overview of thesis and fixing in style
This commit is contained in:
parent
f933369804
commit
5b2abd2fa5
44
arbeit/ma.md
44
arbeit/ma.md
@ -23,10 +23,7 @@ Unless otherwise noted the following holds:
|
|||||||
|
|
||||||
# Introduction
|
# Introduction
|
||||||
|
|
||||||
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline
|
\improvement[inline]{Mehr Bilder}
|
||||||
Wieso untersuchen wir das überhaupt? \cmark \newline
|
|
||||||
Aufbau der Arbeit? \xmark \newline
|
|
||||||
Mehr Bilder}
|
|
||||||
|
|
||||||
Many modern industrial design processes require advanced optimization methods
|
Many modern industrial design processes require advanced optimization methods
|
||||||
do to the increased complexity. These designs have to adhere to more and more
|
do to the increased complexity. These designs have to adhere to more and more
|
||||||
@ -69,12 +66,30 @@ scheme, as suspected in \cite{anrichterEvol}.
|
|||||||
|
|
||||||
## Outline of this thesis
|
## Outline of this thesis
|
||||||
|
|
||||||
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?}
|
First we introduce different topics in isolation in Chapter \ref{sec:back}. We
|
||||||
|
take an abstract look at the definition of \ac{FFD} for a one-dimensional line
|
||||||
|
(in \ref{sec:back:ffd}) and discuss why this is a sensible deformation function
|
||||||
|
(in \ref{sec:back:ffdgood}).
|
||||||
|
Then we establish some background-knowledge of evolutional algorithms (in
|
||||||
|
\ref{sec:back:evo}) and why this is useful in our domain (in
|
||||||
|
\ref{sec:back:evogood}).
|
||||||
|
In a third step we take a look at the definition of the different evolvability
|
||||||
|
criteria established in \cite{anrichterEvol}.
|
||||||
|
|
||||||
|
In Chapter \ref{sec:impl} we take a look at our implementation of \ac{FFD} and
|
||||||
|
the adaptation for 3D-meshes.
|
||||||
|
|
||||||
|
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we use to
|
||||||
|
evaluate the different evolvability-criteria incorporating all aspects
|
||||||
|
introduced in Chapter \ref{sec:back}. Following that, we evaluate the results in
|
||||||
|
Chapter \ref{sec:res} with further on discussion in Chapter \ref{sec:dis}.
|
||||||
|
|
||||||
|
|
||||||
# Background
|
# Background
|
||||||
|
\label{sec:back}
|
||||||
|
|
||||||
## What is \acf{FFD}?
|
## What is \acf{FFD}?
|
||||||
\label{sec:intro:ffd}
|
\label{sec:back:ffd}
|
||||||
|
|
||||||
First of all we have to establish how a \ac{FFD} works and why this is a good
|
First of all we have to establish how a \ac{FFD} works and why this is a good
|
||||||
tool for deforming meshes in the first place. For simplicity we only summarize
|
tool for deforming meshes in the first place. For simplicity we only summarize
|
||||||
@ -119,6 +134,7 @@ $\tau_{i+d+1}$ as can bee seen from the two coefficients in every step of the
|
|||||||
recursion.
|
recursion.
|
||||||
|
|
||||||
### Why is \ac{FFD} a good deformation function?
|
### Why is \ac{FFD} a good deformation function?
|
||||||
|
\label{sec:back:ffdgood}
|
||||||
|
|
||||||
The usage of \ac{FFD} as a tool for manipulating follows directly from the
|
The usage of \ac{FFD} as a tool for manipulating follows directly from the
|
||||||
properties of the polynomials and the correspondence to the control points.
|
properties of the polynomials and the correspondence to the control points.
|
||||||
@ -156,10 +172,12 @@ All in all \ac{FFD} and \ac{DM-FFD} are still good ways to deform a high-polygon
|
|||||||
mesh albeit the downsides.
|
mesh albeit the downsides.
|
||||||
|
|
||||||
## What is evolutional optimization?
|
## What is evolutional optimization?
|
||||||
|
\label{sec:back:evo}
|
||||||
|
|
||||||
\change[inline]{Write this section}
|
\change[inline]{Write this section}
|
||||||
|
|
||||||
## Advantages of evolutional algorithms
|
## Advantages of evolutional algorithms
|
||||||
|
\label{sec:back:evogood}
|
||||||
|
|
||||||
\change[inline]{Needs citations}
|
\change[inline]{Needs citations}
|
||||||
The main advantage of evolutional algorithms is the ability to find optima of
|
The main advantage of evolutional algorithms is the ability to find optima of
|
||||||
@ -188,7 +206,7 @@ over time.
