From 43ba0fa61282ea655161e997ee0fa8e4ee9a03e0 Mon Sep 17 00:00:00 2001 From: Stefan Dresselhaus Date: Sat, 11 Nov 2017 18:03:42 +0100 Subject: [PATCH] Added presentation slide-show framework Just used ma.md as slides, so no real content. --- .gitmodules | 9 + presentation/Makefile | 43 + presentation/presentation.html | 594 +++++++ presentation/presentation.md | 1402 +++++++++++++++++ presentation/template/agcg-pdf.css | 16 + presentation/template/agcg.css | 725 +++++++++ presentation/template/font-awesome | 1 + .../template/lato/LatoLatin-Black.eot | Bin 0 -> 66110 bytes .../template/lato/LatoLatin-Black.ttf | Bin 0 -> 144228 bytes .../template/lato/LatoLatin-Black.woff | Bin 0 -> 70460 bytes .../template/lato/LatoLatin-Black.woff2 | Bin 0 -> 43456 bytes .../template/lato/LatoLatin-BlackItalic.eot | Bin 0 -> 67322 bytes .../template/lato/LatoLatin-BlackItalic.ttf | Bin 0 -> 150720 bytes .../template/lato/LatoLatin-BlackItalic.woff | Bin 0 -> 72372 bytes .../template/lato/LatoLatin-BlackItalic.woff2 | Bin 0 -> 44316 bytes presentation/template/lato/LatoLatin-Bold.eot | Bin 0 -> 68209 bytes presentation/template/lato/LatoLatin-Bold.ttf | Bin 0 -> 146156 bytes .../template/lato/LatoLatin-Bold.woff | Bin 0 -> 72376 bytes .../template/lato/LatoLatin-Bold.woff2 | Bin 0 -> 44380 bytes .../template/lato/LatoLatin-BoldItalic.eot | Bin 0 -> 69528 bytes .../template/lato/LatoLatin-BoldItalic.ttf | Bin 0 -> 149756 bytes .../template/lato/LatoLatin-BoldItalic.woff | Bin 0 -> 73700 bytes .../template/lato/LatoLatin-BoldItalic.woff2 | Bin 0 -> 45036 bytes .../template/lato/LatoLatin-Hairline.eot | Bin 0 -> 60885 bytes .../template/lato/LatoLatin-Hairline.ttf | Bin 0 -> 141008 bytes .../template/lato/LatoLatin-Hairline.woff | Bin 0 -> 65712 bytes .../template/lato/LatoLatin-Hairline.woff2 | Bin 0 -> 38596 bytes .../lato/LatoLatin-HairlineItalic.eot | Bin 0 -> 62844 bytes .../lato/LatoLatin-HairlineItalic.ttf | Bin 0 -> 144016 bytes .../lato/LatoLatin-HairlineItalic.woff | Bin 0 -> 67436 bytes .../lato/LatoLatin-HairlineItalic.woff2 | Bin 0 -> 39760 bytes .../template/lato/LatoLatin-Heavy.eot | Bin 0 -> 68784 bytes .../template/lato/LatoLatin-Heavy.ttf | Bin 0 -> 146740 bytes .../template/lato/LatoLatin-Heavy.woff | Bin 0 -> 72296 bytes .../template/lato/LatoLatin-Heavy.woff2 | Bin 0 -> 44280 bytes .../template/lato/LatoLatin-HeavyItalic.eot | Bin 0 -> 68747 bytes .../template/lato/LatoLatin-HeavyItalic.ttf | Bin 0 -> 148912 bytes .../template/lato/LatoLatin-HeavyItalic.woff | Bin 0 -> 73192 bytes .../template/lato/LatoLatin-HeavyItalic.woff2 | Bin 0 -> 45800 bytes .../template/lato/LatoLatin-Italic.eot | Bin 0 -> 69771 bytes .../template/lato/LatoLatin-Italic.ttf | Bin 0 -> 153688 bytes .../template/lato/LatoLatin-Italic.woff | Bin 0 -> 74708 bytes .../template/lato/LatoLatin-Italic.woff2 | Bin 0 -> 45388 bytes .../template/lato/LatoLatin-Light.eot | Bin 0 -> 67508 bytes .../template/lato/LatoLatin-Light.ttf | Bin 0 -> 151856 bytes .../template/lato/LatoLatin-Light.woff | Bin 0 -> 72604 bytes .../template/lato/LatoLatin-Light.woff2 | Bin 0 -> 43468 bytes .../template/lato/LatoLatin-LightItalic.eot | Bin 0 -> 68553 bytes .../template/lato/LatoLatin-LightItalic.ttf | Bin 0 -> 153096 bytes .../template/lato/LatoLatin-LightItalic.woff | Bin 0 -> 73444 bytes .../template/lato/LatoLatin-LightItalic.woff2 | Bin 0 -> 44156 bytes .../template/lato/LatoLatin-Medium.eot | Bin 0 -> 67842 bytes .../template/lato/LatoLatin-Medium.ttf | Bin 0 -> 146224 bytes .../template/lato/LatoLatin-Medium.woff | Bin 0 -> 71960 bytes .../template/lato/LatoLatin-Medium.woff2 | Bin 0 -> 43920 bytes .../template/lato/LatoLatin-MediumItalic.eot | Bin 0 -> 68893 bytes .../template/lato/LatoLatin-MediumItalic.ttf | Bin 0 -> 149356 bytes .../template/lato/LatoLatin-MediumItalic.woff | Bin 0 -> 73160 bytes .../lato/LatoLatin-MediumItalic.woff2 | Bin 0 -> 44984 bytes .../template/lato/LatoLatin-Regular.eot | Bin 0 -> 68135 bytes .../template/lato/LatoLatin-Regular.ttf | Bin 0 -> 148540 bytes .../template/lato/LatoLatin-Regular.woff | Bin 0 -> 72456 bytes .../template/lato/LatoLatin-Regular.woff2 | Bin 0 -> 43760 bytes .../template/lato/LatoLatin-Semibold.eot | Bin 0 -> 68442 bytes .../template/lato/LatoLatin-Semibold.ttf | Bin 0 -> 150916 bytes .../template/lato/LatoLatin-Semibold.woff | Bin 0 -> 73132 bytes .../template/lato/LatoLatin-Semibold.woff2 | Bin 0 -> 44356 bytes .../lato/LatoLatin-SemiboldItalic.eot | Bin 0 -> 69280 bytes .../lato/LatoLatin-SemiboldItalic.ttf | Bin 0 -> 152832 bytes .../lato/LatoLatin-SemiboldItalic.woff | Bin 0 -> 74576 bytes .../lato/LatoLatin-SemiboldItalic.woff2 | Bin 0 -> 45328 bytes presentation/template/lato/LatoLatin-Thin.eot | Bin 0 -> 66805 bytes presentation/template/lato/LatoLatin-Thin.ttf | Bin 0 -> 149912 bytes .../template/lato/LatoLatin-Thin.woff | Bin 0 -> 71536 bytes .../template/lato/LatoLatin-Thin.woff2 | Bin 0 -> 43068 bytes .../template/lato/LatoLatin-ThinItalic.eot | Bin 0 -> 67569 bytes .../template/lato/LatoLatin-ThinItalic.ttf | Bin 0 -> 153028 bytes .../template/lato/LatoLatin-ThinItalic.woff | Bin 0 -> 73692 bytes .../template/lato/LatoLatin-ThinItalic.woff2 | Bin 0 -> 44344 bytes presentation/template/lato/lato.css | 39 + presentation/template/mathjax | 1 + presentation/template/my-chalkboard/README.md | 123 ++ .../template/my-chalkboard/chalkboard.js | 1142 ++++++++++++++ .../template/my-chalkboard/img/blackboard.png | Bin 0 -> 32733 bytes .../my-chalkboard/img/boardmarker.png | Bin 0 -> 1249 bytes .../template/my-chalkboard/img/chalk.png | Bin 0 -> 1347 bytes .../template/my-chalkboard/img/sponge-bak.png | Bin 0 -> 3612 bytes .../template/my-chalkboard/img/sponge.png | Bin 0 -> 4936 bytes .../template/my-chalkboard/img/whiteboard.png | Bin 0 -> 34129 bytes presentation/template/my-zoom/zoom.js | 155 ++ presentation/template/revealjs | 1 + presentation/template/template.html | 208 +++ 92 files changed, 4459 insertions(+) create mode 100644 .gitmodules create mode 100755 presentation/Makefile create mode 100644 presentation/presentation.html create mode 100644 presentation/presentation.md create mode 100755 presentation/template/agcg-pdf.css create mode 100755 presentation/template/agcg.css create mode 160000 presentation/template/font-awesome create mode 100755 presentation/template/lato/LatoLatin-Black.eot create mode 100755 presentation/template/lato/LatoLatin-Black.ttf create mode 100755 presentation/template/lato/LatoLatin-Black.woff create mode 100755 presentation/template/lato/LatoLatin-Black.woff2 create mode 100755 presentation/template/lato/LatoLatin-BlackItalic.eot create mode 100755 presentation/template/lato/LatoLatin-BlackItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-BlackItalic.woff create mode 100755 presentation/template/lato/LatoLatin-BlackItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Bold.eot create mode 100755 presentation/template/lato/LatoLatin-Bold.ttf create mode 100755 presentation/template/lato/LatoLatin-Bold.woff create mode 100755 presentation/template/lato/LatoLatin-Bold.woff2 create mode 100755 presentation/template/lato/LatoLatin-BoldItalic.eot create mode 100755 presentation/template/lato/LatoLatin-BoldItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-BoldItalic.woff create mode 100755 presentation/template/lato/LatoLatin-BoldItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Hairline.eot create mode 100755 presentation/template/lato/LatoLatin-Hairline.ttf create mode 100755 presentation/template/lato/LatoLatin-Hairline.woff create mode 100755 presentation/template/lato/LatoLatin-Hairline.woff2 create mode 100755 presentation/template/lato/LatoLatin-HairlineItalic.eot create mode 100755 presentation/template/lato/LatoLatin-HairlineItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-HairlineItalic.woff create mode 100755 presentation/template/lato/LatoLatin-HairlineItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Heavy.eot create mode 100755 presentation/template/lato/LatoLatin-Heavy.ttf create mode 100755 presentation/template/lato/LatoLatin-Heavy.woff create mode 100755 presentation/template/lato/LatoLatin-Heavy.woff2 create mode 100755 presentation/template/lato/LatoLatin-HeavyItalic.eot create mode 100755 presentation/template/lato/LatoLatin-HeavyItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-HeavyItalic.woff create mode 100755 presentation/template/lato/LatoLatin-HeavyItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Italic.eot create mode 100755 presentation/template/lato/LatoLatin-Italic.ttf create mode 100755 presentation/template/lato/LatoLatin-Italic.woff create mode 100755 presentation/template/lato/LatoLatin-Italic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Light.eot create mode 100755 presentation/template/lato/LatoLatin-Light.ttf create mode 100755 presentation/template/lato/LatoLatin-Light.woff create mode 100755 presentation/template/lato/LatoLatin-Light.woff2 create mode 100755 presentation/template/lato/LatoLatin-LightItalic.eot create mode 100755 presentation/template/lato/LatoLatin-LightItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-LightItalic.woff create mode 100755 presentation/template/lato/LatoLatin-LightItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Medium.eot create mode 100755 presentation/template/lato/LatoLatin-Medium.ttf create mode 100755 presentation/template/lato/LatoLatin-Medium.woff create mode 100755 presentation/template/lato/LatoLatin-Medium.woff2 create mode 100755 presentation/template/lato/LatoLatin-MediumItalic.eot create mode 100755 presentation/template/lato/LatoLatin-MediumItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-MediumItalic.woff create mode 100755 presentation/template/lato/LatoLatin-MediumItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Regular.eot create mode 100755 presentation/template/lato/LatoLatin-Regular.ttf create mode 100755 presentation/template/lato/LatoLatin-Regular.woff create mode 100755 presentation/template/lato/LatoLatin-Regular.woff2 create mode 100755 presentation/template/lato/LatoLatin-Semibold.eot create mode 100755 presentation/template/lato/LatoLatin-Semibold.ttf create mode 100755 presentation/template/lato/LatoLatin-Semibold.woff create mode 100755 presentation/template/lato/LatoLatin-Semibold.woff2 create mode 100755 presentation/template/lato/LatoLatin-SemiboldItalic.eot create mode 100755 presentation/template/lato/LatoLatin-SemiboldItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-SemiboldItalic.woff create mode 100755 presentation/template/lato/LatoLatin-SemiboldItalic.woff2 create mode 100755 presentation/template/lato/LatoLatin-Thin.eot create mode 100755 presentation/template/lato/LatoLatin-Thin.ttf create mode 100755 presentation/template/lato/LatoLatin-Thin.woff create mode 100755 presentation/template/lato/LatoLatin-Thin.woff2 create mode 100755 presentation/template/lato/LatoLatin-ThinItalic.eot create mode 100755 presentation/template/lato/LatoLatin-ThinItalic.ttf create mode 100755 presentation/template/lato/LatoLatin-ThinItalic.woff create mode 100755 presentation/template/lato/LatoLatin-ThinItalic.woff2 create mode 100755 presentation/template/lato/lato.css create mode 160000 presentation/template/mathjax create mode 100755 presentation/template/my-chalkboard/README.md create mode 100755 presentation/template/my-chalkboard/chalkboard.js create mode 100755 presentation/template/my-chalkboard/img/blackboard.png create mode 100755 presentation/template/my-chalkboard/img/boardmarker.png create mode 100755 presentation/template/my-chalkboard/img/chalk.png create mode 100755 presentation/template/my-chalkboard/img/sponge-bak.png create mode 100755 presentation/template/my-chalkboard/img/sponge.png create mode 100755 presentation/template/my-chalkboard/img/whiteboard.png create mode 100755 presentation/template/my-zoom/zoom.js create mode 160000 presentation/template/revealjs create mode 100755 presentation/template/template.html diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 0000000..028fb2d --- /dev/null +++ b/.gitmodules @@ -0,0 +1,9 @@ +[submodule "presentation/template/mathjax"] + path = presentation/template/mathjax + url = https://github.com/mathjax/MathJax.git +[submodule "presentation/template/revealjs"] + path = presentation/template/revealjs + url = https://github.com/hakimel/reveal.js.git +[submodule "presentation/template/font-awesome"] + path = presentation/template/font-awesome + url = https://github.com/FortAwesome/Font-Awesome.git diff --git a/presentation/Makefile b/presentation/Makefile new file mode 100755 index 0000000..f401643 --- /dev/null +++ b/presentation/Makefile @@ -0,0 +1,43 @@ +### INPUT & OUTPUT ########################################################## + +MD := $(wildcard *.md) +HTML := $(patsubst %.md, %.html, $(MD)) + +### TEMPLATE CONFIG ######################################################### + +TDIR := ./template +TEMPLATE := $(TDIR)/template.html + + +### EXPLICIT RULES ########################################################## + +.PHONY: html + +html: $(HTML) + +htmlold: $(HTMOLD) + +$(HTML): $(SRC) $(TEMPLATE) + +clean: + rm -f $(HTML) + +### IMPLICIT RULES ########################################################## + +# new syntax with filters +%.html: %.md + cat $< | \ + pandoc \ + --from markdown+link_attributes+smart+line_blocks+emoji \ + --to revealjs \ + --section-divs \ + --no-highlight \ + --mathjax \ + --template $(TEMPLATE) \ + --variable template=$(TDIR) \ + --variable chalkboard=${<:.md=.json} \ + --filter styling \ + --filter cols \ + --filter media \ + --filter clean \ + -o $@ diff --git a/presentation/presentation.html b/presentation/presentation.html new file mode 100644 index 0000000..8ebc515 --- /dev/null +++ b/presentation/presentation.html @@ -0,0 +1,594 @@ + + + + + + + + + Evaluation of the Performance of Randomized FFD Control Grids: Master Thesis + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+
Evaluation of the Performance of Randomized FFD Control Grids
+
Master Thesis
+
Stefan Dresselhaus
+
Graphics & Geometry Group
+
+ + + + + + +
+

Introduction

+

Many modern industrial design processes require advanced optimization methods due to the increased complexity resulting from more and more degrees of freedom as methods refine and/or other methods are used. Examples for this are physical domains like aerodynamics (i.e. drag), fluid dynamics (i.e. throughput of liquid) — where the complexity increases with the temporal and spatial resolution of the simulation — or known hard algorithmic problems in informatics ( i.e. layouting of circuit boards or stacking of 3D–objects). Moreover these are typically not static environments but requirements shift over time or from case to case.

+ +

Evolutionary algorithms cope especially well with these problem domains while addressing all the issues at hand. One of the main concerns in these algorithms is the formulation of the problems in terms of a genome and fitness–function. While one can typically use an arbitrary cost–function for the fitness–functions (i.e. amount of drag, amount of space, etc.), the translation of the problem–domain into a simple parametric representation (the genome) can be challenging.

+

This translation is often necessary as the target of the optimization may have too many degrees of freedom for a reasonable computation. In the example of an aerodynamic simulation of drag onto an object, those object–designs tend to have a high number of vertices to adhere to various requirements (visual, practical, physical, etc.). A simpler representation of the same object in only a few parameters that manipulate the whole in a sensible matter are desirable, as this often decreases the computation time significantly.

+

Additionally one can exploit the fact, that drag in this case is especially sensitive to non–smooth surfaces, so that a smooth local manipulation of the surface as a whole is more advantageous than merely random manipulation of the vertices.

+

The quality of such a low–dimensional representation in biological evolution is strongly tied to the notion of evolvability, as the parametrization of the problem has serious implications on the convergence speed and the quality of the solution. However, there is no consensus on how evolvability is defined and the meaning varies from context to context. As a consequence there is need for some criteria we can measure, so that we are able to compare different representations to learn and improve upon these.

+ +

One example of such a general representation of an object is to generate random points and represent vertices of an object as distances to these points — for example via . If one (or the algorithm) would move such a point the object will get deformed only locally (due to the ). As this results in a simple mapping from the parameter–space onto the object one can try out different representations of the same object and evaluate which criteria may be suited to describe this notion of evolvability. This is exactly what Richter et al. have done.

+

As we transfer the results of Richter et al. from using as a representation to manipulate geometric objects to the use of we will use the same definition for evolvability the original author used, namely regularity, variability, and improvement potential. We introduce these term in detail in Chapter . In the original publication the author could show a correlation between these evolvability–criteria with the quality and convergence speed of such optimization.

+

We will replicate the same setup on the same objects but use instead of to create a local deformation near the control–points and evaluate if the evolution–criteria still work as a predictor for evolvability of the representation given the different deformation scheme, as suspected in .

+

First we introduce different topics in isolation in Chapter . We take an abstract look at the definition of for a one–dimensional line (in ) and discuss why this is a sensible deformation function (in ). Then we establish some background–knowledge of evolutionary algorithms (in ) and why this is useful in our domain (in ) followed by the definition of the different evolvability–criteria established in (in ).

+

In Chapter we take a look at our implementation of and the adaptation for 3D–meshes that were used. Next, in Chapter , we describe the different scenarios we use to evaluate the different evolvability–criteria incorporating all aspects introduced in Chapter . Following that, we evaluate the results in Chapter with further on discussion, summary and outlook in Chapter .

+
+
+

Background

+ +
+

What is ?

+ +

First of all we have to establish how a works and why this is a good tool for deforming geometric objects (especially meshes in our case) in the first place. For simplicity we only summarize the 1D–case from here and go into the extension to the 3D case in chapter .

+

The main idea of is to create a function \(s : [0,1[^d \mapsto \mathbb{R}^d\) that spans a certain part of a vector–space and is only linearly parametrized by some special control–points \(p_i\) and an constant attribution–function \(a_i(u)\), so \[ +s(\vec{u}) = \sum_i a_i(\vec{u}) \vec{p_i} +\] can be thought of a representation of the inside of the convex hull generated by the control–points where each position inside can be accessed by the right \(u \in [0,1[^d\).

+ +

In the 1–dimensional example in figure , the control–points are indicated as red dots and the colour–gradient should hint at the \(u\)–values ranging from \(0\) to \(1\).

+

We now define a by the following:
+Given an arbitrary number of points \(p_i\) alongside a line, we map a scalar value \(\tau_i \in [0,1[\) to each point with \(\tau_i < \tau_{i+1} \forall i\) according to the position of \(p_i\) on said line. Additionally, given a degree of the target polynomial \(d\) we define the curve \(N_{i,d,\tau_i}(u)\) as follows:

+\[\begin{equation} \label{eqn:ffd1d1} +N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[ \\ 0, & \mbox{otherwise} \end{cases} +\end{equation}\] +

and \[\begin{equation} \label{eqn:ffd1d2} +N_{i,d,\tau}(u) = \frac{u-\tau_i}{\tau_{i+d}} N_{i,d-1,\tau}(u) + \frac{\tau_{i+d+1} - u}{\tau_{i+d+1}-\tau_{i+1}} N_{i+1,d-1,\tau}(u) +\end{equation}\]

+

If we now multiply every \(p_i\) with the corresponding \(N_{i,d,\tau_i}(u)\) we get the contribution of each point \(p_i\) to the final curve–point parametrized only by \(u \in [0,1[\). As can be seen from we only access points \([p_i..p_{i+d}]\) for any given \(i\)1, which gives us, in combination with choosing \(p_i\) and \(\tau_i\) in order, only a local interference of \(d+1\) points.

+

We can even derive this equation straightforward for an arbitrary \(N\)2:

+

\[\frac{\partial}{\partial u} N_{i,d,r}(u) = \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u)\]

+

For a B–Spline \[s(u) = \sum_{i} N_{i,d,\tau_i}(u) p_i\] these derivations yield \(\left(\frac{\partial}{\partial u}\right)^d s(u) = 0\).

+

Another interesting property of these recursive polynomials is that they are continuous (given \(d \ge 1\)) as every \(p_i\) gets blended in between \(\tau_i\) and \(\tau_{i+d}\) and out between \(\tau_{i+1}\), and \(\tau_{i+d+1}\) as can bee seen from the two coefficients in every step of the recursion.

+

This means that all changes are only a local linear combination between the control–point \(p_i\) to \(p_{i+d+1}\) and consequently this yields to the convex–hull–property of B–Splines — meaning, that no matter how we choose our coefficients, the resulting points all have to lie inside convex–hull of the control–points.

+

For a given point \(s_i\) we can then calculate the contributions \(u_{i,j}~:=~N_{j,d,\tau}\) of each control point \(p_j\) to get the projection from the control–point–space into the object–space: \[ +s_i = \sum_j u_{i,j} \cdot p_j = \vec{n}_i^{T} \vec{p} +\] or written for all points at the same time: \[ +\vec{s} = \vec{U} \vec{p} +\] where \(\vec{U}\) is the \(n \times m\) transformation–matrix (later on called deformation matrix) for \(n\) object–space–points and \(m\) control–points.

