @@ high-polygon mesh albeit the downsides.
\section{What is evolutional \section{What is evolutional
optimization?}\label{what-is-evolutional-optimization} optimization?}\label{what-is-evolutional-optimization}
\label{sec:back:evo}
\change[inline]{Write this section} \change[inline]{Write this section}
\section{Advantages of evolutional \section{Advantages of evolutional
algorithms}\label{advantages-of-evolutional-algorithms} algorithms}\label{advantages-of-evolutional-algorithms}
\label{sec:back:evogood}
\change[inline]{Needs citations} The main advantage of evolutional \change[inline]{Needs citations} The main advantage of evolutional
algorithms is the ability to find optima of general functions just with algorithms is the ability to find optima of general functions just with
the help of a given error-function (or fitness-function in this domain). the help of a given error-function (or fitness-function in this domain).
@ -327,7 +362,7 @@ deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
\subsection{Variability}\label{variability} \subsection{Variability}\label{variability}
In \cite{anrichterEvol} variability is defined as In \cite{anrichterEvol} \emph{variability} is defined as
\[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\) \[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\)
is the \(m \times n\) deformation-Matrix used to map the \(m\) control is the \(m \times n\) deformation-Matrix used to map the \(m\) control
points onto the \(n\) vertices. points onto the \(n\) vertices.
@ -346,7 +381,7 @@ grid so each control point is not independent, but typically depends on
\subsection{Regularity}\label{regularity} \subsection{Regularity}\label{regularity}
Regularity is defined\cite{anrichterEvol} as \emph{Regularity} is defined\cite{anrichterEvol} as
\[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\] \[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\]
where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and
greatest right singular value of the deformation-matrix \(\vec{U}\). greatest right singular value of the deformation-matrix \(\vec{U}\).
@ -366,15 +401,15 @@ locality\cite{weise2012evolutionary,thorhauer2014locality}.
\subsection{Improvement Potential}\label{improvement-potential} \subsection{Improvement Potential}\label{improvement-potential}
In contrast to the general nature of variability and regularity, which In contrast to the general nature of \emph{variability} and
are agnostic of the fitness-function at hand the third criterion should \emph{regularity}, which are agnostic of the fitness-function at hand
reflect a notion of potential. the third criterion should reflect a notion of potential.
As during optimization some kind of gradient \(g\) is available to As during optimization some kind of gradient \(g\) is available to
suggest a direction worth pursuing we use this to guess how much change suggest a direction worth pursuing we use this to guess how much change
can be achieved in the given direction. can be achieved in the given direction.
The definition for an improvement potential \(P\) The definition for an \emph{improvement potential} \(P\)
is\cite{anrichterEvol}: \[ is\cite{anrichterEvol}: \[
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
\] given some approximate \(n \times d\) fitness-gradient \(\vec{G}\), \] given some approximate \(n \times d\) fitness-gradient \(\vec{G}\),
@ -384,6 +419,8 @@ Frobenius-Norm.
\chapter{\texorpdfstring{Implementation of \chapter{\texorpdfstring{Implementation of
\acf{FFD}}{Implementation of }}\label{implementation-of} \acf{FFD}}{Implementation of }}\label{implementation-of}
\label{sec:impl}
The general formulation of B-Splines has two free parameters \(d\) and The general formulation of B-Splines has two free parameters \(d\) and
\(\tau\) which must be chosen beforehand. \(\tau\) which must be chosen beforehand.
@ -399,7 +436,7 @@ adapted quite freely.
\section{\texorpdfstring{Adaption of \section{\texorpdfstring{Adaption of
\ac{FFD}}{Adaption of }}\label{adaption-of} \ac{FFD}}{Adaption of }}\label{adaption-of}
As we have established in Chapter \ref{sec:intro:ffd} we can define an As we have established in Chapter \ref{sec:back:ffd} we can define an
\ac{FFD}-displacement as \ac{FFD}-displacement as
\begin{equation} \begin{equation}
@ -517,6 +554,8 @@ system of linear equations.
using using
\acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using} \acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
\label{sec:eval}
\section{Test Scenario: 1D Function \section{Test Scenario: 1D Function
Approximation}\label{test-scenario-1d-function-approximation} Approximation}\label{test-scenario-1d-function-approximation}
@ -587,6 +626,8 @@ Optimierung}\label{besonderheiten-der-optimierung}
\chapter{Evaluation of Scenarios}\label{evaluation-of-scenarios} \chapter{Evaluation of Scenarios}\label{evaluation-of-scenarios}
\label{sec:res}
\section{Spearman/Pearson-Metriken}\label{spearmanpearson-metriken} \section{Spearman/Pearson-Metriken}\label{spearmanpearson-metriken}
\begin{itemize} \begin{itemize}
@ -623,6 +664,8 @@ Approximation}\label{results-of-3d-function-approximation}
\chapter{Schluss}\label{schluss} \chapter{Schluss}\label{schluss}
\label{sec:dis}
HAHA .. als ob -.- HAHA .. als ob -.-
\backmatter \backmatter

View File

@ -161,5 +161,5 @@
\newcommandx{\improvement}[2][1=]{\todo[linecolor=violet,backgroundcolor=violet!25,bordercolor=violet,#1]{\textbf{Improvement:} #2}} \newcommandx{\improvement}[2][1=]{\todo[linecolor=violet,backgroundcolor=violet!25,bordercolor=violet,#1]{\textbf{Improvement:} #2}}
\newcommandx{\thiswillnotshow}[2][1=]{\todo[disable,#1]{#2}} \newcommandx{\thiswillnotshow}[2][1=]{\todo[disable,#1]{#2}}
\renewcommand\cmark{\textcolor{OliveGreen}{\ding{51}}} \newcommand\cmark{\textcolor{OliveGreen}{\ding{51}}}
\renewcommand\xmark{\textcolor{Maroon}{\ding{55}}} \newcommand\xmark{\textcolor{Maroon}{\ding{55}}}

View File

@ -45,6 +45,19 @@ xcolor=dvipsnames,
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark \fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade \fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
% ###### Title ######
\usepackage[explicit]{titlesec}
\newcommand{\hsp}{\hspace{20pt}}
% \titleformat{\chapter}[hang]{\Huge\bfseries\ }{\textcolor{CadetBlue}{\thechapter} #1}{20pt}{\Huge\bfseries\ }
\titleformat{name=\chapter,numberless}[hang]{\Huge\bfseries\ }{#1}{20pt}{\Huge\bfseries\ }
\titleformat{\chapter}[hang]{\Huge\bfseries\ }{\color{CadetBlue}\thechapter}{20pt}{\begin{tabular}[t]{@{\color{CadetBlue}\vrule width 2pt}>{\hangindent=20pt\hsp}p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
\titleformat{name=\section,numberless}[hang]{\large\bfseries\ }{#1}{32pt}{\large\bfseries\ }
\titleformat{\section}[hang]{\large\bfseries\ }{\color{CadetBlue}\thesection}{32pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
\titleformat{name=\subsection,numberless}[hang]{\bfseries\ }{#1}{27pt}{\bfseries\ }
\titleformat{\subsection}[hang]{\bfseries\ }{\color{CadetBlue}\thesubsection}{27pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
% ### fr 1 seitig % ### fr 1 seitig
%\usepackage{fancyhdr} % %\usepackage{fancyhdr} %
%\lhead{\textsf{\noupercase\leftmark}} %\lhead{\textsf{\noupercase\leftmark}}