|
|||||||
|
|
||||||
### Variability
|
### Variability
|
||||||
|
|
||||||
In \cite{anrichterEvol} variability is defined as
|
In \cite{anrichterEvol} *variability* is defined as
|
||||||
$$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},$$
|
$$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},$$
|
||||||
whereby $\vec{U}$ is the $m \times n$ deformation-Matrix used to map the $m$
|
whereby $\vec{U}$ is the $m \times n$ deformation-Matrix used to map the $m$
|
||||||
control points onto the $n$ vertices.
|
control points onto the $n$ vertices.
|
||||||
@ -206,7 +224,7 @@ control-points for an $d$-dimensional control mesh.
|
|||||||
|
|
||||||
### Regularity
|
### Regularity
|
||||||
|
|
||||||
Regularity is defined\cite{anrichterEvol} as
|
*Regularity* is defined\cite{anrichterEvol} as
|
||||||
$$R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$
|
$$R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$
|
||||||
where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular
|
where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular
|
||||||
value of the deformation-matrix $\vec{U}$.
|
value of the deformation-matrix $\vec{U}$.
|
||||||
@ -224,7 +242,7 @@ locality\cite{weise2012evolutionary,thorhauer2014locality}.
|
|||||||
|
|
||||||
### Improvement Potential
|
### Improvement Potential
|
||||||
|
|
||||||
In contrast to the general nature of variability and regularity, which are
|
In contrast to the general nature of *variability* and *regularity*, which are
|
||||||
agnostic of the fitness-function at hand the third criterion should reflect a
|
agnostic of the fitness-function at hand the third criterion should reflect a
|
||||||
notion of potential.
|
notion of potential.
|
||||||
|
|
||||||
@ -232,7 +250,7 @@ As during optimization some kind of gradient $g$ is available to suggest a
|
|||||||
direction worth pursuing we use this to guess how much change can be achieved in
|
direction worth pursuing we use this to guess how much change can be achieved in
|
||||||
the given direction.
|
the given direction.
|
||||||
|
|
||||||
The definition for an improvement potential $P$ is\cite{anrichterEvol}:
|
The definition for an *improvement potential* $P$ is\cite{anrichterEvol}:
|
||||||
$$
|
$$
|
||||||
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
|
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
|
||||||
$$
|
$$
|
||||||
@ -240,6 +258,7 @@ given some approximate $n \times d$ fitness-gradient $\vec{G}$, normalized to
|
|||||||
$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius-Norm.
|
$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius-Norm.
|
||||||
|
|
||||||
# Implementation of \acf{FFD}
|
# Implementation of \acf{FFD}
|
||||||
|
\label{sec:impl}
|
||||||
|
|
||||||
The general formulation of B-Splines has two free parameters $d$ and $\tau$
|
The general formulation of B-Splines has two free parameters $d$ and $\tau$
|
||||||
which must be chosen beforehand.
|
which must be chosen beforehand.
|
||||||
@ -255,7 +274,7 @@ formulas for the general case so it can be adapted quite freely.
|
|||||||
|
|
||||||
## Adaption of \ac{FFD}
|
## Adaption of \ac{FFD}
|
||||||
|
|
||||||
As we have established in Chapter \ref{sec:intro:ffd} we can define an
|
As we have established in Chapter \ref{sec:back:ffd} we can define an
|
||||||
\ac{FFD}-displacement as
|
\ac{FFD}-displacement as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i
|
\Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i
|
||||||
@ -363,6 +382,7 @@ linear equations.
|
|||||||
|
|
||||||
|
|
||||||
# Scenarios for testing evolvability criteria using \acf{FFD}
|
# Scenarios for testing evolvability criteria using \acf{FFD}
|
||||||
|
\label{sec:eval}
|
||||||
|
|
||||||
## Test Scenario: 1D Function Approximation
|
## Test Scenario: 1D Function Approximation
|
||||||
|
|
||||||
@ -397,6 +417,7 @@ linear equations.