+ +

Furthermore B–Spline–basis–functions form a partition of unity for all, but the first and last \(d\) control–points. Therefore we later on use the border–points \(d+1\) times, such that \(\sum_j u_{i,j} p_j = p_i\) for these points.

+

The locality of the influence of each control–point and the partition of unity was beautifully pictured by Brunet, which we included here as figure .

+
+

Why is a good deformation function?

+ +

The usage of as a tool for manipulating follows directly from the properties of the polynomials and the correspondence to the control–points. Having only a few control–points gives the user a nicer high–level–interface, as she only needs to move these points and the model follows in an intuitive manner. The deformation is smooth as the underlying polygon is smooth as well and affects as many vertices of the model as needed. Moreover the changes are always local so one risks not any change that a user cannot immediately see.

+

But there are also disadvantages of this approach. The user loses the ability to directly influence vertices and even seemingly simple tasks as creating a plateau can be difficult to achieve.

+

This disadvantages led to the formulation of in which the user directly interacts with the surface–mesh. All interactions will be applied proportionally to the control–points that make up the parametrization of the interaction–point itself yielding a smooth deformation of the surface at the surface without seemingly arbitrary scattered control–points. Moreover this increases the efficiency of an evolutionary optimization, which we will use later on.

+ +

But this approach also has downsides as can be seen in figure , as the tessellation of the invisible grid has a major impact on the deformation itself.

+

All in all and are still good ways to deform a high–polygon mesh albeit the downsides.

+
+
+
+

What is evolutionary optimization?

+ +

In this thesis we are using an evolutionary optimization strategy to solve the problem of finding the best parameters for our deformation. This approach, however, is very generic and we introduce it here in a broader sense.

+ +

The general shape of an evolutionary algorithm (adapted from ) is outlined in Algorithm . Here, \(P(t)\) denotes the population of parameters in step \(t\) of the algorithm. The population contains \(\mu\) individuals \(a_i\) from the possible individual–set \(I\) that fit the shape of the parameters we are looking for. Typically these are initialized by a random guess or just zero. Further on we need a so–called fitness–function \(\Phi : I \mapsto M\) that can take each parameter to a measurable space \(M\) (usually \(M = \mathbb{R}\)) along a convergence–function \(c : I \mapsto \mathbb{B}\) that terminates the optimization.

+

Biologically speaking the set \(I\) corresponds to the set of possible genotypes while \(M\) represents the possible observable phenotypes. Genotypes define all initial properties of an individual, but their properties are not directly observable. It is the genes, that evolve over time (and thus correspond to the parameters we are tweaking in our algorithms or the genes in nature), but only the phenotypes make certain behaviour observable (algorithmically through our fitness–function, biologically by the ability to survive and produce offspring). Any individual in our algorithm thus experience a biologically motivated life cycle of inheriting genes from the parents, modified by mutations occurring, performing according to a fitness–metric, and generating offspring based on this. Therefore each iteration in the while–loop above is also often named generation.

+

One should note that there is a subtle difference between fitness–function and a so called genotype–phenotype–mapping. The first one directly applies the genotype–phenotype–mapping and evaluates the performance of an individual, thus going directly from genes/parameters to reproduction–probability/score. In a concrete example the genotype can be an arbitrary vector (the genes), the phenotype is then a deformed object, and the performance can be a single measurement like an air–drag–coefficient. The genotype–phenotype–mapping would then just be the generation of different objects from that starting–vector, whereas the fitness–function would go directly from such a starting–vector to the coefficient that we want to optimize.

+

The main algorithm just repeats the following steps:

+
    +
  • Recombine with a recombination–function \(r : I^{\mu} \mapsto I^{\lambda}\) to generate \(\lambda\) new individuals based on the characteristics of the \(\mu\) parents.
    +This makes sure that the next guess is close to the old guess.
  • +
  • Mutate with a mutation–function \(m : I^{\lambda} \mapsto I^{\lambda}\) to introduce new effects that cannot be produced by mere recombination of the parents.
    +Typically this just adds minor defects to individual members of the population like adding a random gaussian noise or amplifying/dampening random parts.
  • +
  • Selection takes a selection–function \(s : (I^\lambda \cup I^{\mu + \lambda},\Phi) \mapsto I^\mu\) that selects from the previously generated \(I^\lambda\) children and optionally also the parents (denoted by the set \(Q\) in the algorithm) using the fitness–function \(\Phi\). The result of this operation is the next Population of \(\mu\) individuals.
  • +
+

All these functions can (and mostly do) have a lot of hidden parameters that can be changed over time. A good overview of this is given in , so we only give a small excerpt here.

+

For example the mutation can consist of merely a single \(\sigma\) determining the strength of the gaussian defects in every parameter — or giving a different \(\sigma\) to every component of those parameters. An even more sophisticated example would be the 1/5 success rule from .

+

Also in the selection–function it may not be wise to only take the best–performing individuals, because it may be that the optimization has to overcome a barrier of bad fitness to achieve a better local optimum.

+

Recombination also does not have to be mere random choosing of parents, but can also take ancestry, distance of genes or groups of individuals into account.

+
+
+

Advantages of evolutionary algorithms

+ +

The main advantage of evolutionary algorithms is the ability to find optima of general functions just with the help of a given fitness–function. Components and techniques for evolutionary algorithms are specifically known to help with different problems arising in the domain of optimization. An overview of the typical problems are shown in figure .

+ +

Most of the advantages stem from the fact that a gradient–based procedure has usually only one point of observation from where it evaluates the next steps, whereas an evolutionary strategy starts with a population of guessed solutions. Because an evolutionary strategy can be modified according to the problem–domain (i.e. by the ideas given above) it can also approximate very difficult problems in an efficient manner and even self–tune parameters depending on the ancestry at runtime3.

+

If an analytic best solution exists and is easily computable (i.e. because the error–function is convex) an evolutionary algorithm is not the right choice. Although both converge to the same solution, the analytic one is usually faster.

+

But in reality many problems have no analytic solution, because the problem is either not convex or there are so many parameters that an analytic solution (mostly meaning the equivalence to an exhaustive search) is computationally not feasible. Here evolutionary optimization has one more advantage as one can at least get suboptimal solutions fast, which then refine over time and still converge to a decent solution much faster than an exhaustive search.

+
+
+

Criteria for the evolvability of linear deformations

+ +

As we have established in chapter , we can describe a deformation by the formula \[ +\vec{S} = \vec{U}\vec{P} +\] where \(\vec{S}\) is a \(n \times d\) matrix of vertices4, \(\vec{U}\) are the (during parametrization) calculated deformation–coefficients and \(P\) is a \(m \times d\) matrix of control–points that we interact with during deformation.

+

We can also think of the deformation in terms of differences from the original coordinates \[ +\Delta \vec{S} = \vec{U} \cdot \Delta \vec{P} +\] which is isomorphic to the former due to the linearity of the deformation. One can see in this way, that the way the deformation behaves lies solely in the entries of \(\vec{U}\), which is why the three criteria focus on this.

+
+

Variability

+

In variability is defined as \[\mathrm{variability}(\vec{U}) := \frac{\mathrm{rank}(\vec{U})}{n},\] whereby \(\vec{U}\) is the \(n \times m\) deformation–Matrix used to map the \(m\) control–points onto the \(n\) vertices.

+

Given \(n = m\), an identical number of control–points and vertices, this quotient will be \(=1\) if all control–points are independent of each other and the solution is to trivially move every control–point onto a target–point.

+

In praxis the value of \(V(\vec{U})\) is typically \(\ll 1\), because there are only few control–points for many vertices, so \(m \ll n\).

+

This criterion should correlate to the degrees of freedom the given parametrization has. This can be seen from the fact, that \(\mathrm{rank}(\vec{U})\) is limited by \(\min(m,n)\) and — as \(n\) is constant — can never exceed \(n\).

+

The rank itself is also interesting, as control–points could theoretically be placed on top of each other or be linear dependent in another way — but will in both cases lower the rank below the number of control–points \(m\) and are thus measurable by the variability.

+
+
+

Regularity

+

Regularity is defined as \[\mathrm{regularity}(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}\] where \(\sigma_{min}\) and \(\sigma_{max}\) are the smallest and greatest right singular value of the deformation–matrix \(\vec{U}\).

+

As we deform the given Object only based on the parameters as \(\vec{p} \mapsto f(\vec{x} + \vec{U}\vec{p})\) this makes sure that \(\|\vec{Up}\| \propto \|\vec{p}\|\) when \(\kappa(\vec{U}) \approx 1\). The inversion of \(\kappa(\vec{U})\) is only performed to map the criterion–range to \([0..1]\), where \(1\) is the optimal value and \(0\) is the worst value.

+

On the one hand this criterion should be characteristic for numeric stability and on the other hand for the convergence speed of evolutionary algorithms as it is tied to the notion of locality.

+
+
+

Improvement Potential

+

In contrast to the general nature of variability and regularity, which are agnostic of the fitness–function at hand, the third criterion should reflect a notion of the potential for optimization, taking a guess into account.

+

Most of the times some kind of gradient \(g\) is available to suggest a direction worth pursuing; either from a previous iteration or by educated guessing. We use this to guess how much change can be achieved in the given direction.

+

The definition for an improvement potential \(P\) is: \[ +\mathrm{potential}(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F +\] given some approximate \(n \times d\) fitness–gradient \(\vec{G}\), normalized to \(\|\vec{G}\|_F = 1\), whereby \(\|\cdot\|_F\) denotes the Frobenius–Norm.

+
+
+
+
+

Implementation of

+ +

The general formulation of B–Splines has two free parameters \(d\) and \(\tau\) which must be chosen beforehand.

+

As we usually work with regular grids in our we define \(\tau\) statically as \(\tau_i = \nicefrac{i}{n}\) whereby \(n\) is the number of control–points in that direction.

+

\(d\) defines the degree of the B–Spline–Function (the number of times this function is differentiable) and for our purposes we fix \(d\) to \(3\), but give the formulas for the general case so it can be adapted quite freely.

+
+

Adaption of

+ +

As we have established in Chapter we can define an –displacement as \[\begin{equation} +\Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i +\end{equation}\]

+

Note that we only sum up the \(\Delta\)–displacements in the control–points \(c_i\) to get the change in position of the point we are interested in.

+

In this way every deformed vertex is defined by \[ +\textrm{Deform}(v_x) = v_x + \Delta_x(u) +\] with \(u \in [0..1[\) being the variable that connects the high–detailed vertex–mesh to the low–detailed control–grid. To actually calculate the new position of the vertex we first have to calculate the \(u\)–value for each vertex. This is achieved by finding out the parametrization of \(v\) in terms of \(c_i\) \[ +v_x \overset{!}{=} \sum_i N_{i,d,\tau_i}(u) c_i +\] so we can minimize the error between those two: \[ +\underset{u}{\argmin}\,Err(u,v_x) = \underset{u}{\argmin}\,2 \cdot \|v_x - \sum_i N_{i,d,\tau_i}(u) c_i\|^2_2 +\] As this error–term is quadratic we just derive by \(u\) yielding \[ +\begin{array}{rl} +\frac{\partial}{\partial u} & v_x - \sum_i N_{i,d,\tau_i}(u) c_i \\ += & - \sum_i \left( \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u) \right) c_i +\end{array} +\] and do a gradient–descend to approximate the value of \(u\) up to an \(\epsilon\) of \(0.0001\).

+

For this we employ the Gauss–Newton algorithm, which converges into the least–squares solution. An exact solution of this problem is impossible most of the time, because we usually have way more vertices than control–points (\(\#v~\gg~\#c\)).

+
+
+

Adaption of for a 3D–Mesh

+ +

This is a straightforward extension of the 1D–method presented in the last chapter. But this time things get a bit more complicated. As we have a 3–dimensional grid we may have a different amount of control–points in each direction.

+

Given \(n,m,o\) control–points in \(x,y,z\)–direction each Point on the curve is defined by \[V(u,v,w) = \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot C_{ijk}.\]

+

In this case we have three different B–Splines (one for each dimension) and also 3 variables \(u,v,w\) for each vertex we want to approximate.

+

Given a target vertex \(\vec{p}^*\) and an initial guess \(\vec{p}=V(u,v,w)\) we define the error–function for the gradient–descent as:

+

\[Err(u,v,w,\vec{p}^{*}) = \vec{p}^{*} - V(u,v,w)\]

+

And the partial version for just one direction as

+

\[Err_x(u,v,w,\vec{p}^{*}) = p^{*}_x - \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x \]

+

To solve this we derive partially, like before:

+

\[ +\begin{array}{rl} + \displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x \\ + = & \displaystyle - \sum_i \sum_j \sum_k N'_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x +\end{array} +\]

+

The other partial derivatives follow the same pattern yielding the Jacobian:

+

\[ +J(Err(u,v,w)) = +\left( +\begin{array}{ccc} +\frac{\partial Err_x}{\partial u} & \frac{\partial Err_x}{\partial v} & \frac{\partial Err_x}{\partial w} \\ +\frac{\partial Err_y}{\partial u} & \frac{\partial Err_y}{\partial v} & \frac{\partial Err_y}{\partial w} \\ +\frac{\partial Err_z}{\partial u} & \frac{\partial Err_z}{\partial v} & \frac{\partial Err_z}{\partial w} +\end{array} +\right) +\] \[ +\scriptsize += +\left( +\begin{array}{ccc} +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_x \\ +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_y \\ +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_z +\end{array} +\right) +\]

+

With the Gauss–Newton algorithm we iterate via the formula \[J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)\] and use Cramer’s rule for inverting the small Jacobian and solving this system of linear equations.

+

As there is no strict upper bound of the number of iterations for this algorithm, we just iterate it long enough to be within the given \(\epsilon\)–error above. This takes — depending on the shape of the object and the grid — about \(3\) to \(5\) iterations that we observed in practice.

+

Another issue that we observed in our implementation is, that multiple local optima may exist on self–intersecting grids. We solve this problem by defining self–intersecting grids to be invalid and do not test any of them.

+

This is not such a big problem as it sounds at first, as self–intersections mean, that control–points being further away from a given vertex have more influence over the deformation than control–points closer to this vertex. Also this contradicts the notion of locality that we want to achieve and deemed beneficial for a good behaviour of the evolutionary algorithm.

+
+
+ +
+
+

As mentioned in chapter , the way of choosing the representation to map the general problem (mesh–fitting/optimization in our case) into a parameter–space is very important for the quality and runtime of evolutionary algorithms.

+
+
+ +
+
+

Because our control–points are arranged in a grid, we can accurately represent each vertex–point inside the grids volume with proper B–Spline–coefficients between \([0,1[\) and — as a consequence — we have to embed our object into it (or create constant “dummy”–points outside).

+

The great advantage of B–Splines is the local, direct impact of each control point without having a \(1:1\)–correlation, and a smooth deformation. While the advantages are great, the issues arise from the problem to decide where to place the control–points and how many to place at all.

+ +

One would normally think, that the more control–points you add, the better the result will be, but this is not the case for our B–Splines. Given any point \(\vec{p}\) only the \(2 \cdot (d-1)\) control–points contribute to the parametrization of that point5. This means, that a high resolution can have many control–points that are not contributing to any point on the surface and are thus completely irrelevant to the solution.

+

We illustrate this phenomenon in figure , where the red central points are not relevant for the parametrization of the circle. This leads to artefacts in the deformation–matrix \(\vec{U}\), as the columns corresponding to those control–points are \(0\).

+

This also leads to useless increased complexity, as the parameters corresponding to those points will never have any effect, but a naive algorithm will still try to optimize them yielding numeric artefacts in the best and non–terminating or ill–defined solutions6 at worst.

+

One can of course neglect those columns and their corresponding control–points, but this raises the question why they were introduced in the first place. We will address this in a special scenario in .

+

For our tests we chose different uniformly sized grids and added noise onto each control–point7 to simulate different starting–conditions.

+
+
+
+

Scenarios for testing evolvability–criteria using

+ +

In our experiments we use the same two testing–scenarios, that were also used by Richter et al. The first scenario deforms a plane into a shape originally defined by Giannelli et al., where we setup control–points in a 2–dimensional manner and merely deform in the height–coordinate to get the resulting shape.

+

In the second scenario we increase the degrees of freedom significantly by using a 3–dimensional control–grid to deform a sphere into a face, so each control point has three degrees of freedom in contrast to first scenario.

+
+

Test Scenario: 1D Function Approximation

+

In this scenario we used the shape defined by Giannelli et al., which is also used by Richter et al. using the same discretization to \(150 \times 150\) points for a total of \(n = 22\,500\) vertices. The shape is given by the following definition \[\begin{equation} +t(x,y) = +\begin{cases} +0.5 \cos(4\pi \cdot q^{0.5}) + 0.5 & q(x,y) < \frac{1}{16},\\ +2(y-x) & 0 < y-x < 0.5,\\ +1 & 0.5 < y - x +\end{cases} +\end{equation}\] with \((x,y) \in [0,2] \times [0,1]\) and \(q(x,y)=(x-1.5)^2 + (y-0.5)^2\), which we have visualized in figure .

+ +

As the starting–plane we used the same shape, but set all \(z\)–coordinates to \(0\), yielding a flat plane, which is partially already correct.

+

Regarding the fitness–function \(\mathrm{f}(\vec{p})\), we use the very simple approach of calculating the squared distances for each corresponding vertex \[\begin{equation} +\mathrm{f}(\vec{p}) = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min +\end{equation}\] where \(t_i\) are the respective target–vertices to the parametrized source–vertices8 with the current deformation–parameters \(\vec{p} = (p_1,\dots, p_m)\). We can do this one–to–one–correspondence because we have exactly the same number of source and target–vertices do to our setup of just flattening the object.

+

This formula is also the least–squares approximation error for which we can compute the analytic solution \(\vec{p^{*}} = \vec{U^+}\vec{t}\), yielding us the correct gradient in which the evolutionary optimizer should move.

+
+
+

Test Scenario: 3D Function Approximation

+

Opposed to the 1–dimensional scenario before, the 3–dimensional scenario is much more complex — not only because we have more degrees of freedom on each control point, but also, because the fitness–function we will use has no known analytic solution and multiple local minima.

+ +

First of all we introduce the set up: We have given a triangulated model of a sphere consisting of \(10\,807\) vertices, that we want to deform into a the target–model of a face with a total of \(12\,024\) vertices. Both of these Models can be seen in figure .

+

Opposed to the 1D–case we cannot map the source and target–vertices in a one–to–one–correspondence, which we especially need for the approximation of the fitting–error. Hence we state that the error of one vertex is the distance to the closest vertex of the respective other model and sum up the error from the source and target.

+

We therefore define the fitness–function to be:

+\[\begin{equation} +\mathrm{f}(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} - +\vec{s_i}\|_2^2}_{\textrm{source--to--target--distance}} ++ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} - +\vec{t_i}\|_2^2}_{\textrm{target--to--source--distance}} ++ \lambda \cdot \textrm{regularization}(\vec{P}) +\label{eq:fit3d} +\end{equation}\] +

where \(\vec{c_T(s_i)}\) denotes the target–vertex that is corresponding to the source–vertex \(\vec{s_i}\) and \(\vec{c_S(t_i)}\) denotes the source–vertex that corresponds to the target–vertex \(\vec{t_i}\). Note that the target–vertices are given and fixed by the target–model of the face we want to deform into, whereas the source–vertices vary depending on the chosen parameters \(\vec{P}\), as those get calculated by the previously introduces formula \(\vec{S} = \vec{UP}\) with \(\vec{S}\) being the \(n \times 3\)–matrix of source–vertices, \(\vec{U}\) the \(n \times m\)–matrix of calculated coefficients for the — analog to the 1D case — and finally \(\vec{P}\) being the \(m \times 3\)–matrix of the control–grid defining the whole deformation.

+

As regularization–term we add a weighted Laplacian of the deformation that has been used before by Aschenbach et al. on similar models and was shown to lead to a more precise fit. The Laplacian \[\begin{equation} +\mathrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s}_j \in \mathcal{N}(\vec{s}_i)} w_j \cdot \|\Delta \vec{s}_j - \Delta \vec{s}_i\|^2 \right) +\label{eq:reg3d} +\end{equation}\] is determined by the cotangent weighted displacement \(w_j\) of the to \(s_i\) connected vertices \(\mathcal{N}(s_i)\) and \(A_i\) is the Voronoi–area of the corresponding vertex \(\vec{s_i}\). We leave out the \(\vec{R}_i\)–term from the original paper as our deformation is merely linear.

+

This regularization–weight gives us a measure of stiffness for the material that we will influence via the \(\lambda\)–coefficient to start out with a stiff material that will get more flexible per iteration. As a side–effect this also limits the effects of overagressive movement of the control–points in the beginning of the fitting process and thus should limit the generation of ill–defined grids mentioned in section .

+
+
+
+

Evaluation of Scenarios

+ +

To compare our results to the ones given by Richter et al., we also use Spearman’s rank correlation coefficient. Opposed to other popular coefficients, like the Pearson correlation coefficient, which measures a linear relationship between variables, the Spearman’s coefficient assesses how well an arbitrary monotonic function can describe the relationship between two variables, without making any assumptions about the frequency distribution of the variables.

+

As we don’t have any prior knowledge if any of the criteria is linear and we are just interested in a monotonic relation between the criteria and their predictive power, the Spearman’s coefficient seems to fit out scenario best and was also used before by Richter et al.

+

For interpretation of these values we follow the same interpretation used in , based on : The coefficient intervals \(r_S \in [0,0.2[\), \([0.2,0.4[\), \([0.4,0.6[\), \([0.6,0.8[\), and \([0.8,1]\) are classified as very weak, weak, moderate, strong and very strong. We interpret p–values smaller than \(0.01\) as significant and cut off the precision of p–values after four decimal digits (thus often having a p–value of \(0\) given for p–values \(< 10^{-4}\)).

+

As we are looking for anti–correlation (i.e. our criterion should be maximized indicating a minimal result in — for example — the reconstruction–error) instead of correlation we flip the sign of the correlation–coefficient for readability and to have the correlation–coefficients be in the classification–range given above.

+

For the evolutionary optimization we employ the of the shark3.1 library , as this algorithm was used by as well. We leave the parameters at their sensible defaults as further explained in .

+
+

Procedure: 1D Function Approximation

+ +

For our setup we first compute the coefficients of the deformation–matrix and use the formulas for variability and regularity to get our predictions. Afterwards we solve the problem analytically to get the (normalized) correct gradient that we use as guess for the improvement potential. To further test the improvement potential we also consider a distorted gradient \(\vec{g}_{\mathrm{d}}\): \[ +\vec{g}_{\mathrm{d}} = \frac{\mu \vec{g}_{\mathrm{c}} + (1-\mu)\mathbb{1}}{\|\mu \vec{g}_{\mathrm{c}} + (1-\mu) \mathbb{1}\|} +\] where \(\mathbb{1}\) is the vector consisting of \(1\) in every dimension, \(\vec{g}_\mathrm{c} = \vec{p^{*}} - \vec{p}\) is the calculated correct gradient, and \(\mu\) is used to blend between \(\vec{g}_\mathrm{c}\) and \(\mathbb{1}\). As we always start with a gradient of \(p = \mathbb{0}\) this means we can shorten the definition of \(\vec{g}_\mathrm{c}\) to \(\vec{g}_\mathrm{c} = \vec{p^{*}}\).

+ +

We then set up a regular 2–dimensional grid around the object with the desired grid resolutions. To generate a testcase we then move the grid–vertices randomly inside the x–y–plane. As self–intersecting grids get tricky to solve with our implemented newtons–method (see section ) we avoid the generation of such self–intersecting grids for our testcases.

+

To achieve that we generated a gaussian distributed number with \(\mu = 0, \sigma=0.25\) and clamped it to the range \([-0.25,0.25]\). We chose such an \(r \in [-0.25,0.25]\) per dimension and moved the control–points by that factor towards their respective neighbours9.

+

In other words we set \[\begin{equation*} +p_i = +\begin{cases} + p_i + (p_i - p_{i-1}) \cdot r, & \textrm{if } r \textrm{ negative} \\ + p_i + (p_{i+1} - p_i) \cdot r, & \textrm{if } r \textrm{ positive} +\end{cases} +\end{equation*}\] in each dimension separately.

+

An Example of such a testcase can be seen for a \(7 \times 4\)–grid in figure .

+
+
+

Results of 1D Function Approximation

+

In the case of our 1D–Optimization–problem, we have the luxury of knowing the analytical solution to the given problem–set. We use this to experimentally evaluate the quality criteria we introduced before. As an evolutional optimization is partially a random process, we use the analytical solution as a stopping–criteria. We measure the convergence speed as number of iterations the evolutional algorithm needed to get within \(1.05 \times\) of the optimal solution.

+

We used different regular grids that we manipulated as explained in Section with a different number of control–points. As our grids have to be the product of two integers, we compared a \(5 \times 5\)–grid with \(25\) control–points to a \(4 \times 7\) and \(7 \times 4\)–grid with \(28\) control–points. This was done to measure the impact an improper  setup could have and how well this is displayed in the criteria we are examining.

+

Additionally we also measured the effect of increasing the total resolution of the grid by taking a closer look at \(5 \times 5\), \(7 \times 7\) and \(10 \times 10\) grids.

+
+

Variability

+ +

Variability should characterize the potential for design space exploration and is defined in terms of the normalized rank of the deformation matrix \(\vec{U}\): \(V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n}\), whereby \(n\) is the number of vertices. As all our tested matrices had a constant rank (being \(m = x \cdot y\) for a \(x \times y\) grid), we have merely plotted the errors in the box plot in figure

+

It is also noticeable, that although the \(7 \times 4\) and \(4 \times 7\) grids have a higher variability, they perform not better than the \(5 \times 5\) grid. Also the \(7 \times 4\) and \(4 \times 7\) grids differ distinctly from each other with a mean\(\pm\)sigma of \(233.09 \pm 12.32\) for the former and \(286.32 \pm 22.36\) for the latter, although they have the same number of control–points. This is an indication of an impact a proper or improper grid–setup can have. We do not draw scientific conclusions from these findings, as more research on non–squared grids seem necessary.

+

Leaving the issue of the grid–layout aside we focused on grids having the same number of prototypes in every dimension. For the \(5 \times 5\), \(7 \times 7\) and \(10 \times 10\) grids we found a very strong correlation (\(-r_S = 0.94, p = 0\)) between the variability and the evolutionary error.

+
+
+

Regularity

+ + +

Regularity should correspond to the convergence speed (measured in iteration–steps of the evolutionary algorithm), and is computed as inverse condition number \(\kappa(\vec{U})\) of the deformation–matrix.

+

As can be seen from table , we could only show a weak correlation in the case of a \(5 \times 5\) grid. As we increment the number of control–points the correlation gets worse until it is completely random in a single dataset. Taking all presented datasets into account we even get a strong correlation of \(- r_S = -0.72, p = 0\), that is opposed to our expectations.

+

To explain this discrepancy we took a closer look at what caused these high number of iterations. In figure we also plotted the improvement potential against the steps next to the regularity–plot. Our theory is that the very strong correlation (\(-r_S = -0.82, p=0\)) between improvement potential and number of iterations hints that the employed algorithm simply takes longer to converge on a better solution (as seen in figure and ) offsetting any gain the regularity–measurement could achieve.

+
+
+

Improvement Potential

+ +

The improvement potential should correlate to the quality of the fitting–result. We plotted the results for the tested grid–sizes \(5 \times 5\), \(7 \times 7\) and \(10 \times 10\) in figure . We tested the \(4 \times 7\) and \(7 \times 4\) grids as well, but omitted them from the plot.

+

Additionally we tested the results for a distorted gradient described in with a \(\mu\)–value of \(0.25\), \(0.5\), \(0,75\), and \(1.0\) for the \(5 \times 5\) grid and with a \(\mu\)–value of \(0.5\) for all other cases.

+

All results show the identical very strong and significant correlation with a Spearman–coefficient of \(- r_S = 1.0\) and p–value of \(0\).

+

These results indicate, that \(\|\mathbb{1} - \vec{U}\vec{U}^{+}\|_F\) is close to \(0\), reducing the impacts of any kind of gradient. Nevertheless, the improvement potential seems to be suited to make estimated guesses about the quality of a fit, even lacking an exact gradient.

+
+
+
+

Procedure: 3D Function Approximation

+ +

As explained in section in detail, we do not know the analytical solution to the global optimum. Additionally we have the problem of finding the right correspondences between the original sphere–model and the target–model, as they consist of \(10\,807\) and \(12\,024\) vertices respectively, so we cannot make a one–to–one–correspondence between them as we did in the one–dimensional case.

+

Initially we set up the correspondences \(\vec{c_T(\dots)}\) and \(\vec{c_S(\dots)}\) to be the respectively closest vertices of the other model. We then calculate the analytical solution given these correspondences via \(\vec{P^{*}} = \vec{U^+}\vec{T}\), and also use the first solution as guessed gradient for the calculation of the improvement potential, as the optimal solution is not known. We then let the evolutionary algorithm run up within \(1.05\) times the error of this solution and afterwards recalculate the correspondences \(\vec{c_T(\dots)}\) and \(\vec{c_S(\dots)}\).

+ +

For the next step we then halve the regularization–impact \(\lambda\) (starting at \(1\)) of our fitness–function () and calculate the next incremental solution \(\vec{P^{*}} = \vec{U^+}\vec{T}\) with the updated correspondences (again, mapping each vertex to its closest neighbour in the respective other model) to get our next target–error. We repeat this process as long as the target–error keeps decreasing and use the number of these iterations as measure of the convergence speed. As the resulting evolutional error without regularization is in the numeric range of \(\approx 100\), whereas the regularization is numerically \(\approx 7000\) we need at least \(10\) to \(15\) iterations until the regularization–effect wears off.

+

The grid we use for our experiments is just very coarse due to computational limitations. We are not interested in a good reconstruction, but an estimate if the mentioned evolvability–criteria are good.

+

In figure we show an example setup of the scene with a \(4\times 4\times 4\)–grid. Identical to the 1–dimensional scenario before, we create a regular grid and move the control–points in the exact same random manner between their neighbours as described in section , but in three instead of two dimensions10.

+ +

As is clearly visible from figure , the target–model has many vertices in the facial area, at the ears and in the neck–region. Therefore we chose to increase the grid–resolutions for our tests in two different dimensions and see how well the criteria predict a suboptimal placement of these control–points.

+
+
+

Results of 3D Function Approximation

+

In the 3D–Approximation we tried to evaluate further on the impact of the grid–layout to the overall criteria. As the target–model has many vertices in concentrated in the facial area we start from a \(4 \times 4 \times 4\) grid and only increase the number of control–points in one dimension, yielding a resolution of \(7 \times 4 \times 4\) and \(4 \times 4 \times 7\) respectively. We visualized those two grids in figure .

+

To evaluate the performance of the evolvability–criteria we also tested a more neutral resolution of \(4 \times 4 \times 4\), \(5 \times 5 \times 5\), and \(6 \times 6 \times 6\) — similar to the 1D–setup.

+ +
+

Variability

+ + +

Similar to the 1D case all our tested matrices had a constant rank (being \(m = x \cdot y \cdot z\) for a \(x \times y \times z\) grid), so we again have merely plotted the errors in the box plot in figure .

+

As expected the \(\mathrm{X} \times 4 \times 4\) grids performed slightly better than their \(4 \times 4 \times \mathrm{X}\) counterparts with a mean\(\pm\)sigma of \(101.25 \pm 7.45\) to \(102.89 \pm 6.74\) for \(\mathrm{X} = 5\) and \(85.37 \pm 7.12\) to \(89.22 \pm 6.49\) for \(\mathrm{X} = 7\).

+

Interestingly both variants end up closer in terms of fitting error than we anticipated, which shows that the evolutionary algorithm we employed is capable of correcting a purposefully created bad grid. Also this confirms, that in our cases the number of control–points is more important for quality than their placement, which is captured by the variability via the rank of the deformation–matrix.

+

Overall the correlation between variability and fitness–error were significant and showed a very strong correlation in all our tests. The detailed correlation–coefficients are given in table alongside their p–values.

+

As introduces in section and visualized in figure , we know, that not all control–points have to necessarily contribute to the parametrization of our 3D–model. Because we are starting from a sphere, some control–points are too far away from the surface to contribute to the deformation at all.

+

One can already see in 2D in figure , that this effect starts with a regular \(9 \times 9\) grid on a perfect circle. To make sure we observe this, we evaluated the variability for 100 randomly moved \(10 \times 10 \times 10\) grids on the sphere we start out with.

+ +

As the variability is defined by \(\frac{\mathrm{rank}(\vec{U})}{n}\) we can easily recover the rank of the deformation–matrix \(\vec{U}\). The results are shown in the histogram in figure . Especially in the centre of the sphere and in the corners of our grid we effectively loose control–points for our parametrization.

+

This of course yields a worse error as when those control–points would be put to use and one should expect a loss in quality evident by a higher reconstruction–error opposed to a grid where they are used. Sadly we could not run a in–depth test on this due to computational limitations.

+

Nevertheless this hints at the notion, that variability is a good measure for the overall quality of a fit.

+
+
+

Regularity

+ +

Opposed to the predictions of variability our test on regularity gave a mixed result — similar to the 1D–case.

+

In roughly half of the scenarios we have a significant, but weak to moderate correlation between regularity and number of iterations. On the other hand in the scenarios where we increased the number of control–points, namely \(125\) for the \(5 \times 5 \times 5\) grid and \(216\) for the \(6 \times 6 \times 6\) grid we found a significant, but weak anti–correlation when taking all three tests into account11, which seem to contradict the findings/trends for the sets with \(64\), \(80\), and \(112\) control–points (first two rows of table ).

+

Taking all results together we only find a very weak, but significant link between regularity and the number of iterations needed for the algorithm to converge.

+ +

As can be seen from figure , we can observe that increasing the number of control–points helps the convergence–speeds. The regularity–criterion first behaves as we would like to, but then switches to behave exactly opposite to our expectations, as can be seen in the first three plots. While the number of control–points increases from red to green to blue and the number of iterations decreases, the regularity seems to increase at first, but then decreases again on higher grid–resolutions.

+

This can be an artefact of the definition of regularity, as it is defined by the inverse condition–number of the deformation–matrix \(\vec{U}\), being the fraction \(\frac{\sigma_{\mathrm{min}}}{\sigma_{\mathrm{max}}}\) between the least and greatest right singular value.

+

As we observed in the previous section, we cannot guarantee that each control–point has an effect (see figure ) and so a small minimal right singular value occurring on higher grid–resolutions seems likely the problem.

+

Adding to this we also noted, that in the case of the \(10 \times 10 \times 10\)–grid the regularity was always \(0\), as a non–contributing control–point yields a \(0\)–column in the deformation–matrix, thus letting \(\sigma_\mathrm{min} = 0\). A better definition for regularity (i.e. using the smallest non–zero right singular value) could solve this particular issue, but not fix the trend we noticed above.

+
+
+

Improvement Potential

+ +

Comparing to the 1D–scenario, we do not know the optimal solution to the given problem and for the calculation we only use the initial gradient produced by the initial correlation between both objects. This gradient changes with every iteration and will be off our first guess very quickly. This is the reason we are not trying to create artificially bad gradients, as we have a broad range in quality of such gradients anyway.

+ +

We plotted our findings on the improvement potential in a similar way as we did before with the regularity. In figure one can clearly see the correlation and the spread within each setup and the behaviour when we increase the number of control–points.

+

Along with this we also give the Spearman–coefficients along with their p–values in table . Within one scenario we only find a weak to moderate correlation between the improvement potential and the fitting error, but all findings (except for \(7 \times 4 \times 4\) and \(6 \times 6 \times 6\)) are significant.

+

If we take multiple datasets into account the correlation is very strong and significant, which is good, as this functions as a litmus–test, because the quality is naturally tied to the number of control–points.

+

All in all the improvement potential seems to be a good and sensible measure of quality, even given gradients of varying quality.

+

Lastly, a small note on the behaviour of improvement potential and convergence speed, as we used this in the 1D case to argue, why the regularity defied our expectations. As a contrast we wanted to show, that improvement potential cannot serve for good predictions of the convergence speed. In figure we show improvement potential against number of iterations for both scenarios. As one can see, in the 1D scenario we have a strong and significant correlation (with \(-r_S = -0.72\), \(p = 0\)), whereas in the 3D scenario we have the opposite significant and strong effect (with \(-r_S = 0.69\), \(p=0\)), so these correlations clearly seem to be dependent on the scenario and are not suited for generalization.

+ +
+
+
+
+

Discussion and outlook

+ +

In this thesis we took a look at the different criteria for evolvability as introduced by Richter et al., namely variability, regularity and improvement potential under different setup–conditions. Where Richter et al. used , we employed to set up a low–complexity parametrization of a more complex vertex–mesh.

+

In our findings we could show in the 1D–scenario, that there were statistically significant very strong correlations between variability and fitting error (\(0.94\)) and improvement potential and fitting error (\(1.0\)) with comparable results than Richter et al. (with \(0.31\) to \(0.88\) for the former and \(0.75\) to \(0.99\) for the latter), whereas we found only weak correlations for regularity and convergence–speed (\(0.28\)) opposed to Richter et al. with \(0.39\) to \(0.91\).12

+

For the 3D–scenario our results show a very strong, significant correlation between variability and fitting error with \(0.89\) to \(0.94\), which are pretty much in line with the findings of Richter et al. (\(0.65\) to \(0.95\)). The correlation between improvement potential and fitting error behave similar, with our findings having a significant coefficient of \(0.3\) to \(0.95\) depending on the grid–resolution compared to the \(0.61\) to \(0.93\) from Richter et al. In the case of the correlation of regularity and convergence speed we found very different (and often not significant) correlations and anti–correlations ranging from \(-0.25\) to \(0.46\), whereas Richter et al. reported correlations between \(0.34\) to \(0.87\).

+

Taking these results into consideration, one can say, that variability and improvement potential are very good estimates for the quality of a fit using as a deformation function, while we could not reproduce similar compelling results as Richter et al. for regularity and convergence speed.

+

One reason for the bad or erratic behaviour of the regularity–criterion could be that in an –setting we have a likelihood of having control–points that are only contributing to the whole parametrization in negligible amounts, resulting in very small right singular values of the deformation–matrix \(\vec{U}\) that influence the condition–number and thus the regularity in a significant way. Further research is needed to refine regularity so that these problems get addressed, like taking all singular values into account when capturing the notion of regularity.

+

Richter et al. also compared the behaviour of direct and indirect manipulation in , whereas we merely used an indirect –approach. As direct manipulations tend to perform better than indirect manipulations, the usage of could also work better with the criteria we examined. This can also solve the problem of bad singular values for the regularity as the incorporation of the parametrization of the points on the surface — which are the essential part of a direct–manipulation — could cancel out a bad control–grid as the bad control–points are never or negligibly used to parametrize those surface–points.

+
+
+
+
    +
  1. one more for each recursive step.

  2. +
  3. Warning: in the case of \(d=1\) the recursion–formula yields a \(0\) denominator, but \(N\) is also \(0\). The right solution for this case is a derivative of \(0\)

  4. +
  5. Some examples of this are explained in detail in

  6. +
  7. We use \(\vec{S}\) in this notation, as we will use this parametrization of a source–mesh to manipulate \(\vec{S}\) into a target–mesh \(\vec{T}\) via \(\vec{P}\)

  8. +
  9. Normally these are \(d-1\) to each side, but at the boundaries border points get used multiple times to meet the number of points required

  10. +
  11. One example would be, when parts of an algorithm depend on the inverse of the minimal right singular value leading to a division by \(0\).

  12. +
  13. For the special case of the outer layer we only applied noise away from the object, so the object is still confined in the convex hull of the control–points.

  14. +
  15. The parametrization is encoded in \(\vec{U}\) and the initial position of the control–points. See

  16. +
  17. Note: On the Edges this displacement is only applied outwards by flipping the sign of \(r\), if appropriate.

  18. +
  19. Again, we flip the signs for the edges, if necessary to have the object still in the convex hull.

  20. +
  21. Displayed as \(Y \times Y \times Y\)

  22. +
  23. We only took statistically significant results into consideration when compiling these numbers. Details are given in the respective chapters.