|
|||||||
- Kriterien trotzdem gut
|
- Kriterien trotzdem gut
|
||||||
|
|
||||||
# Evaluation of Scenarios
|
# Evaluation of Scenarios
|
||||||
|
\label{sec:res}
|
||||||
|
|
||||||
## Spearman/Pearson-Metriken
|
## Spearman/Pearson-Metriken
|
||||||
|
|
||||||
@ -437,5 +458,6 @@ linear equations.
|
|||||||
<!-- ![Regularity vs steps](img/evolution3d/20170926_3dFit_both_regularity-vs-steps.png) -->
|
<!-- ![Regularity vs steps](img/evolution3d/20170926_3dFit_both_regularity-vs-steps.png) -->
|
||||||
|
|
||||||
# Schluss
|
# Schluss
|
||||||
|
\label{sec:dis}
|
||||||
|
|
||||||
HAHA .. als ob -.-
|
HAHA .. als ob -.-
|
||||||
|
BIN
arbeit/ma.pdf
BIN
arbeit/ma.pdf
Binary file not shown.
@ -45,6 +45,19 @@ xcolor=dvipsnames,
|
|||||||
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
|
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
|
||||||
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
|
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
|
||||||
|
|
||||||
|
% ###### Title ######
|
||||||
|
|
||||||
|
\usepackage[explicit]{titlesec}
|
||||||
|
\newcommand{\hsp}{\hspace{20pt}}
|
||||||
|
% \titleformat{\chapter}[hang]{\Huge\bfseries\ }{\textcolor{CadetBlue}{\thechapter} #1}{20pt}{\Huge\bfseries\ }
|
||||||
|
\titleformat{name=\chapter,numberless}[hang]{\Huge\bfseries\ }{#1}{20pt}{\Huge\bfseries\ }
|
||||||
|
\titleformat{\chapter}[hang]{\Huge\bfseries\ }{\color{CadetBlue}\thechapter}{20pt}{\begin{tabular}[t]{@{\color{CadetBlue}\vrule width 2pt}>{\hangindent=20pt\hsp}p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
|
||||||
|
\titleformat{name=\section,numberless}[hang]{\large\bfseries\ }{#1}{32pt}{\large\bfseries\ }
|
||||||
|
\titleformat{\section}[hang]{\large\bfseries\ }{\color{CadetBlue}\thesection}{32pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
\titleformat{name=\subsection,numberless}[hang]{\bfseries\ }{#1}{27pt}{\bfseries\ }
|
||||||
|
\titleformat{\subsection}[hang]{\bfseries\ }{\color{CadetBlue}\thesubsection}{27pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
|
||||||
% ### fr 1 seitig
|
% ### fr 1 seitig
|
||||||
%\usepackage{fancyhdr} %
|
%\usepackage{fancyhdr} %
|
||||||
%\lhead{\textsf{\noupercase\leftmark}}
|
%\lhead{\textsf{\noupercase\leftmark}}
|
||||||
@ -148,10 +161,7 @@ Unless otherwise noted the following holds:
|
|||||||
|
|
||||||
\chapter{Introduction}\label{introduction}
|
\chapter{Introduction}\label{introduction}
|
||||||
|
|
||||||
\improvement[inline]{mehr Motivation, Ziel der Arbeit, Wieso das ganze?\newline
|
\improvement[inline]{Mehr Bilder}
|
||||||
Wieso untersuchen wir das überhaupt? \cmark \newline
|
|
||||||
Aufbau der Arbeit? \xmark \newline
|
|
||||||
Mehr Bilder}
|
|
||||||
|
|
||||||
Many modern industrial design processes require advanced optimization
|
Many modern industrial design processes require advanced optimization
|
||||||
methods do to the increased complexity. These designs have to adhere to
|
methods do to the increased complexity. These designs have to adhere to
|
||||||
@ -199,13 +209,32 @@ given the different deformation scheme, as suspected in
|
|||||||
|
|
||||||
\section{Outline of this thesis}\label{outline-of-this-thesis}
|
\section{Outline of this thesis}\label{outline-of-this-thesis}
|
||||||
|
|
||||||
\improvement[inline]{Kapitel vorstellen, Inhalt? Ziel?}
|
First we introduce different topics in isolation in Chapter
|
||||||
|
\ref{sec:back}. We take an abstract look at the definition of \ac{FFD}
|
||||||
|
for a one-dimensional line (in \ref{sec:back:ffd}) and discuss why this
|
||||||
|
is a sensible deformation function (in \ref{sec:back:ffdgood}). Then we
|
||||||
|
establish some background-knowledge of evolutional algorithms (in
|
||||||
|
\ref{sec:back:evo}) and why this is useful in our domain (in
|
||||||
|
\ref{sec:back:evogood}). In a third step we take a look at the
|
||||||
|
definition of the different evolvability criteria established in
|
||||||
|
\cite{anrichterEvol}.