  24. +
+
+ + +
+
+ + + + + + + + + + + diff --git a/presentation/presentation.md b/presentation/presentation.md new file mode 100644 index 0000000..1be7093 --- /dev/null +++ b/presentation/presentation.md @@ -0,0 +1,1402 @@ +--- +title: Evaluation of the Performance of Randomized FFD Control Grids +subtitle: Master Thesis +author: Stefan Dresselhaus +affiliation: Graphics & Geometry Group +... + +# Introduction + +Many modern industrial design processes require advanced optimization methods +due to the increased complexity resulting from more and more degrees of freedom +as methods refine and/or other methods are used. Examples for this are physical +domains like aerodynamics (i.e. drag), fluid dynamics (i.e. throughput of liquid) +--- where the complexity increases with the temporal and spatial resolution of +the simulation --- or known hard algorithmic problems in informatics (i.e. +layouting of circuit boards or stacking of 3D--objects). Moreover these are +typically not static environments but requirements shift over time or from case +to case. + +\begin{figure}[hbt] +\centering +\includegraphics[width=\textwidth]{img/Evo_overview.png} +\caption{Example of the use of evolutionary algorithms in automotive design +(from \cite{anrichterEvol}).} +\end{figure} + +Evolutionary algorithms cope especially well with these problem domains while +addressing all the issues at hand\cite{minai2006complex}. One of the main +concerns in these algorithms is the formulation of the problems in terms of a +*genome* and *fitness--function*. While one can typically use an arbitrary +cost--function for the *fitness--functions* (i.e. amount of drag, amount of space, +etc.), the translation of the problem--domain into a simple parametric +representation (the *genome*) can be challenging. + +This translation is often necessary as the target of the optimization may have +too many degrees of freedom for a reasonable computation. In the example of an +aerodynamic simulation of drag onto an object, those object--designs tend to +have a high number of vertices to adhere to various requirements (visual, +practical, physical, etc.). A simpler representation of the same object in only +a few parameters that manipulate the whole in a sensible matter are desirable, +as this often decreases the computation time significantly. + +Additionally one can exploit the fact, that drag in this case is especially +sensitive to non--smooth surfaces, so that a smooth local manipulation of the +surface as a whole is more advantageous than merely random manipulation of the +vertices. + +The quality of such a low--dimensional representation in biological evolution is +strongly tied to the notion of *evolvability*\cite{wagner1996complex}, as the +parametrization of the problem has serious implications on the convergence speed +and the quality of the solution\cite{Rothlauf2006}. +However, there is no consensus on how *evolvability* is defined and the meaning +varies from context to context\cite{richter2015evolvability}. As a consequence +there is need for some criteria we can measure, so that we are able to compare different +representations to learn and improve upon these. + +\begin{figure}[hbt] +\centering +\includegraphics[width=\textwidth]{img/deformations.png} +\caption{Example of RBF--based deformation and FFD targeting the same mesh.} +\end{figure} + +One example of such a general representation of an object is to generate random +points and represent vertices of an object as distances to these points --- for +example via \acf{RBF}. If one (or the algorithm) would move such a point the +object will get deformed only locally (due to the \ac{RBF}). As this results in +a simple mapping from the parameter--space onto the object one can try out +different representations of the same object and evaluate which criteria may be +suited to describe this notion of *evolvability*. This is exactly what Richter +et al.\cite{anrichterEvol} have done. + +As we transfer the results of Richter et al.\cite{anrichterEvol} from using +\acf{RBF} as a representation to manipulate geometric objects to the use of +\acf{FFD} we will use the same definition for *evolvability* the original author +used, namely *regularity*, *variability*, and *improvement potential*. We +introduce these term in detail in Chapter \ref{sec:intro:rvi}. In the original +publication the author could show a correlation between these +evolvability--criteria with the quality and convergence speed of such +optimization. + +We will replicate the same setup on the same objects but use \acf{FFD} instead of +\acf{RBF} to create a local deformation near the control--points and evaluate if +the evolution--criteria still work as a predictor for *evolvability* of the +representation given the different deformation scheme, as suspected in +\cite{anrichterEvol}. + +First we introduce different topics in isolation in Chapter \ref{sec:back}. We +take an abstract look at the definition of \ac{FFD} for a one--dimensional line +(in \ref{sec:back:ffd}) and discuss why this is a sensible deformation function +(in \ref{sec:back:ffdgood}). +Then we establish some background--knowledge of evolutionary algorithms (in +\ref{sec:back:evo}) and why this is useful in our domain (in +\ref{sec:back:evogood}) followed by the definition of the different +evolvability--criteria established in \cite{anrichterEvol} (in \ref {sec:intro:rvi}). + +In Chapter \ref{sec:impl} we take a look at our implementation of \ac{FFD} and +the adaptation for 3D--meshes that were used. Next, in Chapter \ref{sec:eval}, +we describe the different scenarios we use to evaluate the different +evolvability--criteria incorporating all aspects introduced in Chapter +\ref{sec:back}. Following that, we evaluate the results in +Chapter \ref{sec:res} with further on discussion, summary and outlook in +Chapter \ref{sec:dis}. + + +# Background +\label{sec:back} + +## What is \acf{FFD}? +\label{sec:back:ffd} + +First of all we have to establish how a \ac{FFD} works and why this is a good +tool for deforming geometric objects (especially meshes in our case) in the +first place. For simplicity we only summarize the 1D--case from +\cite{spitzmuller1996bezier} here and go into the extension to the 3D case in +chapter \ref{3dffd}. + +The main idea of \ac{FFD} is to create a function $s : [0,1[^d \mapsto +\mathbb{R}^d$ that spans a certain part of a vector--space and is only linearly +parametrized by some special control--points $p_i$ and an constant +attribution--function $a_i(u)$, so +$$ +s(\vec{u}) = \sum_i a_i(\vec{u}) \vec{p_i} +$$ +can be thought of a representation of the inside of the convex hull generated by +the control--points where each position inside can be accessed by the right +$u \in [0,1[^d$. + +\begin{figure}[!ht] +\begin{center} +\includegraphics[width=0.7\textwidth]{img/B-Splines.png} +\end{center} +\caption[Example of B--Splines]{Example of a parametrization of a line with +corresponding deformation to generate a deformed objet} +\label{fig:bspline} +\end{figure} + +In the 1--dimensional example in figure \ref{fig:bspline}, the control--points +are indicated as red dots and the colour--gradient should hint at the $u$--values +ranging from $0$ to $1$. + +We now define a \acf{FFD} by the following: +Given an arbitrary number of points $p_i$ alongside a line, we map a scalar +value $\tau_i \in [0,1[$ to each point with $\tau_i < \tau_{i+1} \forall i$ +according to the position of $p_i$ on said line. +Additionally, given a degree of the target polynomial $d$ we define the curve +$N_{i,d,\tau_i}(u)$ as follows: + +\begin{equation} \label{eqn:ffd1d1} +N_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}[ \\ 0, & \mbox{otherwise} \end{cases} +\end{equation} +and +\begin{equation} \label{eqn:ffd1d2} +N_{i,d,\tau}(u) = \frac{u-\tau_i}{\tau_{i+d}} N_{i,d-1,\tau}(u) + \frac{\tau_{i+d+1} - u}{\tau_{i+d+1}-\tau_{i+1}} N_{i+1,d-1,\tau}(u) +\end{equation} + +If we now multiply every $p_i$ with the corresponding $N_{i,d,\tau_i}(u)$ we get +the contribution of each point $p_i$ to the final curve--point parametrized only +by $u \in [0,1[$. As can be seen from \eqref{eqn:ffd1d2} we only access points +$[p_i..p_{i+d}]$ for any given $i$^[one more for each recursive step.], which gives +us, in combination with choosing $p_i$ and $\tau_i$ in order, only a local +interference of $d+1$ points. + +We can even derive this equation straightforward for an arbitrary +$N$^[*Warning:* in the case of $d=1$ the recursion--formula yields a $0$ +denominator, but $N$ is also $0$. The right solution for this case is a +derivative of $0$]: + +$$\frac{\partial}{\partial u} N_{i,d,r}(u) = \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u)$$ + +For a B--Spline +$$s(u) = \sum_{i} N_{i,d,\tau_i}(u) p_i$$ +these derivations yield $\left(\frac{\partial}{\partial u}\right)^d s(u) = 0$. + +Another interesting property of these recursive polynomials is that they are +continuous (given $d \ge 1$) as every $p_i$ gets blended in between $\tau_i$ and +$\tau_{i+d}$ and out between $\tau_{i+1}$, and $\tau_{i+d+1}$ as can bee seen from the two coefficients +in every step of the recursion. + +This means that all changes are only a local linear combination between the +control--point $p_i$ to $p_{i+d+1}$ and consequently this yields to the +convex--hull--property of B--Splines --- meaning, that no matter how we choose +our coefficients, the resulting points all have to lie inside convex--hull of +the control--points. + +For a given point $s_i$ we can then calculate the contributions +$u_{i,j}~:=~N_{j,d,\tau}$ of each control point $p_j$ to get the +projection from the control--point--space into the object--space: +$$ +s_i = \sum_j u_{i,j} \cdot p_j = \vec{n}_i^{T} \vec{p} +$$ +or written for all points at the same time: +$$ +\vec{s} = \vec{U} \vec{p} +$$ +where $\vec{U}$ is the $n \times m$ transformation--matrix (later on called +**deformation matrix**) for $n$ object--space--points and $m$ control--points. + +\begin{figure}[ht] +\begin{center} +\includegraphics[width=\textwidth]{img/unity.png} +\end{center} +\caption[B--spline--basis--function as partition of unity]{From \cite[Figure 2.13]{brunet2010contributions}:\newline +\glqq Some interesting properties of the B--splines. On the natural definition domain +of the B--spline ($[k_0,k_4]$ on this figure), the B--Spline basis functions sum +up to one (partition of unity). In this example, we use B--Splines of degree 2. +The horizontal segment below the abscissa axis represents the domain of +influence of the B--splines basis function, i.e. the interval on which they are +not null. At a given point, there are at most $ d+1$ non--zero B--Spline basis +functions (compact support).\grqq \newline +Note, that Brunet starts his index at $-d$ opposed to our definition, where we +start at $0$.} +\label{fig:partition_unity} +\end{figure} + +Furthermore B--Spline--basis--functions form a partition of unity for all, but +the first and last $d$ control--points\cite{brunet2010contributions}. Therefore +we later on use the border--points $d+1$ times, such that $\sum_j u_{i,j} p_j = p_i$ +for these points. + +The locality of the influence of each control--point and the partition of unity +was beautifully pictured by Brunet, which we included here as figure +\ref{fig:partition_unity}. + +### Why is \ac{FFD} a good deformation function? +\label{sec:back:ffdgood} + +The usage of \ac{FFD} as a tool for manipulating follows directly from the +properties of the polynomials and the correspondence to the control--points. +Having only a few control--points gives the user a nicer high--level--interface, as +she only needs to move these points and the model follows in an intuitive +manner. The deformation is smooth as the underlying polygon is smooth as well +and affects as many vertices of the model as needed. Moreover the changes are +always local so one risks not any change that a user cannot immediately see. + +But there are also disadvantages of this approach. The user loses the ability to +directly influence vertices and even seemingly simple tasks as creating a +plateau can be difficult to +achieve\cite[chapter~3.2]{hsu1991dmffd}\cite{hsu1992direct}. + +This disadvantages led to the formulation of +\acf{DM--FFD}\cite[chapter~3.3]{hsu1991dmffd} in which the user directly +interacts with the surface--mesh. All interactions will be applied +proportionally to the control--points that make up the parametrization of the +interaction--point itself yielding a smooth deformation of the surface *at* the +surface without seemingly arbitrary scattered control--points. Moreover this +increases the efficiency of an evolutionary optimization\cite{Menzel2006}, which +we will use later on. + +\begin{figure}[!ht] +\includegraphics[width=\textwidth]{img/hsu_fig7.png} +\caption{Figure 7 from \cite{hsu1991dmffd}.} +\label{fig:hsu_fig7} +\end{figure} + +But this approach also has downsides as can be seen in figure +\ref{fig:hsu_fig7}, as the tessellation of the invisible grid has a major impact +on the deformation itself. + +All in all \ac{FFD} and \ac{DM--FFD} are still good ways to deform a high--polygon +mesh albeit the downsides. + +## What is evolutionary optimization? +\label{sec:back:evo} + +In this thesis we are using an evolutionary optimization strategy to solve the +problem of finding the best parameters for our deformation. This approach, +however, is very generic and we introduce it here in a broader sense. + +\begin{algorithm} +\caption{An outline of evolutionary algorithms} +\label{alg:evo} +\begin{algorithmic} +\STATE t := 0; +\STATE initialize $P(0) := \{\vec{a}_1(0),\dots,\vec{a}_\mu(0)\} \in I^\mu$; +\STATE evaluate $F(0) : \{\Phi(x) | x \in P(0)\}$; +\WHILE{$c(F(t)) \neq$ \TRUE} + \STATE recombine: $P’(t) := r(P(t))$; + \STATE mutate: $P''(t) := m(P’(t))$; + \STATE evaluate $F''(t) : \{\Phi(x) | x \in P''(t)\}$ + \STATE select: $P(t + 1) := s(P''(t) \cup Q,\Phi)$; + \STATE t := t + 1; +\ENDWHILE +\end{algorithmic} +\end{algorithm} + +The general shape of an evolutionary algorithm (adapted from +\cite{back1993overview}) is outlined in Algorithm \ref{alg:evo}. Here, $P(t)$ +denotes the population of parameters in step $t$ of the algorithm. The +population contains $\mu$ individuals $a_i$ from the possible individual--set +$I$ that fit the shape of the parameters we are looking for. Typically these are +initialized by a random guess or just zero. Further on we need a so--called +*fitness--function* $\Phi : I \mapsto M$ that can take each parameter to a measurable +space $M$ (usually $M = \mathbb{R}$) along a convergence--function $c : I \mapsto \mathbb{B}$ +that terminates the optimization. + +Biologically speaking the set $I$ corresponds to the set of possible *genotypes* +while $M$ represents the possible observable *phenotypes*. *Genotypes* define +all initial properties of an individual, but their properties are not directly +observable. It is the genes, that evolve over time (and thus correspond to the +parameters we are tweaking in our algorithms or the genes in nature), but only +the *phenotypes* make certain behaviour observable (algorithmically through our +*fitness--function*, biologically by the ability to survive and produce +offspring). Any individual in our algorithm thus experience a biologically +motivated life cycle of inheriting genes from the parents, modified by mutations +occurring, performing according to a fitness--metric, and generating offspring +based on this. Therefore each iteration in the while--loop above is also often +named generation. + +One should note that there is a subtle difference between *fitness--function* +and a so called *genotype--phenotype--mapping*. The first one directly applies +the *genotype--phenotype--mapping* and evaluates the performance of an individual, +thus going directly from genes/parameters to reproduction--probability/score. +In a concrete example the *genotype* can be an arbitrary vector (the genes), the +*phenotype* is then a deformed object, and the performance can be a single +measurement like an air--drag--coefficient. The *genotype--phenotype--mapping* +would then just be the generation of different objects from that +starting--vector, whereas the *fitness--function* would go directly from such a +starting--vector to the coefficient that we want to optimize. + +The main algorithm just repeats the following steps: + +- **Recombine** with a recombination--function $r : I^{\mu} \mapsto I^{\lambda}$ to + generate $\lambda$ new individuals based on the characteristics of the $\mu$ + parents. + This makes sure that the next guess is close to the old guess. +- **Mutate** with a mutation--function $m : I^{\lambda} \mapsto I^{\lambda}$ to + introduce new effects that cannot be produced by mere recombination of the + parents. + Typically this just adds minor defects to individual members of the population + like adding a random gaussian noise or amplifying/dampening random parts. +- **Selection** takes a selection--function $s : (I^\lambda \cup I^{\mu + \lambda},\Phi) \mapsto I^\mu$ that + selects from the previously generated $I^\lambda$ children and optionally also + the parents (denoted by the set $Q$ in the algorithm) using the + *fitness--function* $\Phi$. The result of this operation is the next Population + of $\mu$ individuals. + +All these functions can (and mostly do) have a lot of hidden parameters that +can be changed over time. A good overview of this is given in +\cite{eiben1999parameter}, so we only give a small excerpt here. + +For example the mutation can consist of merely a single $\sigma$ determining the +strength of the gaussian defects in every parameter --- or giving a different +$\sigma$ to every component of those parameters. An even more sophisticated +example would be the \glqq 1/5 success rule\grqq \ from +\cite{rechenberg1973evolutionsstrategie}. + +Also in the selection--function it may not be wise to only take the +best--performing individuals, because it may be that the optimization has to +overcome a barrier of bad fitness to achieve a better local optimum. + +Recombination also does not have to be mere random choosing of parents, but can +also take ancestry, distance of genes or groups of individuals into account. + +## Advantages of evolutionary algorithms +\label{sec:back:evogood} + +The main advantage of evolutionary algorithms is the ability to find optima of +general functions just with the help of a given *fitness--function*. Components +and techniques for evolutionary algorithms are specifically known to +help with different problems arising in the domain of +optimization\cite{weise2012evolutionary}. An overview of the typical problems +are shown in figure \ref{fig:probhard}. + +\begin{figure}[!ht] +\includegraphics[width=\textwidth]{img/weise_fig3.png} +\caption{Fig.