|
||||||
|
|
||||||
|
In Chapter \ref{sec:impl} we take a look at our implementation of
|
||||||
|
\ac{FFD} and the adaptation for 3D-meshes.
|
||||||
|
|
||||||
|
Next, in Chapter \ref{sec:eval}, we describe the different scenarios we
|
||||||
|
use to evaluate the different evolvability-criteria incorporating all
|
||||||
|
aspects introduced in Chapter \ref{sec:back}. Following that, we
|
||||||
|
evaluate the results in Chapter \ref{sec:res} with further on discussion
|
||||||
|
in Chapter \ref{sec:dis}.
|
||||||
|
|
||||||
\chapter{Background}\label{background}
|
\chapter{Background}\label{background}
|
||||||
|
|
||||||
|
\label{sec:back}
|
||||||
|
|
||||||
\section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is}
|
\section{\texorpdfstring{What is \acf{FFD}?}{What is ?}}\label{what-is}
|
||||||
|
|
||||||
\label{sec:intro:ffd}
|
\label{sec:back:ffd}
|
||||||
|
|
||||||
First of all we have to establish how a \ac{FFD} works and why this is a
|
First of all we have to establish how a \ac{FFD} works and why this is a
|
||||||
good tool for deforming meshes in the first place. For simplicity we
|
good tool for deforming meshes in the first place. For simplicity we
|
||||||
@ -254,6 +283,8 @@ coefficients in every step of the recursion.
|
|||||||
\subsection{\texorpdfstring{Why is \ac{FFD} a good deformation
|
\subsection{\texorpdfstring{Why is \ac{FFD} a good deformation
|
||||||
function?}{Why is a good deformation function?}}\label{why-is-a-good-deformation-function}
|
function?}{Why is a good deformation function?}}\label{why-is-a-good-deformation-function}
|
||||||
|
|
||||||
|
\label{sec:back:ffdgood}
|
||||||
|
|
||||||
The usage of \ac{FFD} as a tool for manipulating follows directly from
|
The usage of \ac{FFD} as a tool for manipulating follows directly from
|
||||||
the properties of the polynomials and the correspondence to the control
|
the properties of the polynomials and the correspondence to the control
|
||||||
points. Having only a few control points gives the user a nicer
|
points. Having only a few control points gives the user a nicer
|
||||||
@ -293,11 +324,15 @@ high-polygon mesh albeit the downsides.
|
|||||||
\section{What is evolutional
|
\section{What is evolutional
|
||||||
optimization?}\label{what-is-evolutional-optimization}
|
optimization?}\label{what-is-evolutional-optimization}
|
||||||
|
|
||||||
|
\label{sec:back:evo}
|
||||||
|
|
||||||
\change[inline]{Write this section}
|
\change[inline]{Write this section}
|
||||||
|
|
||||||
\section{Advantages of evolutional
|
\section{Advantages of evolutional
|
||||||
algorithms}\label{advantages-of-evolutional-algorithms}
|
algorithms}\label{advantages-of-evolutional-algorithms}
|
||||||
|
|
||||||
|
\label{sec:back:evogood}
|
||||||
|
|
||||||
\change[inline]{Needs citations} The main advantage of evolutional
|
\change[inline]{Needs citations} The main advantage of evolutional
|
||||||
algorithms is the ability to find optima of general functions just with
|
algorithms is the ability to find optima of general functions just with
|
||||||
the help of a given error-function (or fitness-function in this domain).
|
the help of a given error-function (or fitness-function in this domain).
|
||||||
@ -327,7 +362,7 @@ deformations}\label{criteria-for-the-evolvability-of-linear-deformations}
|
|||||||
|
|
||||||
\subsection{Variability}\label{variability}
|
\subsection{Variability}\label{variability}
|
||||||
|
|
||||||
In \cite{anrichterEvol} variability is defined as
|
In \cite{anrichterEvol} \emph{variability} is defined as
|
||||||
\[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\)
|
\[V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\)
|
||||||
is the \(m \times n\) deformation-Matrix used to map the \(m\) control
|
is the \(m \times n\) deformation-Matrix used to map the \(m\) control
|
||||||
points onto the \(n\) vertices.
|
points onto the \(n\) vertices.
|
||||||
@ -346,7 +381,7 @@ grid so each control point is not independent, but typically depends on
|
|||||||
|
|
||||||
\subsection{Regularity}\label{regularity}
|
\subsection{Regularity}\label{regularity}
|
||||||
|
|
||||||
Regularity is defined\cite{anrichterEvol} as
|
\emph{Regularity} is defined\cite{anrichterEvol} as
|
||||||
\[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\]
|
\[R(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\]
|
||||||
where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and
|
where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and
|
||||||
greatest right singular value of the deformation-matrix \(\vec{U}\).
|
greatest right singular value of the deformation-matrix \(\vec{U}\).
|
||||||
@ -366,15 +401,15 @@ locality\cite{weise2012evolutionary,thorhauer2014locality}.
|
|||||||
|
|
||||||
\subsection{Improvement Potential}\label{improvement-potential}
|
\subsection{Improvement Potential}\label{improvement-potential}
|
||||||
|
|
||||||
In contrast to the general nature of variability and regularity, which
|
In contrast to the general nature of \emph{variability} and
|
||||||
are agnostic of the fitness-function at hand the third criterion should
|
\emph{regularity}, which are agnostic of the fitness-function at hand
|
||||||
reflect a notion of potential.
|
the third criterion should reflect a notion of potential.
|
||||||
|
|
||||||
As during optimization some kind of gradient \(g\) is available to
|
As during optimization some kind of gradient \(g\) is available to
|
||||||
suggest a direction worth pursuing we use this to guess how much change
|
suggest a direction worth pursuing we use this to guess how much change
|
||||||
can be achieved in the given direction.
|
can be achieved in the given direction.
|
||||||
|
|
||||||
The definition for an improvement potential \(P\)
|
The definition for an \emph{improvement potential} \(P\)
|
||||||
is\cite{anrichterEvol}: \[
|
is\cite{anrichterEvol}: \[
|
||||||
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
|
P(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec(G)\|^2_F
|
||||||
\] given some approximate \(n \times d\) fitness-gradient \(\vec{G}\),
|
\] given some approximate \(n \times d\) fitness-gradient \(\vec{G}\),
|
||||||
@ -384,6 +419,8 @@ Frobenius-Norm.
|
|||||||
\chapter{\texorpdfstring{Implementation of
|
\chapter{\texorpdfstring{Implementation of
|
||||||
\acf{FFD}}{Implementation of }}\label{implementation-of}
|
\acf{FFD}}{Implementation of }}\label{implementation-of}
|
||||||
|
|
||||||
|
\label{sec:impl}
|
||||||
|
|
||||||
The general formulation of B-Splines has two free parameters \(d\) and
|
The general formulation of B-Splines has two free parameters \(d\) and
|
||||||
\(\tau\) which must be chosen beforehand.
|
\(\tau\) which must be chosen beforehand.
|
||||||
|
|
||||||
@ -399,7 +436,7 @@ adapted quite freely.
|
|||||||
\section{\texorpdfstring{Adaption of
|
\section{\texorpdfstring{Adaption of
|
||||||
\ac{FFD}}{Adaption of }}\label{adaption-of}
|
\ac{FFD}}{Adaption of }}\label{adaption-of}
|
||||||
|
|
||||||
As we have established in Chapter \ref{sec:intro:ffd} we can define an
|
As we have established in Chapter \ref{sec:back:ffd} we can define an
|
||||||
\ac{FFD}-displacement as
|
\ac{FFD}-displacement as
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -517,6 +554,8 @@ system of linear equations.