~3. taken from \cite{weise2012evolutionary}} +\label{fig:probhard} +\end{figure} + +Most of the advantages stem from the fact that a gradient--based procedure has +usually only one point of observation from where it evaluates the next steps, +whereas an evolutionary strategy starts with a population of guessed solutions. +Because an evolutionary strategy can be modified according to the +problem--domain (i.e. by the ideas given above) it can also approximate very +difficult problems in an efficient manner and even self--tune parameters +depending on the ancestry at runtime^[Some examples of this are explained in +detail in \cite{eiben1999parameter}]. + +If an analytic best solution exists and is easily computable (i.e. because the +error--function is convex) an evolutionary algorithm is not the right choice. +Although both converge to the same solution, the analytic one is usually faster. + +But in reality many problems have no analytic solution, because the problem is +either not convex or there are so many parameters that an analytic solution +(mostly meaning the equivalence to an exhaustive search) is computationally not +feasible. Here evolutionary optimization has one more advantage as one can at +least get suboptimal solutions fast, which then refine over time and still +converge to a decent solution much faster than an exhaustive search. + +## Criteria for the evolvability of linear deformations +\label{sec:intro:rvi} + +As we have established in chapter \ref{sec:back:ffd}, we can describe a +deformation by the formula +$$ +\vec{S} = \vec{U}\vec{P} +$$ +where $\vec{S}$ is a $n \times d$ matrix of vertices^[We use $\vec{S}$ in this +notation, as we will use this parametrization of a source--mesh to manipulate +$\vec{S}$ into a target--mesh $\vec{T}$ via $\vec{P}$], $\vec{U}$ are the (during +parametrization) calculated deformation--coefficients and $P$ is a $m \times d$ matrix +of control--points that we interact with during deformation. + +We can also think of the deformation in terms of differences from the original +coordinates +$$ +\Delta \vec{S} = \vec{U} \cdot \Delta \vec{P} +$$ +which is isomorphic to the former due to the linearity of the deformation. One +can see in this way, that the way the deformation behaves lies solely in the +entries of $\vec{U}$, which is why the three criteria focus on this. + +### Variability + +In \cite{anrichterEvol} *variability* is defined as +$$\mathrm{variability}(\vec{U}) := \frac{\mathrm{rank}(\vec{U})}{n},$$ +whereby $\vec{U}$ is the $n \times m$ deformation--Matrix used to map the $m$ +control--points onto the $n$ vertices. + +Given $n = m$, an identical number of control--points and vertices, this +quotient will be $=1$ if all control--points are independent of each other and +the solution is to trivially move every control--point onto a target--point. + +In praxis the value of $V(\vec{U})$ is typically $\ll 1$, because there are only +few control--points for many vertices, so $m \ll n$. + +This criterion should correlate to the degrees of freedom the given +parametrization has. This can be seen from the fact, that +$\mathrm{rank}(\vec{U})$ is limited by $\min(m,n)$ and --- as $n$ is constant +--- can never exceed $n$. + +The rank itself is also interesting, as control--points could theoretically be +placed on top of each other or be linear dependent in another way --- but will +in both cases lower the rank below the number of control--points $m$ and are +thus measurable by the *variability*. + +### Regularity + +*Regularity* is defined\cite{anrichterEvol} as +$$\mathrm{regularity}(\vec{U}) := \frac{1}{\kappa(\vec{U})} = \frac{\sigma_{min}}{\sigma_{max}}$$ +where $\sigma_{min}$ and $\sigma_{max}$ are the smallest and greatest right singular +value of the deformation--matrix $\vec{U}$. + +As we deform the given Object only based on the parameters as $\vec{p} \mapsto +f(\vec{x} + \vec{U}\vec{p})$ this makes sure that $\|\vec{Up}\| \propto +\|\vec{p}\|$ when $\kappa(\vec{U}) \approx 1$. The inversion of $\kappa(\vec{U})$ +is only performed to map the criterion--range to $[0..1]$, where $1$ is the +optimal value and $0$ is the worst value. + +On the one hand this criterion should be characteristic for numeric +stability\cite[chapter 2.7]{golub2012matrix} and on the other hand for the +convergence speed of evolutionary algorithms\cite{anrichterEvol} as it is tied +to the notion of locality\cite{weise2012evolutionary,thorhauer2014locality}. + +### Improvement Potential + +In contrast to the general nature of *variability* and *regularity*, which are +agnostic of the *fitness--function* at hand, the third criterion should reflect a +notion of the potential for optimization, taking a guess into account. + +Most of the times some kind of gradient $g$ is available to suggest a +direction worth pursuing; either from a previous iteration or by educated +guessing. We use this to guess how much change can be achieved in +the given direction. + +The definition for an *improvement potential* $P$ is\cite{anrichterEvol}: +$$ +\mathrm{potential}(\vec{U}) := 1 - \|(\vec{1} - \vec{UU}^+)\vec{G}\|^2_F +$$ +given some approximate $n \times d$ fitness--gradient $\vec{G}$, normalized to +$\|\vec{G}\|_F = 1$, whereby $\|\cdot\|_F$ denotes the Frobenius--Norm. + +# Implementation of \acf{FFD} +\label{sec:impl} + +The general formulation of B--Splines has two free parameters $d$ and $\tau$ +which must be chosen beforehand. + +As we usually work with regular grids in our \ac{FFD} we define $\tau$ +statically as $\tau_i = \nicefrac{i}{n}$ whereby $n$ is the number of +control--points in that direction. + +$d$ defines the *degree* of the B--Spline--Function (the number of times this +function is differentiable) and for our purposes we fix $d$ to $3$, but give the +formulas for the general case so it can be adapted quite freely. + + +## Adaption of \ac{FFD} +\label{sec:ffd:adapt} + +As we have established in Chapter \ref{sec:back:ffd} we can define an +\ac{FFD}--displacement as +\begin{equation} +\Delta_x(u) = \sum_i N_{i,d,\tau_i}(u) \Delta_x c_i +\end{equation} + +Note that we only sum up the $\Delta$--displacements in the control--points $c_i$ to get +the change in position of the point we are interested in. + +In this way every deformed vertex is defined by +$$ +\textrm{Deform}(v_x) = v_x + \Delta_x(u) +$$ +with $u \in [0..1[$ being the variable that connects the high--detailed +vertex--mesh to the low--detailed control--grid. To actually calculate the new +position of the vertex we first have to calculate the $u$--value for each +vertex. This is achieved by finding out the parametrization of $v$ in terms of +$c_i$ +$$ +v_x \overset{!}{=} \sum_i N_{i,d,\tau_i}(u) c_i +$$ +so we can minimize the error between those two: +$$ +\underset{u}{\argmin}\,Err(u,v_x) = \underset{u}{\argmin}\,2 \cdot \|v_x - \sum_i N_{i,d,\tau_i}(u) c_i\|^2_2 +$$ +As this error--term is quadratic we just derive by $u$ yielding +$$ +\begin{array}{rl} +\frac{\partial}{\partial u} & v_x - \sum_i N_{i,d,\tau_i}(u) c_i \\ += & - \sum_i \left( \frac{d}{\tau_{i+d} - \tau_i} N_{i,d-1,\tau}(u) - \frac{d}{\tau_{i+d+1} - \tau_{i+1}} N_{i+1,d-1,\tau}(u) \right) c_i +\end{array} +$$ +and do a gradient--descend to approximate the value of $u$ up to an $\epsilon$ of $0.0001$. + +For this we employ the Gauss--Newton algorithm\cite{gaussNewton}, which +converges into the least--squares solution. An exact solution of this problem is +impossible most of the time, because we usually have way more vertices +than control--points ($\#v~\gg~\#c$). + +## Adaption of \ac{FFD} for a 3D--Mesh +\label{3dffd} + +This is a straightforward extension of the 1D--method presented in the last +chapter. But this time things get a bit more complicated. As we have a +3--dimensional grid we may have a different amount of control--points in each +direction. + +Given $n,m,o$ control--points in $x,y,z$--direction each Point on the curve is +defined by +$$V(u,v,w) = \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot C_{ijk}.$$ + +In this case we have three different B--Splines (one for each dimension) and also +3 variables $u,v,w$ for each vertex we want to approximate. + +Given a target vertex $\vec{p}^*$ and an initial guess $\vec{p}=V(u,v,w)$ +we define the error--function for the gradient--descent as: + +$$Err(u,v,w,\vec{p}^{*}) = \vec{p}^{*} - V(u,v,w)$$ + +And the partial version for just one direction as + +$$Err_x(u,v,w,\vec{p}^{*}) = p^{*}_x - \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x $$ + +To solve this we derive partially, like before: + +$$ +\begin{array}{rl} + \displaystyle \frac{\partial Err_x}{\partial u} & p^{*}_x - \displaystyle \sum_i \sum_j \sum_k N_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x \\ + = & \displaystyle - \sum_i \sum_j \sum_k N'_{i,d,\tau_i}(u) N_{j,d,\tau_j}(v) N_{k,d,\tau_k}(w) \cdot {c_{ijk}}_x +\end{array} +$$ + +The other partial derivatives follow the same pattern yielding the Jacobian: + +$$ +J(Err(u,v,w)) = +\left( +\begin{array}{ccc} +\frac{\partial Err_x}{\partial u} & \frac{\partial Err_x}{\partial v} & \frac{\partial Err_x}{\partial w} \\ +\frac{\partial Err_y}{\partial u} & \frac{\partial Err_y}{\partial v} & \frac{\partial Err_y}{\partial w} \\ +\frac{\partial Err_z}{\partial u} & \frac{\partial Err_z}{\partial v} & \frac{\partial Err_z}{\partial w} +\end{array} +\right) +$$ +$$ +\scriptsize += +\left( +\begin{array}{ccc} +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_x & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_x \\ +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_y & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_y \\ +- \displaystyle \sum_{i,j,k} N'_{i}(u) N_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z &- \displaystyle \sum_{i,j,k} N_{i}(u) N'_{j}(v) N_{k}(w) \cdot {c_{ijk}}_z & - \displaystyle \sum_{i,j,k} N_{i}(u) N_{j}(v) N'_{k}(w) \cdot {c_{ijk}}_z +\end{array} +\right) +$$ + +With the Gauss--Newton algorithm we iterate via the formula +$$J(Err(u,v,w)) \cdot \Delta \left( \begin{array}{c} u \\ v \\ w \end{array} \right) = -Err(u,v,w)$$ +and use Cramer's rule for inverting the small Jacobian and solving this system of +linear equations. + +As there is no strict upper bound of the number of iterations for this +algorithm, we just iterate it long enough to be within the given +$\epsilon$--error above. This takes --- depending on the shape of the object and +the grid --- about $3$ to $5$ iterations that we observed in practice. + +Another issue that we observed in our implementation is, that multiple local +optima may exist on self--intersecting grids. We solve this problem by defining +self--intersecting grids to be *invalid* and do not test any of them. + +This is not such a big problem as it sounds at first, as self--intersections +mean, that control--points being further away from a given vertex have more +influence over the deformation than control--points closer to this vertex. Also +this contradicts the notion of locality that we want to achieve and deemed +beneficial for a good behaviour of the evolutionary algorithm. + +## Deformation Grid +\label{sec:impl:grid} + +As mentioned in chapter \ref{sec:back:evo}, the way of choosing the +representation to map the general problem (mesh--fitting/optimization in our +case) into a parameter--space is very important for the quality and runtime of +evolutionary algorithms\cite{Rothlauf2006}. + +Because our control--points are arranged in a grid, we can accurately represent +each vertex--point inside the grids volume with proper B--Spline--coefficients +between $[0,1[$ and --- as a consequence --- we have to embed our object into it +(or create constant "dummy"--points outside). + +The great advantage of B--Splines is the local, direct impact of each +control point without having a $1:1$--correlation, and a smooth deformation. +While the advantages are great, the issues arise from the problem to decide +where to place the control--points and how many to place at all. + +\begin{figure}[!tbh] +\centering +\includegraphics{img/enoughCP.png} +\caption[Example of a high resolution control--grid]{A high resolution +($10 \times 10$) of control--points over a circle. Yellow/green points +contribute to the parametrization, red points don't.\newline +An Example--point (blue) is solely determined by the position of the green +control--points.} +\label{fig:enoughCP} +\end{figure} + +One would normally think, that the more control--points you add, the better the +result will be, but this is not the case for our B--Splines. Given any point +$\vec{p}$ only the $2 \cdot (d-1)$ control--points contribute to the parametrization of +that point^[Normally these are $d-1$ to each side, but at the boundaries border +points get used multiple times to meet the number of points required]. +This means, that a high resolution can have many control--points that are not +contributing to any point on the surface and are thus completely irrelevant to +the solution. + +We illustrate this phenomenon in figure \ref{fig:enoughCP}, where the red +central points are not relevant for the parametrization of the circle. This +leads to artefacts in the deformation--matrix $\vec{U}$, as the columns +corresponding to those control--points are $0$. + +This also leads to useless increased complexity, as the parameters corresponding +to those points will never have any effect, but a naive algorithm will still try +to optimize them yielding numeric artefacts in the best and non--terminating or +ill--defined solutions^[One example would be, when parts of an algorithm depend +on the inverse of the minimal right singular value leading to a division by $0$.] +at worst. + +One can of course neglect those columns and their corresponding control--points, +but this raises the question why they were introduced in the first place. We +will address this in a special scenario in \ref{sec:res:3d:var}. + +For our tests we chose different uniformly sized grids and added noise +onto each control--point^[For the special case of the outer layer we only applied +noise away from the object, so the object is still confined in the convex hull +of the control--points.] to simulate different starting--conditions. + +# Scenarios for testing evolvability--criteria using \ac{FFD} +\label{sec:eval} + +In our experiments we use the same two testing--scenarios, that were also used +by Richter et al.\cite{anrichterEvol} The first scenario deforms a plane into a shape +originally defined by Giannelli et al.\cite{giannelli2012thb}, where we setup +control--points in a 2--dimensional manner and merely deform in the +height--coordinate to get the resulting shape. + +In the second scenario we increase the degrees of freedom significantly by using +a 3--dimensional control--grid to deform a sphere into a face, so each control +point has three degrees of freedom in contrast to first scenario. + +## Test Scenario: 1D Function Approximation + +In this scenario we used the shape defined by Giannelli et al.\cite{giannelli2012thb}, +which is also used by Richter et al.\cite{anrichterEvol} using the same +discretization to $150 \times 150$ points for a total of $n = 22\,500$ vertices. The +shape is given by the following definition +\begin{equation} +t(x,y) = +\begin{cases} +0.5 \cos(4\pi \cdot q^{0.5}) + 0.5 & q(x,y) < \frac{1}{16},\\ +2(y-x) & 0 < y-x < 0.5,\\ +1 & 0.5 < y - x +\end{cases} +\end{equation} +with $(x,y) \in [0,2] \times [0,1]$ and $q(x,y)=(x-1.5)^2 + (y-0.5)^2$, which we have +visualized in figure \ref{fig:1dtarget}. + +\begin{figure}[ht] +\begin{center} +\includegraphics[width=0.7\textwidth]{img/1dtarget.png} +\end{center} +\caption[The 1D--target--shape]{The target--shape for our 1--dimensional optimization--scenario +including a wireframe--overlay of the vertices.} +\label{fig:1dtarget} +\end{figure} + +As the starting--plane we used the same shape, but set all +$z$--coordinates to $0$, yielding a flat plane, which is partially already +correct. + +Regarding the *fitness--function* $\mathrm{f}(\vec{p})$, we use the very simple approach +of calculating the squared distances for each corresponding vertex +\begin{equation} +\mathrm{f}(\vec{p}) = \sum_{i=1}^{n} \|(\vec{Up})_i - t_i\|_2^2 = \|\vec{Up} - \vec{t}\|^2 \rightarrow \min +\end{equation} +where $t_i$ are the respective target--vertices to the parametrized +source--vertices^[The parametrization is encoded in $\vec{U}$ and the initial +position of the control--points. See \ref{sec:ffd:adapt}] with the current +deformation--parameters $\vec{p} = (p_1,\dots, p_m)$. We can do this +one--to--one--correspondence because we have exactly the same number of +source and target--vertices do to our setup of just flattening the object. + +This formula is also the least--squares approximation error for which we +can compute the analytic solution $\vec{p^{*}} = \vec{U^+}\vec{t}$, yielding us +the correct gradient in which the evolutionary optimizer should move. + +## Test Scenario: 3D Function Approximation +\label{sec:test:3dfa} +Opposed to the 1--dimensional scenario before, the 3--dimensional scenario is +much more complex --- not only because we have more degrees of freedom on each +control point, but also, because the *fitness--function* we will use has no known +analytic solution and multiple local minima. + +\begin{figure}[ht] +\begin{center} +\includegraphics[width=0.9\textwidth]{img/3dtarget.png} +\end{center} +\caption[3D source and target meshes]{\newline +Left: The sphere we start from with 10\,807 vertices\newline +Right: The face we want to deform the sphere into with 12\,024 vertices.} +\label{fig:3dtarget} +\end{figure} + +First of all we introduce the set up: We have given a triangulated model of a +sphere consisting of $10\,807$ vertices, that we want to deform into a +the target--model of a face with a total of $12\,024$ vertices. Both of +these Models can be seen in figure \ref{fig:3dtarget}. + +Opposed to the 1D--case we cannot map the source and target--vertices in a +one--to--one--correspondence, which we especially need for the approximation of +the fitting--error. Hence we state that the error of one vertex is the distance +to the closest vertex of the respective other model and sum up the error from +the source and target. + +We therefore define the *fitness--function* to be: + +\begin{equation} +\mathrm{f}(\vec{P}) = \frac{1}{n} \underbrace{\sum_{i=1}^n \|\vec{c_T(s_i)} - +\vec{s_i}\|_2^2}_{\textrm{source--to--target--distance}} ++ \frac{1}{m} \underbrace{\sum_{i=1}^m \|\vec{c_S(t_i)} - +\vec{t_i}\|_2^2}_{\textrm{target--to--source--distance}} ++ \lambda \cdot \textrm{regularization}(\vec{P}) +\label{eq:fit3d} +\end{equation} + +where $\vec{c_T(s_i)}$ denotes the target--vertex that is corresponding to the +source--vertex $\vec{s_i}$ and $\vec{c_S(t_i)}$ denotes the source--vertex that +corresponds to the target--vertex $\vec{t_i}$. Note that the target--vertices +are given and fixed by the target--model of the face we want to deform into, +whereas the source--vertices vary depending on the chosen parameters $\vec{P}$, +as those get calculated by the previously introduces formula $\vec{S} = \vec{UP}$ +with $\vec{S}$ being the $n \times 3$--matrix of source--vertices, $\vec{U}$ the +$n \times m$--matrix of calculated coefficients for the \ac{FFD} --- analog to +the 1D case --- and finally $\vec{P}$ being the $m \times 3$--matrix of the +control--grid defining the whole deformation. + +As regularization--term we add a weighted Laplacian of the deformation that has +been used before by Aschenbach et al.\cite[Section 3.2]{aschenbach2015} on +similar models and was shown to lead to a more precise fit. The Laplacian +\begin{equation} +\mathrm{regularization}(\vec{P}) = \frac{1}{\sum_i A_i} \sum_{i=1}^n A_i \cdot \left( \sum_{\vec{s}_j \in \mathcal{N}(\vec{s}_i)} w_j \cdot \|\Delta \vec{s}_j - \Delta \vec{s}_i\|^2 \right) +\label{eq:reg3d} +\end{equation} +is determined by the cotangent weighted displacement $w_j$ of the to $s_i$ +connected vertices $\mathcal{N}(s_i)$ and $A_i$ is the Voronoi--area of the corresponding vertex +$\vec{s_i}$. We leave out the $\vec{R}_i$--term from the original paper as our +deformation is merely linear. + +This regularization--weight gives us a measure of stiffness for the material +that we will influence via the $\lambda$--coefficient to start out with a stiff +material that will get more flexible per iteration. As a side--effect this also +limits the effects of overagressive movement of the control--points in the +beginning of the fitting process and thus should limit the generation of +ill--defined grids mentioned in section \ref{sec:impl:grid}. + +# Evaluation of Scenarios +\label{sec:res} + +To compare our results to the ones given by Richter et al.\cite{anrichterEvol}, +we also use Spearman's rank correlation coefficient. Opposed to other popular +coefficients, like the Pearson correlation coefficient, which measures a linear +relationship between variables, the Spearman's coefficient assesses \glqq how +well an arbitrary monotonic function can describe the relationship between two +variables, without making any assumptions about the frequency distribution of +the variables\grqq\cite{hauke2011comparison}. + +As we don't have any prior knowledge if any of the criteria is linear and we are +just interested in a monotonic relation between the criteria and their +predictive power, the Spearman's coefficient seems to fit out scenario best and +was also used before by Richter et al.\cite{anrichterEvol} + +For interpretation of these values we follow the same interpretation used in +\cite{anrichterEvol}, based on \cite{weir2015spearman}: The coefficient +intervals $r_S \in [0,0.2[$, $[0.2,0.4[$, $[0.4,0.6[$, $[0.6,0.8[$, and $[0.8,1]$ are +classified as *very weak*, *weak*, *moderate*, *strong* and *very strong*. We +interpret p--values smaller than $0.01$ as *significant* and cut off the +precision of p--values after four decimal digits (thus often having a p--value +of $0$ given for p--values $< 10^{-4}$). + + +As we are looking for anti--correlation (i.e. our criterion should be maximized +indicating a minimal result in --- for example --- the reconstruction--error) +instead of correlation we flip the sign of the correlation--coefficient for +readability and to have the correlation--coefficients be in the +classification--range given above. + +For the evolutionary optimization we employ the \afc{CMA--ES} of the shark3.1 +library \cite{shark08}, as this algorithm was used by \cite{anrichterEvol} as +well. We leave the parameters at their sensible defaults as further explained in +\cite[Appendix~A: Table~1]{hansen2016cma}. + +## Procedure: 1D Function Approximation +\label{sec:proc:1d} + +For our setup we first compute the coefficients of the deformation--matrix and +use the formulas for *variability* and *regularity* to get our predictions. +Afterwards we solve the problem analytically to get the (normalized) correct +gradient that we use as guess for the *improvement potential*. To further test +the *improvement potential* we also consider a distorted gradient +$\vec{g}_{\mathrm{d}}$: +$$ +\vec{g}_{\mathrm{d}} = \frac{\mu \vec{g}_{\mathrm{c}} + (1-\mu)\mathbb{1}}{\|\mu \vec{g}_{\mathrm{c}} + (1-\mu) \mathbb{1}\|} +$$ +where $\mathbb{1}$ is the vector consisting of $1$ in every dimension, +$\vec{g}_\mathrm{c} = \vec{p^{*}} - \vec{p}$ is the calculated correct gradient, +and $\mu$ is used to blend between $\vec{g}_\mathrm{c}$ and $\mathbb{1}$. As +we always start with a gradient of $p = \mathbb{0}$ this means we can shorten +the definition of $\vec{g}_\mathrm{c}$ to $\vec{g}_\mathrm{c} = \vec{p^{*}}$. + +\begin{figure}[ht] +\begin{center} +\includegraphics[width=\textwidth]{img/example1d_grid.png} +\end{center} +\caption[Example of a 1D--grid]{\newline Left: A regular $7 \times 4$--grid\newline Right: The same grid after a +random distortion to generate a testcase.} +\label{fig:example1d_grid} +\end{figure} + +We then set up a regular 2--dimensional grid around the object with the desired +grid resolutions. To generate a testcase we then move the grid--vertices +randomly inside the x--y--plane. As self--intersecting grids get tricky to solve +with our implemented newtons--method (see section \ref{3dffd}) we avoid the +generation of such self--intersecting grids for our testcases. + +To achieve that we generated a gaussian distributed number with $\mu = 0, \sigma=0.25$ +and clamped it to the range $[-0.25,0.25]$. We chose such an $r \in [-0.25,0.25]$ +per dimension and moved the control--points by that factor towards their +respective neighbours^[Note: On the Edges this displacement is only applied +outwards by flipping the sign of $r$, if appropriate.]. + +In other words we set +\begin{equation*} +p_i = +\begin{cases} + p_i + (p_i - p_{i-1}) \cdot r, & \textrm{if } r \textrm{ negative} \\ + p_i + (p_{i+1} - p_i) \cdot r, & \textrm{if } r \textrm{ positive} +\end{cases} +\end{equation*} +in each dimension separately. + +An Example of such a testcase can be seen for a $7 \times 4$--grid in figure +\ref{fig:example1d_grid}. + +## Results of 1D Function Approximation + +In the case of our 1D--Optimization--problem, we have the luxury of knowing the +analytical solution to the given problem--set. We use this to experimentally +evaluate the quality criteria we introduced before. As an evolutional +optimization is partially a random process, we use the analytical solution as a +stopping--criteria. We measure the convergence speed as number of iterations the +evolutional algorithm needed to get within $1.05 \times$ of the optimal solution. + +We used different regular grids that we manipulated as explained in Section +\ref{sec:proc:1d} with a different number of control--points. As our grids have +to be the product of two integers, we compared a $5 \times 5$--grid with $25$ +control--points to a $4 \times 7$ and $7 \times 4$--grid with $28$ +control--points. This was done to measure the impact an \glqq improper\grqq \ +setup could have and how well this is displayed in the criteria we are +examining. + +Additionally we also measured the effect of increasing the total resolution of +the grid by taking a closer look at $5 \times 5$, $7 \times 7$ and $10 \times 10$ grids. + +### Variability + +\begin{figure}[tbh] +\centering +\includegraphics[width=0.7\textwidth]{img/evolution1d/variability_boxplot.png} +\caption[1D Fitting Errors for various grids]{The squared error for the various +grids we examined.\newline +Note that $7 \times 4$ and $4 \times 7$ have the same number of control--points.} +\label{fig:1dvar} +\end{figure} + +*Variability* should characterize the potential for design space exploration and +is defined in terms of the normalized rank of the deformation matrix $\vec{U}$: +$V(\vec{U}) := \frac{\textrm{rank}(\vec{U})}{n}$, whereby $n$ is the number of +vertices. +As all our tested matrices had a constant rank (being $m = x \cdot y$ for a $x \times y$ +grid), we have merely plotted the errors in the box plot in figure +\ref{fig:1dvar} + +It is also noticeable, that although the $7 \times 4$ and $4 \times 7$ grids +have a higher *variability*, they perform not better than the $5 \times 5$ grid. +Also the $7 \times 4$ and $4 \times 7$ grids differ distinctly from each other +with a mean$\pm$sigma of $233.09 \pm 12.32$ for the former and $286.32 \pm 22.36$ for the +latter, although they have the same number of control--points. This is an +indication of an impact a proper or improper grid--setup can have. We do not +draw scientific conclusions from these findings, as more research on non--squared +grids seem necessary. + +Leaving the issue of the grid--layout aside we focused on grids having the same +number of prototypes in every dimension. For the $5 \times 5$, $7 \times 7$ and +$10 \times 10$ grids we found a *very strong* correlation ($-r_S = 0.94, p = 0$) +between the *variability* and the evolutionary error. + +### Regularity + +\begin{figure}[tbh] +\centering +\includegraphics[width=\textwidth]{img/evolution1d/55_to_1010_steps.png} +\caption[Improvement potential and regularity against iterations]{\newline +Left: *Improvement potential* against number of iterations until convergence\newline +Right: *Regularity* against number of iterations until convergence\newline +Coloured by their grid--resolution, both with a linear fit over the whole +dataset.} +\label{fig:1dreg} +\end{figure} + +\begin{table}[b] +\centering +\begin{tabular}{c|c|c|c|c} +$5 \times 5$ & $7 \times 4$ & $4 \times 7$ & $7 \times 7$ & $10 \times 10$\\ +\hline +$0.28$ ($0.0045$) & \textcolor{red}{$0.21$} ($0.0396$) & \textcolor{red}{$0.1$} ($0.3019$) & \textcolor{red}{$0.01$} ($0.9216$) & \textcolor{red}{$0.01$} ($0.9185$) +\end{tabular} +\caption[Correlation 1D *regularity* against iterations]{Negated Spearman's correlation (and p--values) +between *regularity* and number of iterations for the 1D function approximation +problem. +\newline Note: Not significant results are marked in \textcolor{red}{red}. +} +\label{tab:1dreg} +\end{table} + +*Regularity* should correspond to the convergence speed (measured in +iteration--steps of the evolutionary algorithm), and is computed as inverse +condition number $\kappa(\vec{U})$ of the deformation--matrix. + +As can be seen from table \ref{tab:1dreg}, we could only show a *weak* correlation +in the case of a $5 \times 5$ grid. As we increment the number of +control--points the correlation gets worse until it is completely random in a +single dataset. Taking all presented datasets into account we even get a *strong* +correlation of $- r_S = -0.72, p = 0$, that is opposed to our expectations. + +To explain this discrepancy we took a closer look at what caused these high number +of iterations. In figure \ref{fig:1dreg} we also plotted the +*improvement potential* against the steps next to the *regularity*--plot. Our theory +is that the *very strong* correlation ($-r_S = -0.82, p=0$) between +*improvement potential* and number of iterations hints that the employed +algorithm simply takes longer to converge on a better solution (as seen in +figure \ref{fig:1dvar} and \ref{fig:1dimp}) offsetting any gain the +regularity--measurement could achieve. + +### Improvement Potential + +\begin{figure}[ht] +\centering +\includegraphics[width=0.8\textwidth]{img/evolution1d/55_to_1010_improvement-vs-evo-error.png} +\caption[Correlation 1D Improvement vs. Error]{*Improvement potential* plotted +against the error yielded by the evolutionary optimization for different +grid--resolutions} +\label{fig:1dimp} +\end{figure} + +The *improvement potential* should correlate to the quality of the +fitting--result. We plotted the results for the tested grid--sizes $5 \times 5$, +$7 \times 7$ and $10 \times 10$ in figure \ref{fig:1dimp}. We tested the +$4 \times 7$ and $7 \times 4$ grids as well, but omitted them from the plot. + +Additionally we tested the results for a distorted gradient described in +\ref{sec:proc:1d} with a $\mu$--value of $0.25$, $0.5$, $0,75$, and $1.0$ for +the $5 \times 5$ grid and with a $\mu$--value of $0.5$ for all other cases. + +All results show the identical *very strong* and *significant* correlation with +a Spearman--coefficient of $- r_S = 1.0$ and p--value of $0$. + +These results indicate, that $\|\mathbb{1} - \vec{U}\vec{U}^{+}\|_F$ is close to $0$, +reducing the impacts of any kind of gradient. Nevertheless, the improvement +potential seems to be suited to make estimated guesses about the quality of a +fit, even lacking an exact gradient. + +## Procedure: 3D Function Approximation +\label{sec:proc:3dfa} + +As explained in section \ref{sec:test:3dfa} in detail, we do not know the +analytical solution to the global optimum. Additionally we have the problem of +finding the right correspondences between the original sphere--model and the +target--model, as they consist of $10\,807$ and $12\,024$ vertices respectively, +so we cannot make a one--to--one--correspondence between them as we did in the +one--dimensional case. + +Initially we set up the correspondences $\vec{c_T(\dots)}$ and $\vec{c_S(\dots)}$ to be +the respectively closest vertices of the other model. We then calculate the +analytical solution given these correspondences via $\vec{P^{*}} = \vec{U^+}\vec{T}$, +and also use the first solution as guessed gradient for the calculation of the +*improvement potential*, as the optimal solution is not known. +We then let the evolutionary algorithm run up within $1.05$ times the error of +this solution and afterwards recalculate the correspondences $\vec{c_T(\dots)}$ +and $\vec{c_S(\dots)}$. + +\begin{figure}[ht] +\begin{center} +\includegraphics[width=\textwidth]{img/example3d_grid.png} +\end{center} +\caption[Example of a 3D--grid]{\newline Left: The 3D--setup with a $4\times +4\times 4$--grid.\newline Right: The same grid after added noise to the +control--points.} +\label{fig:setup3d} +\end{figure} + +For the next step we then halve the regularization--impact $\lambda$ (starting +at $1$) of our *fitness--function* (\ref{eq:fit3d}) and calculate the next +incremental solution $\vec{P^{*}} = \vec{U^+}\vec{T}$ with the updated +correspondences (again, mapping each vertex to its closest neighbour in the +respective other model) to get our next target--error. We repeat this process as +long as the target--error keeps decreasing and use the number of these +iterations as measure of the convergence speed. As the resulting evolutional +error without regularization is in the numeric range of $\approx 100$, whereas +the regularization is numerically $\approx 7000$ we need at least $10$ to $15$ +iterations until the regularization--effect wears off. + +The grid we use for our experiments is just very coarse due to computational +limitations. We are not interested in a good reconstruction, but an estimate if +the mentioned evolvability--criteria are good. + +In figure \ref{fig:setup3d} we show an example setup of the scene with a +$4\times 4\times 4$--grid. Identical to the 1--dimensional scenario before, we create a +regular grid and move the control--points in the exact same random manner between +their neighbours as described in section \ref{sec:proc:1d}, but in three instead +of two dimensions^[Again, we flip the signs for the edges, if necessary to have +the object still in the convex hull.]. + +\begin{figure}[!htb] +\includegraphics[width=\textwidth]{img/3d_grid_resolution.png} +\caption[Different resolution of 3D grids]{\newline +Left: A $7 \times 4 \times 4$ grid suited to better deform into facial +features.\newline +Right: A $4 \times 4 \times 7$ grid that we expect to perform worse.} +\label{fig:3dgridres} +\end{figure} + +As is clearly visible from figure \ref{fig:3dgridres}, the target--model has many +vertices in the facial area, at the ears and in the neck--region. Therefore we +chose to increase the grid--resolutions for our tests in two different dimensions +and see how well the criteria predict a suboptimal placement of these +control--points. + +## Results of 3D Function Approximation + +In the 3D--Approximation we tried to evaluate further on the impact of the +grid--layout to the overall criteria. As the target--model has many vertices in +concentrated in the facial area we start from a $4 \times 4 \times 4$ grid and +only increase the number of control--points in one dimension, yielding a +resolution of $7 \times 4 \times 4$ and $4 \times 4 \times 7$ respectively. We +visualized those two grids in figure \ref{fig:3dgridres}. + +To evaluate the performance of the evolvability--criteria we also tested a more +neutral resolution of $4 \times 4 \times 4$, $5 \times 5 \times 5$, and $6 \times 6 \times 6$ --- +similar to the 1D--setup. + +\begin{figure}[ht] +\centering +\includegraphics[width=0.7\textwidth]{img/evolution3d/variability_boxplot.png} +\caption[3D Fitting Errors for various grids]{The fitting error for the various +grids we examined.\newline +Note that the number of control--points is a product of the resolution, so $X +\times 4 \times 4$ and $4 \times 4 \times X$ have the same number of +control--points.} +\label{fig:3dvar} +\end{figure} + +### Variability +\label{sec:res:3d:var} + +\begin{table}[tbh] +\centering +\begin{tabular}{c|c|c|c} +$4 \times 4 \times \mathrm{X}$ & $\mathrm{X} \times 4 \times 4$ & $\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}$ & all \\ +\hline +0.89 (0) & 0.9 (0) & 0.91 (0) & 0.94 (0) +\end{tabular} +\caption[Correlation between *variability* and fitting error for 3D]{Correlation +between *variability* and fitting error for the 3D fitting scenario.\newline +Displayed are the negated Spearman coefficients with the corresponding p--values +in brackets for three cases of increasing *variability* ($\mathrm{X} \in [4,5,7], +\mathrm{Y} \in [4,5,6]$). +\newline Note: Not significant results are marked in \textcolor{red}{red}.} +\label{tab:3dvar} +\end{table} + +Similar to the 1D case all our tested matrices had a constant rank (being +$m = x \cdot y \cdot z$ for a $x \times y \times z$ grid), so we again have merely plotted +the errors in the box plot in figure \ref{fig:3dvar}. + +As expected the $\mathrm{X} \times 4 \times 4$ grids performed +slightly better than their $4 \times 4 \times \mathrm{X}$ counterparts with a +mean$\pm$sigma of $101.25 \pm 7.45$ to $102.89 \pm 6.74$ for $\mathrm{X} = 5$ and +$85.37 \pm 7.12$ to $89.22 \pm 6.49$ for $\mathrm{X} = 7$. + +Interestingly both variants end up closer in terms of fitting error than we +anticipated, which shows that the evolutionary algorithm we employed is capable +of correcting a purposefully created \glqq bad\grqq \ grid. Also this confirms, +that in our cases the number of control--points is more important for quality +than their placement, which is captured by the *variability* via the rank of the +deformation--matrix. + +Overall the correlation between *variability* and fitness--error were +*significant* and showed a *very strong* correlation in all our tests. +The detailed correlation--coefficients are given in table \ref{tab:3dvar} +alongside their p--values. + +As introduces in section \ref{sec:impl:grid} and visualized in figure +\ref{fig:enoughCP}, we know, that not all control--points have to necessarily +contribute to the parametrization of our 3D--model. Because we are starting from +a sphere, some control--points are too far away from the surface to contribute +to the deformation at all. + +One can already see in 2D in figure \ref{fig:enoughCP}, that this effect +starts with a regular $9 \times 9$ grid on a perfect circle. To make sure we +observe this, we evaluated the *variability* for 100 randomly moved $10 \times 10 \times 10$ +grids on the sphere we start out with. + +\begin{figure}[hbt] +\centering +\includegraphics[width=0.8\textwidth]{img/evolution3d/variability2_boxplot.png} +\caption[Histogram of ranks of high--resolution deformation--matrices]{ +Histogram of ranks of various $10 \times 10 \times 10$ grids with $1000$ +control--points each showing in this case how many control--points are actually +used in the calculations. +} +\label{fig:histrank3d} +\end{figure} + +As the *variability* is defined by $\frac{\mathrm{rank}(\vec{U})}{n}$ we can +easily recover the rank of the deformation--matrix $\vec{U}$. The results are +shown in the histogram in figure \ref{fig:histrank3d}. Especially in the centre +of the sphere and in the corners of our grid we effectively loose +control--points for our parametrization. + +This of course yields a worse error as when those control--points would be put +to use and one should expect a loss in quality evident by a higher +reconstruction--error opposed to a grid where they are used. Sadly we could not +run a in--depth test on this due to computational limitations. + +Nevertheless this hints at the notion, that *variability* is a good measure for +the overall quality of a fit. + +### Regularity + +\begin{table}[tbh] +\centering +\begin{tabular}{c|c|c|c} + & $5 \times 4 \times 4$ & $7 \times 4 \times 4$ & $\mathrm{X} \times 4 \times 4$ \\ +\cline{2-4} + & \textcolor{red}{0.15} (0.147) & \textcolor{red}{0.09} (0.37) & 0.46 (0) \B \\ +\cline{2-4} +\multicolumn{4}{c}{} \\[-1.4em] +\hline +$4 \times 4 \times 4$ & $4 \times 4 \times 5$ & $4 \times 4 \times 7$ & $4 \times 4 \times \mathrm{X}$ \T \\ +\hline +0.38 (0) & \textcolor{red}{0.17} (0.09) & 0.40 (0) & 0.46 (0) \B \\ +\hline +\multicolumn{4}{c}{} \\[-1.4em] +\cline{2-4} + & $5 \times 5 \times 5$ & $6 \times 6 \times 6$ & $\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}$ \T \\ +\cline{2-4} + & \textcolor{red}{-0.18} (0.0775) & \textcolor{red}{-0.13} (0.1715) & -0.25 (0) \B \\ +\cline{2-4} +\multicolumn{4}{c}{} \\[-1.4em] +\cline{2-4} +\multicolumn{3}{c}{} & all: 0.15 (0) \T +\end{tabular} +\caption[Correlation between *regularity* and iterations for 3D]{Correlation +between *regularity* and number of iterations for the 3D fitting scenario. +Displayed are the negated Spearman coefficients with the corresponding p--values +in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$). +\newline Note: Not significant results are marked in \textcolor{red}{red}.