|
|||||||
using
|
using
|
||||||
\acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
|
\acf{FFD}}{Scenarios for testing evolvability criteria using }}\label{scenarios-for-testing-evolvability-criteria-using}
|
||||||
|
|
||||||
|
\label{sec:eval}
|
||||||
|
|
||||||
\section{Test Scenario: 1D Function
|
\section{Test Scenario: 1D Function
|
||||||
Approximation}\label{test-scenario-1d-function-approximation}
|
Approximation}\label{test-scenario-1d-function-approximation}
|
||||||
|
|
||||||
@ -587,6 +626,8 @@ Optimierung}\label{besonderheiten-der-optimierung}
|
|||||||
|
|
||||||
\chapter{Evaluation of Scenarios}\label{evaluation-of-scenarios}
|
\chapter{Evaluation of Scenarios}\label{evaluation-of-scenarios}
|
||||||
|
|
||||||
|
\label{sec:res}
|
||||||
|
|
||||||
\section{Spearman/Pearson-Metriken}\label{spearmanpearson-metriken}
|
\section{Spearman/Pearson-Metriken}\label{spearmanpearson-metriken}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -623,6 +664,8 @@ Approximation}\label{results-of-3d-function-approximation}
|
|||||||
|
|
||||||
\chapter{Schluss}\label{schluss}
|
\chapter{Schluss}\label{schluss}
|
||||||
|
|
||||||
|
\label{sec:dis}
|
||||||
|
|
||||||
HAHA .. als ob -.-
|
HAHA .. als ob -.-
|
||||||
|
|
||||||
\backmatter
|
\backmatter
|
||||||
|
@ -161,5 +161,5 @@
|
|||||||
\newcommandx{\improvement}[2][1=]{\todo[linecolor=violet,backgroundcolor=violet!25,bordercolor=violet,#1]{\textbf{Improvement:} #2}}
|
\newcommandx{\improvement}[2][1=]{\todo[linecolor=violet,backgroundcolor=violet!25,bordercolor=violet,#1]{\textbf{Improvement:} #2}}
|
||||||
\newcommandx{\thiswillnotshow}[2][1=]{\todo[disable,#1]{#2}}
|
\newcommandx{\thiswillnotshow}[2][1=]{\todo[disable,#1]{#2}}
|
||||||
|
|
||||||
\renewcommand\cmark{\textcolor{OliveGreen}{\ding{51}}}
|
\newcommand\cmark{\textcolor{OliveGreen}{\ding{51}}}
|
||||||
\renewcommand\xmark{\textcolor{Maroon}{\ding{55}}}
|
\newcommand\xmark{\textcolor{Maroon}{\ding{55}}}
|
||||||
|
@ -45,6 +45,19 @@ xcolor=dvipsnames,
|
|||||||
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
|
\fancyhead[OR]{\textrm{\nouppercase\rightmark}}% Odd=rechte Seiten und dort rechts, also aussen das \rightmark
|
||||||
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
|
\fancyfoot[RO,LE]{\thepage} % Seitenzahl : rechts ungerade, links gerade
|
||||||
|
|
||||||
|
% ###### Title ######
|
||||||
|
|
||||||
|
\usepackage[explicit]{titlesec}
|
||||||
|
\newcommand{\hsp}{\hspace{20pt}}
|
||||||
|
% \titleformat{\chapter}[hang]{\Huge\bfseries\ }{\textcolor{CadetBlue}{\thechapter} #1}{20pt}{\Huge\bfseries\ }
|
||||||
|
\titleformat{name=\chapter,numberless}[hang]{\Huge\bfseries\ }{#1}{20pt}{\Huge\bfseries\ }
|
||||||
|
\titleformat{\chapter}[hang]{\Huge\bfseries\ }{\color{CadetBlue}\thechapter}{20pt}{\begin{tabular}[t]{@{\color{CadetBlue}\vrule width 2pt}>{\hangindent=20pt\hsp}p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
|
||||||
|
\titleformat{name=\section,numberless}[hang]{\large\bfseries\ }{#1}{32pt}{\large\bfseries\ }
|
||||||
|
\titleformat{\section}[hang]{\large\bfseries\ }{\color{CadetBlue}\thesection}{32pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
\titleformat{name=\subsection,numberless}[hang]{\bfseries\ }{#1}{27pt}{\bfseries\ }
|
||||||
|
\titleformat{\subsection}[hang]{\bfseries\ }{\color{CadetBlue}\thesubsection}{27pt}{\begin{tabular}[t]{p{\dimexpr 1\textwidth -44pt}}#1\end{tabular}}
|
||||||
|
|
||||||
% ### fr 1 seitig
|
% ### fr 1 seitig
|
||||||
%\usepackage{fancyhdr} %
|
%\usepackage{fancyhdr} %
|
||||||
%\lhead{\textsf{\noupercase\leftmark}}
|
%\lhead{\textsf{\noupercase\leftmark}}
|
||||||
|
Loading…
Reference in New Issue
Block a user