} +\label{tab:3dreg} +\end{table} + +Opposed to the predictions of *variability* our test on *regularity* gave a mixed +result --- similar to the 1D--case. + +In roughly half of the scenarios we have a *significant*, but *weak* to *moderate* +correlation between *regularity* and number of iterations. On the other hand in +the scenarios where we increased the number of control--points, namely $125$ for +the $5 \times 5 \times 5$ grid and $216$ for the $6 \times 6 \times 6$ grid we found +a *significant*, but *weak* **anti**--correlation when taking all three tests into +account^[Displayed as $Y \times Y \times Y$], which seem to contradict the +findings/trends for the sets with $64$, $80$, and $112$ control--points +(first two rows of table \ref{tab:3dreg}). + +Taking all results together we only find a *very weak*, but *significant* link +between *regularity* and the number of iterations needed for the algorithm to +converge. + +\begin{figure}[!htb] +\centering +\includegraphics[width=\textwidth]{img/evolution3d/regularity_montage.png} +\caption[Regularity for different 3D--grids]{ +Plots of *regularity* against number of iterations for various scenarios together +with a linear fit to indicate trends.} +\label{fig:resreg3d} +\end{figure} + +As can be seen from figure \ref{fig:resreg3d}, we can observe that increasing +the number of control--points helps the convergence--speeds. The +regularity--criterion first behaves as we would like to, but then switches to +behave exactly opposite to our expectations, as can be seen in the first three +plots. While the number of control--points increases from red to green to blue +and the number of iterations decreases, the *regularity* seems to increase at +first, but then decreases again on higher grid--resolutions. + +This can be an artefact of the definition of *regularity*, as it is defined by the +inverse condition--number of the deformation--matrix $\vec{U}$, being the +fraction $\frac{\sigma_{\mathrm{min}}}{\sigma_{\mathrm{max}}}$ between the +least and greatest right singular value. + +As we observed in the previous section, we cannot +guarantee that each control--point has an effect (see figure \ref{fig:histrank3d}) +and so a small minimal right singular value occurring on higher +grid--resolutions seems likely the problem. + +Adding to this we also noted, that in the case of the $10 \times 10 \times +10$--grid the *regularity* was always $0$, as a non--contributing control--point +yields a $0$--column in the deformation--matrix, thus letting +$\sigma_\mathrm{min} = 0$. A better definition for *regularity* (i.e. using the +smallest non--zero right singular value) could solve this particular issue, but +not fix the trend we noticed above. + +### Improvement Potential + +\begin{table}[tbh] +\centering +\begin{tabular}{c|c|c|c} + & $5 \times 4 \times 4$ & $7 \times 4 \times 4$ & $\mathrm{X} \times 4 \times 4$ \\ +\cline{2-4} + & 0.3 (0.0023) & \textcolor{red}{0.23} (0.0233) & 0.89 (0) \B \\ +\cline{2-4} +\multicolumn{4}{c}{} \\[-1.4em] +\hline +$4 \times 4 \times 4$ & $4 \times 4 \times 5$ & $4 \times 4 \times 7$ & $4 \times 4 \times \mathrm{X}$ \T \\ +\hline +0.5 (0) & 0.38 (0) & 0.32 (0.0012) & 0.9 (0) \B \\ +\hline +\multicolumn{4}{c}{} \\[-1.4em] +\cline{2-4} + & $5 \times 5 \times 5$ & $6 \times 6 \times 6$ & $\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}$ \T \\ +\cline{2-4} + & 0.47 (0) & \textcolor{red}{-0.01} (0.8803) & 0.89 (0) \B \\ +\cline{2-4} +\multicolumn{4}{c}{} \\[-1.4em] +\cline{2-4} +\multicolumn{3}{c}{} & all: 0.95 (0) \T +\end{tabular} +\caption[Correlation between *improvement potential* and fitting--error for 3D]{Correlation +between *improvement potential* and fitting--error for the 3D fitting scenario. +Displayed are the negated Spearman coefficients with the corresponding p--values +in brackets for various given grids ($\mathrm{X} \in [4,5,7], \mathrm{Y} \in [4,5,6]$). +\newline Note: Not significant results are marked in \textcolor{red}{red}.} +\label{tab:3dimp} +\end{table} + +Comparing to the 1D--scenario, we do not know the optimal solution to the given +problem and for the calculation we only use the initial gradient produced by the +initial correlation between both objects. This gradient changes with every +iteration and will be off our first guess very quickly. This is the reason we +are not trying to create artificially bad gradients, as we have a broad range in +quality of such gradients anyway. + +\begin{figure}[htb] +\centering +\includegraphics[width=\textwidth]{img/evolution3d/improvement_montage.png} +\caption[Improvement potential for different 3D--grids]{ +Plots of *improvement potential* against error given by our *fitness--function* +after convergence together with a linear fit of each of the plotted data to +indicate trends.} +\label{fig:resimp3d} +\end{figure} + +We plotted our findings on the *improvement potential* in a similar way as we did +before with the *regularity*. In figure \ref{fig:resimp3d} one can clearly see the +correlation and the spread within each setup and the behaviour when we increase +the number of control--points. + +Along with this we also give the Spearman--coefficients along with their +p--values in table \ref{tab:3dimp}. Within one scenario we only find a *weak* to +*moderate* correlation between the *improvement potential* and the fitting error, +but all findings (except for $7 \times 4 \times 4$ and $6 \times 6 \times 6$) +are significant. + +If we take multiple datasets into account the correlation is *very strong* and +*significant*, which is good, as this functions as a litmus--test, because the +quality is naturally tied to the number of control--points. + +All in all the *improvement potential* seems to be a good and sensible measure of +quality, even given gradients of varying quality. + +Lastly, a small note on the behaviour of *improvement potential* and convergence +speed, as we used this in the 1D case to argue, why the *regularity* defied our +expectations. As a contrast we wanted to show, that *improvement potential* cannot +serve for good predictions of the convergence speed. In figure +\ref{fig:imp1d3d} we show *improvement potential* against number of iterations +for both scenarios. As one can see, in the 1D scenario we have a *strong* +and *significant* correlation (with $-r_S = -0.72$, $p = 0$), whereas in the 3D +scenario we have the opposite *significant* and *strong* effect (with +$-r_S = 0.69$, $p=0$), so these correlations clearly seem to be dependent on the +scenario and are not suited for generalization. + +\begin{figure}[hbt] +\centering +\includegraphics[width=\textwidth]{img/imp1d3d.png} +\caption[Improvement potential and convergence speed\newline for 1D and 3D--scenarios]{ +\newline +Left: *Improvement potential* against convergence speed for the +1D--scenario\newline +Right: *Improvement potential* against convergence speed for the 3D--scnario +} +\label{fig:imp1d3d} +\end{figure} + +# Discussion and outlook +\label{sec:dis} + +In this thesis we took a look at the different criteria for *evolvability* as +introduced by Richter et al.\cite{anrichterEvol}, namely *variability*, +*regularity* and *improvement potential* under different setup--conditions. +Where Richter et al. used \acf{RBF}, we employed \acf{FFD} to set up a +low--complexity parametrization of a more complex vertex--mesh. + +In our findings we could show in the 1D--scenario, that there were statistically +*significant* *very strong* correlations between *variability and fitting error* +($0.94$) and *improvement potential and fitting error* ($1.0$) with +comparable results than Richter et al. (with $0.31$ to $0.88$ +for the former and $0.75$ to $0.99$ for the latter), whereas we found +only *weak* correlations for *regularity and convergence--speed* ($0.28$) +opposed to Richter et al. with $0.39$ to $0.91$.^[We only took statistically +*significant* results into consideration when compiling these numbers. Details +are given in the respective chapters.] + +For the 3D--scenario our results show a *very strong*, *significant* correlation +between *variability and fitting error* with $0.89$ to $0.94$, which are pretty +much in line with the findings of Richter et al. ($0.65$ to $0.95$). The +correlation between *improvement potential and fitting error* behave similar, +with our findings having a significant coefficient of $0.3$ to $0.95$ depending +on the grid--resolution compared to the $0.61$ to $0.93$ from Richter et al. +In the case of the correlation of *regularity and convergence speed* we found +very different (and often not significant) correlations and anti--correlations +ranging from $-0.25$ to $0.46$, whereas Richter et al. reported correlations +between $0.34$ to $0.87$. + +Taking these results into consideration, one can say, that *variability* and +*improvement potential* are very good estimates for the quality of a fit using +\acf{FFD} as a deformation function, while we could not reproduce similar +compelling results as Richter et al. for *regularity and convergence speed*. + +One reason for the bad or erratic behaviour of the *regularity*--criterion could +be that in an \ac{FFD}--setting we have a likelihood of having control--points +that are only contributing to the whole parametrization in negligible amounts, +resulting in very small right singular values of the deformation--matrix +$\vec{U}$ that influence the condition--number and thus the *regularity* in a +significant way. Further research is needed to refine *regularity* so that these +problems get addressed, like taking all singular values into account when +capturing the notion of *regularity*. + +Richter et al. also compared the behaviour of direct and indirect manipulation +in \cite{anrichterEvol}, whereas we merely used an indirect \ac{FFD}--approach. +As direct manipulations tend to perform better than indirect manipulations, the +usage of \acf{DM--FFD} could also work better with the criteria we examined. +This can also solve the problem of bad singular values for the *regularity* as +the incorporation of the parametrization of the points on the surface --- which +are the essential part of a direct--manipulation --- could cancel out a bad +control--grid as the bad control--points are never or negligibly used to +parametrize those surface--points. diff --git a/presentation/template/agcg-pdf.css b/presentation/template/agcg-pdf.css new file mode 100755 index 0000000..360cd02 --- /dev/null +++ b/presentation/template/agcg-pdf.css @@ -0,0 +1,16 @@ +/* MARIO */ +.reveal .comment { + position: absolute; + margin: auto; + right: auto; + bottom: auto; + width: auto; + height: auto; +} + +.reveal footer { + position: absolute; + display: block; + overflow: visible; + margin: auto; +} diff --git a/presentation/template/agcg.css b/presentation/template/agcg.css new file mode 100755 index 0000000..82c03d7 --- /dev/null +++ b/presentation/template/agcg.css @@ -0,0 +1,725 @@ +/** + * White theme for reveal.js. This is the opposite of the 'black' theme. + * + * By Hakim El Hattab, http://hakim.se + */ + + +@import url(lato/lato.css); + + + +/********************************************* + * GLOBAL STYLES + *********************************************/ + +body { + background: #ffffff; + background-color: #ffffff; +} + +.reveal { + font-family: "Lato", sans-serif; + font-size: 36px; + font-weight: normal; + color: #222; } + + +::selection { + color: #fff; + background: #98bdef; + text-shadow: none; } + +.reveal .slides > section, +.reveal .slides > section > section { + line-height: 1.3; + font-weight: inherit; +} + + +/********************************************* + * MARIO: ALIGNMENT & COLUMNS + *********************************************/ + +.reveal .float-left { + float: left; +} + +.reveal .float-right { + float: right; +} + +.reveal .left { + text-align: left; +} + +.reveal .center { + text-align: center; +} + +.reveal .right { + text-align: right; +} + +.reveal .small { + font-size: 0.7em; +} + +.reveal .tiny { + font-size: 0.6em; +} + +.reveal .tt { + font-family: monospace; +} + +.reveal .boxed { + border: 1px solid black; + padding: 10px; +} + +.reveal .w10 { width:10%; } +.reveal .w20 { width:20%; } +.reveal .w30 { width:30%; } +.reveal .w40 { width:40%; } +.reveal .w50 { width:50%; } +.reveal .w60 { width:60%; } +.reveal .w70 { width:70%; } +.reveal .w80 { width:80%; } +.reveal .w90 { width:90%; } + +.reveal .col10 { float:left; width:10%; } +.reveal .col20 { float:left; width:20%; } +.reveal .col30 { float:left; width:30%; } +.reveal .col40 { float:left; width:40%; } +.reveal .col50 { float:left; width:50%; } +.reveal .col60 { float:left; width:60%; } +.reveal .col70 { float:left; width:70%; } +.reveal .col80 { float:left; width:80%; } +.reveal .col90 { float:left; width:90%; } + + +/********************************************* + * HEADERS + *********************************************/ +.reveal h1, +.reveal h2, +.reveal h3, +.reveal h4, +.reveal h5, +.reveal h6 { + margin: 0 0 20px 0; + font-weight: bold; + line-height: 1.2; + letter-spacing: normal; + text-shadow: none; + word-wrap: break-word; + text-align: center; +} + +.reveal h1 { + margin-bottom: 40px; + font-size: 1.50em; +} + +.reveal h2 { + font-size: 1.3em; } + +.reveal h3 { + font-size: 1.1em; } + +.reveal h4 { + font-size: 1em; } + +.reveal h1 { + text-shadow: none; } + +/********************************************* + * OTHER + *********************************************/ +.reveal p { + margin: 20px 0; + line-height: 1.3; } + +/* Ensure certain elements are never larger than the slide itself */ +.reveal img, +.reveal video, +.reveal iframe { + max-width: 95%; + max-height: 95%; } + +.reveal strong { + font-weight: bold; +} + +.reveal .boldblue { + font-weight: bold; + color: #2a9ddf; +} + +.reveal b { + font-weight: bold; } + +.reveal em { + font-style: italic; } + +.reveal del { + color: red; +} + +.reveal ol, +.reveal dl, +.reveal ul { + display: inline-block; + text-align: left; + margin-bottom: 1em; +} + +.reveal ol li, +.reveal dl li, +.reveal ul li { + margin-bottom: 0.5em; + margin-left: 40px; +} + +.reveal ol { + list-style-type: decimal; } + +.reveal ul { + list-style-type: disc; } + +.reveal ul ul, +.reveal ol ul { + list-style-type: circle; +} + +.reveal ol ol { + list-style-type: lower-roman; +} + +.reveal ul ul ul, +.reveal ul ul ol, +.reveal ul ol ul, +.reveal ul ol ol, +.reveal ol ul ul, +.reveal ol ul ol, +.reveal ol ol ul, +.reveal ol ol ol { + font-size: 0.9em; +} + +.reveal ul ul, +.reveal ul ol, +.reveal ol ol, +.reveal ol ul { + display: block; + margin-top: 0.3em; + font-size: 0.8em; + margin-left: 10px; +} + +.reveal dt { + font-weight: bold; } + +.reveal dd { + margin-left: 40px; } + +.reveal q, +.reveal blockquote { + quotes: none; } + +.reveal blockquote { + display: block; + text-align: left; + font-size: 0.9em; + position: relative; + width: 70%; + margin: 20px auto; + padding: 0px 15px; + font-style: italic; + background: rgba(255, 255, 255, 0.05); + box-shadow: 0px 0px 2px rgba(0, 0, 0, 0.2); } + +.reveal blockquote p:first-child, +.reveal blockquote p:last-child { + display: inline-block; } + +.reveal q { + font-style: italic; } + + +/********************************************* + * CODE + *********************************************/ + +/* box around block of code */ +.reveal pre { + display: block; + position: relative; + width: 100%; + margin: 10px auto; + text-align: center; +} + +/* inline code */ +.reveal code { + display: inline; + padding: 0.2em; + text-align: left; + font-size: 85%; + font-family: monospace; + word-wrap: normal; + background-color: #f7f7f7; +} + +/* block of code (has to override above inline code)*/ +.reveal pre code { + display: block; + margin: 10px; + text-align: left; + font-size: 0.5em; + font-family: monospace; + line-height: 1.45em; + padding: 16px; + overflow: auto; + max-height: 550px; + word-wrap: normal; + background-color: #f7f7f7; +} + +.reveal pre code.small { + font-size: 0.4em; +} + + +/********************************************* + * TABLES + *********************************************/ + +.reveal table { + margin: auto; + border-collapse: collapse; + border-spacing: 2px; + //border-top: 2px solid black; + //border-bottom: 2px solid black; + text-align: center; +} + +.reveal table th { + font-weight: bold; } + +.reveal table th { + border-bottom: 1px solid; +} + +.reveal table th, +.reveal table td { + text-align: left; + padding: 0.2em 0.5em 0.2em 0.5em; +} + +.reveal table th[align="center"], +.reveal table td[align="center"] { + text-align: center; } + +.reveal table th[align="right"], +.reveal table td[align="right"] { + text-align: right; } + +.reveal table tbody tr:last-child th, +.reveal table tbody tr:last-child td { + border-bottom: none; } + +.reveal sup { + vertical-align: super; + font-size: 0.7em; +} + +.reveal sub { + vertical-align: sub; + font-size: 0.7em; +} + +.reveal small { + display: inline-block; + font-size: 0.6em; + line-height: 1.2em; + vertical-align: top; } + +.reveal small * { + vertical-align: top; } + +/********************************************* + * LINKS + *********************************************/ +.reveal a { + color: #2a76dd; + text-decoration: none; + -webkit-transition: color .15s ease; + -moz-transition: color .15s ease; + transition: color .15s ease; } + +.reveal a:hover { + color: #6ca0e8; + text-shadow: none; + border: none; } + +.reveal .roll span:after { + color: #fff; + background: #1a53a1; } + +/********************************************* + * IMAGES + *********************************************/ +/* +.reveal section img { + margin: 15px 0px; + background: rgba(255, 255, 255, 0.12); + border: 4px solid #222; + box-shadow: 0 0 10px rgba(0, 0, 0, 0.15); } +*/ + +.reveal section img { + /*margin: 15px 0px;*/ + margin-bottom: 15px; + border: 0; + box-shadow: none; } + +.reveal section img.plain { + border: 0; + box-shadow: none; } + +.reveal a img { + -webkit-transition: all .15s linear; + -moz-transition: all .15s linear; + transition: all .15s linear; } + +.reveal a:hover img { + background: rgba(255, 255, 255, 0.2); + border-color: #2a76dd; + box-shadow: 0 0 20px rgba(0, 0, 0, 0.55); } + + +.reveal figure { + display: inline-block; +// vertical-align: top; +} + +.reveal figure img { + margin: 5px 0px 0px 0px; + border: 0; + box-shadow: none; +} + +.reveal figure figcaption { + margin: 0px; + line-height: 1.2; + font-style: italic; + font-size: 0.6em; + text-align: center; +} + + +/********************************************* + * NAVIGATION CONTROLS + *********************************************/ +.reveal .controls .navigate-left, +.reveal .controls .navigate-left.enabled { + border-right-color: #2a76dd; } + +.reveal .controls .navigate-right, +.reveal .controls .navigate-right.enabled { + border-left-color: #2a76dd; } + +.reveal .controls .navigate-up, +.reveal .controls .navigate-up.enabled { + border-bottom-color: #2a76dd; } + +.reveal .controls .navigate-down, +.reveal .controls .navigate-down.enabled { + border-top-color: #2a76dd; } + +.reveal .controls .navigate-left.enabled:hover { + border-right-color: #6ca0e8; } + +.reveal .controls .navigate-right.enabled:hover { + border-left-color: #6ca0e8; } + +.reveal .controls .navigate-up.enabled:hover { + border-bottom-color: #6ca0e8; } + +.reveal .controls .navigate-down.enabled:hover { + border-top-color: #6ca0e8; } + +/********************************************* + * PROGRESS BAR + *********************************************/ +.reveal .progress { + background: rgba(0, 0, 0, 0.2); } + +.reveal .progress span { + background: #2a9ddf; + -webkit-transition: width 800ms cubic-bezier(0.26, 0.86, 0.44, 0.985); + -moz-transition: width 800ms cubic-bezier(0.26, 0.86, 0.44, 0.985); + transition: width 800ms cubic-bezier(0.26, 0.86, 0.44, 0.985); } + + + +/********************************************* + * MARIO: TITLE SLIDE + *********************************************/ + +.white-on-blue { + color: #ffffff; + background-color: #2a9ddf; +} + +.reveal .title { + margin: 30px 0 0 0; + font-weight: bold; + font-style: normal; + font-size: 1.5em; + text-align: center; +} + +.reveal .subtitle { + margin: 10px 0 0 0; + font-weight: normal; + font-style: italic; + font-size: 1.3em; + text-align: center; +} + +.reveal .author { + margin: 50px 0 0 0; + font-weight: normal; + font-style: normal; + font-size: 1.0em; + text-align: center; +} + +.reveal .affiliation { + margin: 10px 0 30px 0; + font-weight: normal; + font-style: normal; + font-size: 1.0em; + text-align: center; +} + + +/********************************************* + * MARIO: SECTIONS + *********************************************/ + +.reveal .section-title h1 { + /* white on blue */ + color: #ffffff; + background-color: #2a9ddf; + + /* large top margin -> vertical centering */ + margin: 100px auto; + padding: 50px; + + /* large bold font */ + font-weight: bold; + font-style: normal; + font-size: 1.5em; +} + + +/********************************************* + * MARIO: FRAGMENT ANIMATION + *********************************************/ + +.fragment.current-visible.visible:not(.current-fragment) { + display: none; + height:0px; + line-height: 0px; + font-size: 0px; +} + + +/********************************************* + * MARIO: WER WIRD MILLIONAER + *********************************************/ + +.reveal .slides > section { + counter-reset: wwm-counter; +} + +.reveal .answer { + display: inline-block; + position: relative; + width: 400px; + text-align: left; + margin: 20px; + border: 3px solid #2a9ddf; + border-radius: 20px; + padding: 20px; + font-weight: normal; + color: black; +} + +.reveal .answer:before { + content: counter(wwm-counter, upper-latin) ": "; + counter-increment: wwm-counter; + margin-right: 0.5em; + font-weight: bold; +} + +.reveal .tooltip { + visibility: hidden; + max-width: 390px; + top: 100%; + background-color: grey; + color: #ffffff; + text-align: center; + padding: 5px; + border-radius: 6px; + position: absolute; + z-index: 1; + font-size: 0.5em; +} + +.reveal .show-wrong { + background-color: #ffaaaa; + border: 3px solid red; +} + +.reveal .show-right { + background-color: #aaffaa; + border: 3px solid green; +} + +.reveal .show-wrong:hover .tooltip, .reveal .show-right:hover .tooltip { + visibility: visible; +} + + + +/********************************************* + * MARIO: COMMENT BUBBLES + *********************************************/ + +.reveal .bubble { + color: #ffffff; + background-color: #2a9ddf; + padding:10px; + border-radius:5px; + box-shadow: 0px 0px 30px 0px rgba(0,0,0,0.35); +} + +.reveal .comment { + color: #ffffff; + background-color: #2a9ddf; + position:absolute; + padding:10px; + border-radius:5px; + font-size: 0.5em; + box-shadow: 0px 0px 30px 0px rgba(0,0,0,0.35); +} + +.reveal .comment-left { + color: #ffffff; + background-color: #2a9ddf; + position:absolute; + padding:5px; + font-size: 80%; + border-radius:20px 20px 0px 20px; + box-shadow: 0px 0px 30px 0px rgba(0,0,0,0.35); +} + +.reveal .comment-right { + color: #ffffff; + background-color: #2a9ddf; + position:absolute; + padding:5px; + font-size: 80%; + border-radius:20px 20px 20px 0px; + box-shadow: 0px 0px 30px 0px rgba(0,0,0,0.35); +} + +.reveal .comment-big { + color: #ffffff; + background-color: #2a9ddf; + padding:10px; + border-radius:5px; + box-shadow: 0px 0px 30px 0px rgba(0,0,0,0.35); +} + + +/********************************************* + * MARIO: FOOTER COMMENTS + *********************************************/ + +.reveal footer { + position: absolute; + text-align: center; + margin: auto; + padding: 5px; + font-size: 0.5em; + left: 200px; + width: 624px; + top: 750px; +} + +/********************************************* + * MARIO: GENERIC HIGHLIGHT + *********************************************/ + +.reveal .highlight { + background-color: #fdfbaa; +} + +/********************************************* + * MARIO: margin: auto + *********************************************/ + +.reveal .automargin { + margin: 10px auto; +} + +/********************************************* + * MARIO: ADD SHADOWS (e.g. to images) + *********************************************/ + +.reveal .shadow { + box-shadow: 0px 0px 10px 0px rgba(0,0,0,0.25); +} + +.reveal table p { + margin: 0px; +} + +.reveal .neg80 { + margin-top: -80px; +} + +.reveal .neg60 { + margin-top: -60px; +} + +/* class for aligning divs in a row */ +.reveal .ilb { + display: inline-block; + vertical-align: top; +} + +/********************************************* + * MARIO: MathJax equation should get some + vertical distance to text before them + *********************************************/ + +.reveal .MathJax_Display { + margin-top: 0.5em; +} + + +/********************************************* + * Stefan: small helper class for doing + * a clear: both; after columns. + *********************************************/ + +.reveal .clearFloat { + clear:both; +} diff --git a/presentation/template/font-awesome b/presentation/template/font-awesome new file mode 160000 index 0000000..c754197 --- /dev/null +++ b/presentation/template/font-awesome @@ -0,0 +1 @@ +Subproject commit c754197d91b9b615349ff22fdae393905015ffff diff --git a/presentation/template/lato/LatoLatin-Black.eot b/presentation/template/lato/LatoLatin-Black.eot new file mode 100755 index 0000000000000000000000000000000000000000..d41103b2a9b6409df4d6fd8fd4c349cc697085b7 GIT binary patch literal 66110 zcmaI+Wo#Tw&jyTcpkdf-n7QFJOij`-!-koenVGp^<}}nc4Kp({ZkU;wlXE}sIe(5m z>9ggreaT~68jUp4SP&WtfCmKyfC4}RU;zLiH2N24XlPg%Xc#C!C=B2~k^@%(00lB+ z0Pz33|4}jkK=waf(s88xKmGqtBmg;p5x^DT@c+|R0Q>*KMF6({p(X&E|ANr~$^bKf z1;Fk9Fz5deOMv=+h%>+iVD;a=|HZQbm;o#RRsbj9`~P|WUz_Paj0f<)mFxd-%m3=Q z0vrK+fN%e?$Nw?&|7HDOee?gz<@#S%=Km@?0POyY0sLqGzxPM>|L6_?P*FC6C@Bdk zDTyiRrikUXtYxx9a%b_v(9g{-9zirmaH)UAzhQVYVBz9Z#|)*V1C36)w!-J4p(xCo zbj{uY#1{w!u;crx_fkBWw9BkbPt++xixDs+SH{|m+KriO!Aaw_vGn|E9~eniWWp+; z1|tBy*XLYkryg%^2L5c+5B_hN7@Ag|2{^_GU5z0E2rx@j z=&}O_Vb8TD19FR92`?CeEwS3>d0rB2~<-oy(L|jCx&&P&_MsR-fFk?03b+qjCPJccmR^XQEGm%ZZMf zt_8os_cyU*i=s}RL?!}g-_S*dLgRTgp3t_a9A3& z4H;edIyHgi{~B?Av#Z~E$yYB<&4_d~17(~d6&3C0NCsMAQrU!voQ&J1lP(aE*f4Cv z+Jef*iN2DoL{6`Dx&+)i+>y8#=>7JC?ZUeeJ4BihOa8`9V2yUe-@`^pQRl&R!0LUUaC;qaTb(!ut0H85YG>hir=-Ch6W($gc5P!?+gYi^~t-W4pJaQ>Is;e znuVYi>W1^(QeUj!0fdG`5A9`CYyKrw3)$6;w)+|3xhD}}5uibE`P+7&Ox;5! z=4QJrGfrDI+`F-{ z;iEB0?Ygp;ILQZ}W{U~GV^{Jl&Ar)Ds(rZDgtXRy#_ z%W!YXOHKny(>mc9-bl*xoEJNK9r`-@A)^WveE|~xeN0KQKQap9u8}~qis-x;G6Bm4 zxwMw~V6N=?l59}bpPJkToy0aG{LLRoiBm6L7$c9K^zAGbe>&F`p`X42M|3%)*?Uv| zq+q^=Nsp%Xf0Oq||E3N_uOLL zuZY$%Y1#^RF9O>;;8*Mz20u_w+yXZd=xvGw5*0Rh?2a4s(G@MfqtVn^1~iK`82#c3Axjo*B95`I98Se$aSWUx0#dcG`ysz@>T6Sc*3dXe>ct zhmYhf?S|)#Cw*e7Bx0`t$m%8$!P1n#+=^aW~q4y-m%MP4X zla8##)YmBw0Ei1YRuzyanXTs1egadb5v-h~l^|k(FtxheCs#0zhPddqaH~l5q1G0I zO1K)!j&4HgES_{+UtMm6Uc(HL?PYEo<9^-OnX~MBbPFbiVkH-HDf~roqKp+fyeoZE zA!XhS4bKz}8_I4luG?Nl&>{16$udyXx%-Q{)VvBgz@Ilampw~|7c*xm=ofU8L~z6G z*3fZuOOC|eRl){_Gs-?UrE@C%4RBppHHYTC_TN+()yAZ56nqmH7_>-fosv z;j$jY;8JJ>@ikom80A>$jB;>jU)Y<7`+e45cOO=En`#^|Uv%}%<0vdXZ70jL(0)ZL zhd*Qdo|=4{%tlM|&g)y4A8}sQr?hbz5#hBLM-OTvUZio(&Dnjr_*SM=?I4HLvJW{I z=jH$x5BUw>mb1xA&WKVY7sWZaLgh7S5WTF|}}W@={H=t?i|rfeC}yV=&3+kezXe$8t2 zYH##-Wt2Ohj`{xXiI77LYI4~k2gS&>H|Sip!(rs6MFlXQ3{biZRo%92MOFBtV9WLo zLSGAv_$$0Xv8Wx9Z$}#jL2J9^X>1t|<-l4t^vQJG&v2Y)Q>A*D=pAFb43!C_juyPYlTS#ej(I;v(2#?!Bu{Bu192; zGCVec?zE~_vo@VKs4;ph4wgRej}y))nhc;Za<(;}r5gD8bEDV*%JG4Tq^sZ{SEAL! z26zUf9O%+OCA7BlYg4nSxg#~H1spX09=WL)IHCusrm9SS>>ppY$)`8n71>|l$|0$KA-nmO?xgbF zn82XokJ{Ijb?YMZ9U4*1QYdBtr}b)_Ma3c5Wc?uhi#ktMQ(0>t8x{K5Q>h){qTtIsMlCBmF&hvq4CeEu&m&<`FjF@az@2YmD6vt?p&X}O*G$TYu;o|TnTQ{-W z?Qot`H80M)YG>O;8`>RYQAn>6noIPs8j)G4H_&37slJ=i6~)@Ca%8K zdF4E4dH`6Z*tAQFW@&axdz`v&KLp;p6$PM4^G5$9c2A?6&pArg%msjVB20cj-mY&sknqRUvD92P5=!oPb2LHAIZysf zjT(_D?l^rJ^Co@xFgKnsnmV+XW!`pKeYp0u@nx_TsQ`uJ*(<&OM43{xTI`oOG4t=N#i!O9FJJKkv5dV)_*pao-D4$aO8h zzp&M#7u?@q=i-15%(g+NM`_e10s{Q6xA0Wtrz7`1sHDv&;VU0wGBaTMc^~astfQ;Z zdnm7RX9#{zE=O}Bt{e3;@Lf5;u3QtNbVEBi%gIzMQuBQ?E!Z0OY|ik>oEi9>!t6*{ zqrfpF zpV2eF#+JCQw#DQgF3(C_(%?`y)ou`FpHk1A#!*3d_cc|6t@94O@u0ZflCq%ZLX^53 zbp1wNJ?f7or`Z|?W1=V6bXx>8Re^a`SEST&;=X+sk3v|)%3<(^;n7Ic!2%x5g4FL% z71L&juG_0yfyD)>gkDg1vSvcQrOv=f)O$e~sm%?_oQFHJnJF&XABB96J>HiPt_<}q zDTUIO1gOTe6`;mo=<9)b|GGrln6-%dfa5nWX?2P5H6*%Lli3P2y2cFh<~ssJ@Pu@S zjf74E@cX)%-{W$S-Wl9}Eq zY!s<=7euM0>Dz`%Sv)Sbak!Eei9Q9|HB$Y+hL%NW8B;psINCL$&Od8-8$n3Bq55W~ z)7nzmPrvw~M+Us-_5px<++k9LR|+ZdGu?)%T1+ays$4I18?VRq^?Cmi-eIC8++B`b z=v}E1N1-;ghp#AOudA(?88-Xo*jp^X%|yjg5WBWNmJkprx1BS$-uASzxjMCW5`aGr zM~Q=wNLKNSarzeYvbEs`7wPIay4)EZ{GuxxIu*P>IE1QCf7l$t38`fQ4yT0Ul}90} z=0w1VwwV|Bh4xz%#~iNh!#=^n|E5BEfpR}Cef{0i&tM8th5gL|@cgT^5&Xs4v12hH z5=OZ9rA2KBjCWulx^&peTL>F$X(?eRl>e3$WiaF zv(8KK@MY9RC5@IUKX+Ah?FL?ISmmR!K=VTe-2=ARZ`qO%OC>l42H$cB6lW<(RyJak z+`sMkXxrpAI+tA&SpSkQ|7JV2CCU8N<{y{?L3B-9O(HZocaq(%ub;YYZCf^tfrQ8w zR*NkHgWw0Bb|7cygvng#u*Fz`fTELZY)>n z*~#SgE4ljWWPsFkMfVrYw3Tw_IhqLvu7(a1bK}ek2CSgQ^d7Lk5;eVZ=sanM$m_>{UOT zOJCSlkm%oFQL+I7RR;HH1Lbe*t>DkMFIy6&A}YK%e|IHuS75XYz5kGxgjhy2h7Sg6 zh~d}?w_4`D-^enGbbSw!&9OPnB z*?VnMVj}$)HbE|8ZNftG5`dWLxps?nEEYwhjys6rKu4w~RZXX>mvA~VOtL8egS{oa z6@V`LGK;Ep7h77dQ$kYJQ`=55DDdra-KJqfub&}C{% zj)1GgyrQDAS0~V&_sK|*)E1_yR29jEQShx%_F$(`c6mVGl~C5SN)nOecW3h4Y)O4Z zjRe;Y1N=7^tk;IG4?IW?ANzhTfmtNhn%@1Gt$tSINa;~YshfD%(clyxdrWRB?(^-r z?W1`e>?N0j-^`|J&&%_a+!Ay*KFa*iY~y#DUnljk$;K=q&bvEO5k9@Z!@jJRL<@nC zRs#qhi!0lYkuxcRK#Bg^FG9YsYa#;jDM^eqQ~Z8Ewc@8r|HvI){r;8pU_r8Ke*vE$ z8E>Z-yGef$Vf$g6@^_uG?WV*}{@sn;yenGCWq7vN^zidp_QnZzz`>O@Pj3>8vR8fD zdAR>2CQ!tI>gqS(s37>tFf{TVr)h)0tnoezmx)a2$B7~*olm5-Rwua!TwI~8&dqZ1 zgaRTRH?;rM_Q9^8js85PrAGBxLR_xguI}f_usmvIe2&PMgGJZv_x2K(Je$T~4 z?ay{vOxJhWVSp!VhGHJtZ4&*}b%jj|z5?^rBD<0GZ-ee%fJ{#&B|wNUa3%zAmic@x z@=G$tkBzIveaZLh^%Maut|wIsYF5ECZlU*LWbVMs=H+6JA6iZ?SM)rrFIpO7MQnZY zx^2xZBPK@6s-M7)0ug3kpJUux#;k!*e$6JT?q4gUzY4i}IloC#mxl1F_a<3pDL<^~ z94X4V+KP@49o;9#3n@<;$EHiz({?0vVIvu^?&-#6AYr)fJqI^WFI$mQ`m$bFG2Vpx zD@+~J(fg$6!p(pZgZEOfENNmP%5n};z^=P*7)L!3&p|ljeW5--@h9-#6|P|jNi+)A z^Z%G1X{mU6CS<9;7|e;z6avdD`x>>dT+?L4Yf6p>#+;`E8#I46XmDbc{I=gKt4%#} z0$L6(J~56tW{w9A^T#)VdZgTJu79Y^C@H!MmN|848fq;C6i9Aai7Su=?M|-Qan5Iu z!Ebe+lE%e`B>^G&feMBWn|lrWwv6mFzrD3Zn^BkckIK@znrAaHDnHq;E$Na(yz7=u z1a8`AIaDW`RdtT>)-K~^nNHBNjAx$adNttT>jLC>uLQ&-$pBN9hIUSIy;BG$0#%4I zk4-NAk`YlUt*1xV=EHmN2o?C0OC1wZv?GHA#`AB_GAm|E_M=?zDni3C8BkVDXo-HD zWOwr)WX^a>Gz3AKT6MTB{rRH9&1K~&;05mx!?#vVaV>!bukIseWAoE#6(X4E>$imH zn9pF97=-VHGID@{0eLu1*Kd3S6xM<)s+LBbd0~G#XN&M_VRd3XWd{INiov|8{);)_ zp`e4{v4L+%FroJtgxaiB8)}=_L1YJopveK6mvo3w-GuCkOdhw$n)oZsRlEI^2+JQ& z5{OtLBgd9~=HFd>4W%43?UDMhrR+wKjIT6i#8RCJ+FC?$e|sRZ!OAsXIpWQm{3X$H}`r69AlXG-G#kUcl-YLlNPI%(BR$L6g@IIq4^6+V%Agk_N z@GB|1d|5Ypr*^=v`s%s`%q9{Hu^4&?w{)1jJ(*^Xha|?D|8x?bZ!W=OOVzWQ@x;&z zbj9$%<^qJuF|#}bL!pitV1hv8+(4^oZN&!CPRpxqt!jaRZn)0K$-(^EgPnsHuB z9k4%NS)Xwm!V?=O`cH+LwzW)LRq7kwni)f#qz{&wfT5}h5fAW;Ud#Tab1k}?)cwlj zXUC$1BCyzwkNnpw^z{6P2hJDB3aw6UR*=!9dH0!bpdQ-t<*?Fz_rm!=Kw;9-dsdPRKf@ ze%2bxJr6{dMr_g$dVk`F^ObMHQ=;34QZ2RiXNAp#p6}4T78ta0RY8#8Fc21Ls?J-< zWxoLs-&czdXy$oSq0ZnSy@vjYjKvcPCf>d;AAmJi@>J9jN#@b<`Qz4HO+SvWmzc0l zcvJ)2k)QQjUU4TFWwZP2wjZ!Bxzc}py8KJAhaPvO;m?!cHe~A8>uUKeUbgu@Jwz)k zrQEMqiGOQXx+VQV$;v>f+MPd=aC1ps_HONAT8>K%fB$&V8xeyZMiye&4o4il>J+JZ zHp_P7Oj$qoLcOvSJOyBd8Jm;E*y;UH+M-s{~^@|cArz2bS4t2=)3 z+;PAPMC(x2KT%^xk;H0~cDSIuIRv<7HfvYWZ5kEq)ms7{; z8x~;Cn-Da98z!prXo^}H#!sG0>x+)W?yfd@|B4iPJ01A(9eCD1W93Ldv0d4q-#dTnvjW9)e(BVrM8V`@j<)8XX*c0tp)T}7aF$4!``uW=-H0? z<2;_V3PCV{*;Rz4+R1L58`OUN?}BU`Xtyj5q!6Xl1AP-m)EQ^i)kRbKo574D+)9!kdZhx*WXM-PIUo^Yo%{v1+s=%WH6Zqj%LI{Rs7IcA>*R5pr0ndJKrb{f1N zHEK*SAd*QRTgb9Crk?|tiwP*e#~EA_S*VB-<~d9>Wrbh{vSU*~SaJrYRy6LF3ikSt zrtX)P9)|~KEr&UsQk4Ey1l2(}KE^83=kZpMwtA?D(dG28CYuy<_zE_i>eY1ZBTNCo zU%bC-`%Z-H3Uqd0La#Kf{iT_&FvK?$l4H~Siu(ws9eDzD$)NkH6XJ6kGHSif+Xm$8 zMlHN6>bQw+%qEL}FdEZN_6^xgfGtRpO#i+ct!#;5IsdT!T6dYWHH&M);`LCBJ+bU2 zkjU~<=%z7^8RT@wtz_0u z4m&t}4Jv%&uL%tL+%Uwki>4C=*=X*Iwm$~)SZ5emI&PXY+Fn9Md~We(^3z`(?JoZo zoVDn>ddEG?xjCBuIV`emT}DnM&nHWL`QI49F3o-RY38PTf~pN-5w{p+N5>RO2A)dwix6Oi*VeYp2;Bx)=Dl)HqpN zG7~?qTp!IVeo6YLq=VuaP*PMUL6_gJUFe7&|4iO|x@?gU@zYT%Fz(gx0v< z!`*_}jh5sc#kqwFdNH<`di2p-h33yo9GZnS zo4gs+p}%|R2uBJ=$;CV?8y+oxm7&AJ!HaY_8|?#zH23K#!Dk^OUiU9~t78xYCj?H0 zzsum6&MTvn+_k($&xtXM-pbpDx;L$e@%cR@l`e4Bm%j34aV@?FcRqM+NP0pdqRj;G zC#yEnZM4Ckg>~y01lo(uIWJXNcc?MhJT}_O`r=YE z^B|;L#Z2L(+OKX(601vLJl}%>3QutAS{A*{mu8_M*f_?!q6)TFjjff4lH%l&HH+idl!94&`fXRwel3i-b1uMFkAK_RIrtg{TerVPa4Z%hghKoJ63 zl#+ZUnDCXN?xDS}s8gS~mzA(8Sz@m+OPyENN6Y7W$0kbD^D&*)1S60XA=RHmv6CJ;Atce)Qi@$3=PuT(nrk8>cvZ zH^*Ai(h+F74IFN%7w1_Gc1ZfnXea&*iLP0yUhI|=c}~r<>5*b|99rQdi`6Z40>BaJ z)g1lh>t57JQ?qo-KIwX*4Ga#r3yNrv=4>*>>>h!>2(-Wc=mYVGXi`IJcS7PNk%Hz) zrCX>~F&28=W`l`l>%w|KkxAdlZp*=5QH@tzQO6uHI z%qW{zc5oW97i78eJ8fh3nQdHlW>AzZq9|A92gpS~9 zs(Tg(Rsni$^hMp6?}ro3ZczR59>3@9_-*DM|D6Oo|AHq-X>rzak;Sax+oCvAGyV(A z&cozbP?+^(*OTZae{{0IEEv-fE=#rIWVRjdi!|kW_o>k6Ctx62a7U&csxV4dFgFnF1 zU(fWt7Kuvp_#|79bxHizCUX7fTc1)FF)IkD_{4ZLt_7MP6U-4$09`~?!ldmS>1D!4 zZ*DK0<-zfGN+Lq4TNas74z`&!+WQGQ;| z#3~J)m%4cjz7WqYV|5=R-K`NqwT~~EXmke=X==^_uXJsrW{R#_hp-zz1Oj>Z(n7`1 zh4OrE%YNFL&;Q72j5YF>i-E&2UbRi_;xeG5c@ZbE?27^FyUYju14qsJPerF^G} zB7$28#O~I`9}es3y@XOSCxf*FuJPaP@rcrlPB%j;uq5_&bgkIG*f}brLUD)F-s^B3 z9-pMH3K=Gi2Q!;wQdhStqvC0aOLhD*f=kA$qdUMa=<*Wx2+qJFDJCJ1o$WVYxk?~0 z>3G@B*{?29iSyuB+8ggt&4;W0T?#1v+vmflWIC>3uGkxl|4JIOF0$UZUSzeQpUsR| z-7T1*E$XDdVW|1AEXgxE=nJhkyT+H#w%F&e!gwP_^K^26v#)o#verDohUwr%E8YM# z_prUD%;;fol_GX!PO^R-`aJ`--@u;bD|L}r4aMx0aq9^0h_eXv7!lQaxYi$=$Z3z= zGxcDwDhHQl<=^nMg=>X?7jhoAdC%ybuGU){_67UmJCTB@{7{-$F>ss}EsWvi)}c7z zWH6GjI{l$nJg?o|5HG98^YT7L1c!F8U!dXZ-U)ULmYzCu*#`RwCt96% zgsm0>A%{6pOh_1JRdFU_>GIg<`U9i@6uhHmpJ`r)&U6yKOeODdDttMl8_ByWxITf> zhKJMH&k|S);rd-aY~{#N8y70~w8b^^&Wk)QE!qdq%)9_XzPuX{Q>ykHLXf7kc4!GQ zVgwOq+fO4Bm~Tj9QAuyXN{7TOtqsvzq6}I#%2$QA@=C$Drk_?n% zb6~dN+`9X1i`-W<%ISf+fA?=jJc3sT7e<0|dUTPMRWGWSW@bC<918;;V%ahD z`e^r$#Z6|j<94Y(!7r8OsHT~t@?7T(>ADFr`o+zJ`Ujc*%kxyY|7p3Lr8?1S%!p^e z(N~bN)vwJIh2k$i2j^w?BDdNy%pJOWe!24XsKAyb^zoK5kk{uD+n{}z2Bq7$UWq4q z-1^}s@QEKNTC;w+qM9Dq;^Ha%CHsS!*GgHn1Wex{V@V;n;{?8kAiJ?@4qxC#9(II~ zzjYoN_J7g-*9!rHvW=72g!+0P*+agr^Y%jn4eksZ;?x(wnR~c~-6nDwiQ0M?2B7v_ zh+oV0(0A0Z`1ge-+2{hKWBAhGCl+bj$7m;{qZxRt_lu zUy|P>R#Vu&bc_x`m3Vfe*nzKe)?r_ytMQ~3IZu0PiwSWwbuh%OdxhM4kVcArykztm z`~wehgpy=KMC#hHALUQPjN%`Dc?@~u*UgIq$FCeaaB-c4`6JZ!afH?>c7LGKxiz2V zofd4UCj3Z*oVE3r6z4C8`@IMRdD9->joRMu3qp;gq^tAjva>_SK#`Y?`VDXkVx{O= zwy|H4U1?SQJv%+EAcIop)T8yKp}1EoGCV+pd>f$JOJ;sSQ|9l}uDj{rP_r2N?&xXh zNb=PtpHo5khvY$;wtfjj=)rPi_!J+ua3b7+jo6&8We5w?T-9l3Piqve=3oB5O6$!n zt-T=RO2bZy&X;tPH_o}QC$!e=S}L1xbjqu(}+pqm40& z3p?)DvXL%GSrDie^s)XWEAOZ$G+$ywu4(g#@!w$^=`yX#;|c<12nVF^@V@ukBbUU- zBgml^@$9G~~62JLyKw-M6Knu=nFL)jp^h{kSC^R5=KC54GR759h03LNjPcK12TivStt<=!I zK7{;@G4;APv}^cx0tSZuRKG9yP*r?&_C5W-sb1My$Q`(;+KaIf5D>O0*VIv>;G>(X z{2=xiBB1}w(EvHz6B@TU8#g5|>Z_D4)kTr;J15upw9t<0e2XL`)f>iG*s$YT;-%_{ zb?7+ntd_OXxU$(_tk{YP;~lSzK^*&9d3rJ)vz)&m z9wl$FVS^KBALz6693AE4HP8A5n&K+P<7FjP>)>GH$H?+#4%igR^hLU|+W$QJ(j?W8 z@90SO@L<#u@R5T9^ zG-bvjl$D#SA&i&FLCu}*M$wt{IDHdzO|u6+7@=GdmV0aw;)(CfECUmeO(O9q6&?=~ z{Auvq_Oon!?jp+wE=t5{Y*pGU&J^An*P> zgwRZ;JGl;U4zd#ssBm&gO{U5%UbDg1y})FGkx~XIvShWsISZ~CHlYyWSW8`DG#7yQ zy;m4%h{RyMd{yfm!*nk!nr5C_VpEUO)Sh1hB=~}+tA#+8DdYFme#~rchM@?3$$zT7 zj^=FVOc&M6p_t4L@BNiBR%zcKc-O_0-?$zF^PW?6c?%b^IDdblZcmT9hQQkw>5%9y zb;BQZ&jo0pm7sR>qdtJnJfGWGU}o-85WjYTC)&iTw{HOVETFIOqoqWLHk?D`3bo8=t(_vgnXJj;|HbKUpKtWa8lPKVGVnY3ETWpz$J!2Kpy?knl}9=7Lx{;Qp@y`OtiemyN#4VSwNrbn8KmA`L$j76 zkrSL0j!1$0A#>Ce>tORlO0e@*heF4?$MJdUr9ll>* zG$#X`IvW~yXFE-5!DsF{Cv`qJt3ilL1W0*dEWN+gqKqDpgw}OS=Q;H?8nGENLtI4v z@$WYgTlsk43!mW?vFQJO*ywc`k+Rm4nKZ^4P0Q;Z9$c8Vq^IX4eGeQ{0i+pi_mUb8TTIq6SFQAjO}a*l-euIH%)G&;+ zE`}(nm}8o=eKX+!g!G8x$;KU(+fvG{$p?reE!tXU1b9G^(gp^HZ59k)%Rfi!^a66U zGu;XEzJj_li32eYzJ(AG>^ut2pm129X~Q_Y?GcMnQ=SLm zmK<#<4apLKp)g0ujoQoTbuFYJ ztl~@apI^*O8|m(OIf4@#Nzn_;y_sVWvf;*R(M2Q+#$XOXUgykwJ<{t+LEOyrPlS#r z@o$csGV1d`=-V?lY8#guPbPv}Ux=5-`LtM6lhoQo+&mKc5rs2;zl^|fKt8LWw*s$(yHY%3cK?jR z<~=A&KpL}()JZBOl>h<;KT?;4z3LAr4Z$ox8PSMZg-LcHhabXXR%ecncz7N;ta}0y zLpx#6YVkH@J>!<-5PcqLZqQDXB9T8apZj!I&%#2pPBwaTB%3mprIpl}VCr9T?wqmd zNZKdKLq)Uj+^C}?4o&}`we-<#U{yLFOL=DABO_e*t57cOEYuo)iSRu*9u-|6NDxMk zhw8Jg_fSZ*Akf?3ZXf2~F#v1YZHL3Gf-NUZmb`uL%(L&;U?Mdosk9tV!IMkX0kSWb z&UT3?Qq`@h4wm}m{Q{p89fg6@TZfHcw`&|wrbJ;*is7MTL1Xv%Q_aT5JGF5@*KIyX zZiR*lrk5Fn0RgEJ7$PHG8e(9x{f&p}6);E>UcYa5qfz+HDKX}0RKoM{`@$=FJLCHw z4;59n`eaaY4SIpLzqKk8NY%OPNJB(8^^ldT(;K_UhxrD7*U;5;StQuN$m-E1bD2h6Xk11>lqsV8BE!5RQ{05hHMkr{yhm{shn3o zo#yA1#^>SBh0u{1Kdge7dw=cUqzbNxf@|S8x6;ukk_UP#=`Ppc4qCnOqa@C&pR{|O zt;?iaztFpc))V-Kz5RQl!`+I0st8CVC25QdPd}FN&TCp#vgC~VJF617V;K=U)h@B^ zR?*76w49Et9)n0hJk0tHDVzAx!lrs~ z#i9+Bk86F^m^g@Ufd)8oq$`#LV;Ht_P!8Q+HGWCC=9OyZQyyDe*~X73eI$LUVj-}A z*`V*fTlYN1nN2(p7%kkgwAegS>g3!YG z7cZ!x5@(xIJBk+$I&DOP8Z#d@@XvCulS_-j6`6C!{HCJtPZKfBN+raYUGm}#e>EY| zVUqcX;Y(v>sId^S*JbMjm712$C7BsA{a|9RUs~CmCbbs%!jK3JKeFGo_81z^(-r{L$BJa zh{J4X*|pd`>jc-*hR6eJGR05b3|ra7Lf6`f2HMEUwPwpg`to#*w%m$24efa6pEK;` zLG#?xnP6#Hp+-(aPfwA#Yhvv%otmMo{RP+axv5(mdar{WKt>33WOk_-6_;`ZQMM|S4#X+n}3!9en_z8aj_n(!Va@ z_=}fN*a5H=F83US{%Wa>z zUA`{aS@y)yN3n4!B3zY(gKoC-z9LM_iiqVKKb!Gp?}eHxw~$2UEv&c}mJ*HBJ8+eM zWM=pTSV_-MZe+!_N$;ZIaK$KTB4E;8IU0g~&NQ;*Q!$yD@p1~&i}WU*bKxWq2|Jyn zN&c?B6Z_JWU2|dxE8=ZJQfXR{Q5jrw5RnM0Hg4eCamLk)j5{^a4{W(?vTaBpJ zb3Nx1oW7V+-k~>)P}NMZ$p0q+aR$=%^C6rb;*`v%Y5jrF?58v^n<%6nQ5V7aV?7F% zq|6zAg&CGBpfhVkYwFAi|a9BsDhdRx(?kD~%NH*d=Ps z_2lyNmx0vp)7rI}>j>8XnFh35guwN>pF84oOX|41RxRQX`V|_NbDh7N^-v=Nce)o< zP9Z)epnDBx5nhfYsY&k~qqoDvqKdhSD~@W==RpUB5ggQ75hqczEm=j0fRmZGsSIwL zVi>94d&^0;(fuyRdNL~;42AHjV6LmZ=HCGdzvK|z)Ys>D+lLo;Pr(cPI?y7u>T2fa z9(n^q`x3M>R1zD}0O^2%8YkU~H(%jh>R8aV#iCP+rlqWZb&tc=-ZxQWnDyoOUJ4FR z!dKc2uQYfn22MnT(y>bKq*Vi|(2>PXgTL7(dRjMrIC2!mppD9l9^S^Ji)9Hl@Mt1) zIua*qjP9`dJU(}`va<_`V+xM&RCzmxS}RvecMOYz{SH~8=lmPlg4)hnB76KWp!(;T zYTbZSUto00oi29*(4N(f>c(+hIpco#-q8SoRj$MX}O%ym1c#!&6(W7HQJk z-qVT2BWWJmt|6C*0eFgWLuwhJJEndn!~+EXa!e^SH6Qp}00*#@CZ@yN5Dt$l8xpFlI>=UpKF zqde}Aaq36$eM7oxAq@WrD)pm6m`RMxf?ls&frA{^oNz&-L%Hwl@b>v^Y(W@}5>?rx zZ3gS{^?QoJr(#YSe2N!=Ws>EYAY;n0CHZF-bV((eBB^Hq>C=q3(oS=E1-M5X&IdQk zO@|IR2*c1>FtXKvPm%AP4BO-f^msrfN@7q3Oy07)lh#wrED~i&en%HA3F9tRXcusm zlUIK}tR?E)xBsvbqFqIm{ie7sjP_R>?HtFrIz_02;#DE|LCjt^-!E0Y20*-n+n0)usYcuLp>4dth66jyzB7<^jA5 zUq#0G(G3M_%jtIXWbeKwg`jWz zHhA`FM3#Of=Q$d$MRLu-F^D!HJG7{r52F~(dr_jl@rwoq=tFYlD*rwVG@;3dJh;Be)Nzdd2CRvi%&Nrr-9|LP?49B z=O$qY2K%tM2Yu=+zuU`@2%h1d_0R?w3!Mt7X=m}es+cWYVbF|}-&O-fsEIXBuQPC` zcy^RCta^BV6m_58D#Yi0Pw*IF749oad*4l=g7mSePoYO^dHOKI9#fAcdru1K7*UU$ zVnli+(H57f8V^eYTNP${KruD3)$VIf&U*=!}zbcEK7NC>!t|@oMq1Xlkt@Foo&o+5Wx=sPIxm8NISV{Yl*T z?*qxT5%5=WK!cUO@lrvoaB6ERlQhP2&)|d>wGAyJYODBVY_AJGC+m1@ZFYC##v!c$ zNi7&CMS-Kk83iHnkMv;6<_KjN4BtArTd%YFDmd!W;y&jGAGZ_6vY5ta+ZiUg6z33; zLhQ4Q@9FyzPKbFds$?rAFD&721$w_ovB{NnOJ(L~H5{~t zbL=U7HExZH=a?*P%9rz=x-#JXUlX?>9VBc@g(Y_7cPuau zy2ry);fwa1fxPK#*)R9xQ1{x4CMF^mqTB~{Ic_naNbvJfA!x+j!QPg0dDF&;{_kc* zY&*heWjzI2TVAts4%cM_7^~&G`zli%N-IV2&Qzs@D(P=Y;1~h}h@UY2E?JFMAvn=hK{I65Rb?)9?$e@?nDh6f+`f;hKpTq9_!|bxa3zd7 zdYY{(Ef)vUSwfKV1ZVkhx}aJ&U*k(qd-F2ggVk4~q$!KVo@<@f*-&nUl!KD7zD_8x zQVw25d>xA|KWPS!&};8Mz5J=Bk-XYvdCr+m3`pZw(CqTs&l)X((&@^1JgC+$2Hp?l z^Hqq%kRZv<{4&0jqzaZu8K(?LCUy3bRQ6J>y}JcvN8 z@@$bbpqY@$#%w!Xv=l!_1ta44Jm#2hL+{RtPUgV#&o)MJx-S{Zp51m`7*V1kr~zQP zl~FdnvxRUSwhW{pyw85!fv0E zFz(qKSB9uSfaLSvJ~q(1Lu!1v@HCC4;+2Orlt zFU%|<9$TC==V2ajB|k}nxQk|dVo2l*X`jUaI{F=Ov$(>vg9(f@m62T?f?;{4=D zndxEliZFDv(Pj>E>5;>a7=or;Kth>Xa4AEnA_+xI^p(~(@JG{)6DzR%6yEAEq(0zp zb|L7G(DrQ*33Kq8-`Z<5D(2{+&HYh8!V_R$m-z=GoYHC!X2&~()H$iW1W6esV-B5t z{U^UrxXhwZdBKv%XVyBqhb%LdG@#_X7zSUjENkXFfTH%}8MCCm`Y%f}<{Y$$S;3=9 z0>nIvMB zC&i5vJb$v!ey;8z5F}PUZU5obKwa3-Q>x8qN+?yj18D^THkBO00=NJ3P2oKERV|B9 zPk;}Z^_j_Nb>~kj%3kBiF83w~Ryey_X^>=K?&1}Ut?ky=o{9Vz;5~1vYb|9HDfA?}$y^r7^GHTzYt0^|sw1`vYwKW`z{uSNE zSipSt?w%zG13MEbL}#h~5XXYn>ISC|J=9rm^y*?Xj3y!o{|5xsnDO#>bu+VzOCrEK zDU>@P%@)l7_on{Ah;B;Sko~lKo{>RqNH1Ph(^xO~o@-%Ej|#a|*EX2%xyxR+x$5H5 zLu?9}&}YRqKyN^1)z+oL6(atlY$1qL4WnPzkZXO(y6IabdOtW48$0C-W7L;|HK zJ7W)F{lqsJJ#E#f9KOWSyVt8tN&_p|<3)0K*AtfVid`kMYFejHA+FJ}Gh*^hTr<{V z5iuOpndTg##|ju-uHcQWlvf)%_Ua+dbA?M^Bb?V?f&(rckxBfRp7qqMfal`S40l;a6`%%(^_tS6_3eH$FcY~rWWc?i9Ujo2R@AZjji&Kz)QWo`_ zHsAVq+a{Njf8ATa8_-I94D2t(TqGW%$5)>@`8L%>2*?SwZ|#G6ERxcO@@2@(&D{JQ z;PlYQ_(Fr-rq2idd`zBiS+?j%>%Q>4fs{;TuwF61y5z5#JmMqyT@L!)@Z=xsuUaDd z7kDNNJ*~xO+A6Y3O+-xZ6l&sPsv6#bMN3a69?-;3A9GJP-#vWw-o{XcXXexo%U<_$ z&eiJHGch7h=kNTbhkuhP>HaE#W-0TNI^2U!d8W=*R}P-}({Vh`B;=H+cg@%HZ+9vM zO6Ga0Bekw~)E9DOI!ChEGGvOPas^Ag7I{bJg$1;3fDSaEs)Kw6^IzZe`gVark7yOg ztN2p=W>fN-CfiG+06+Mv2iMj`_>xCN{m)jSKq4<~5wA<($Hfu6X=M@xVV?6Wvvh|$6QXLyUGdhWzjhiEWLf-`mViEqCte5r7L-kjC-L!I4$jsU(BvJXN zDq`}QEuOWh{YvPG;Id>>-`H_;k1NSe8qZxffxhk$-&LP8$%h?HVS17KDw+uxJqr8h z)EOi!|298EDAk_*lh@{L?c%1o)}*=Q${)mjEmCa~e@skskyQ9!X1Lpr0K%zy&wQ}w z8DH5LNKq+DX~$id$tugm;J~)pi7qsKMo#KVMfX2&mO#V0wfA$%&|q|b7O~#D3lH)C z=+Dv|j{1B)3t{SKx&3qdA}S5Y@^#Zy_6l5y(4gQkx>lwAEVOP$G}DzN)t)po`3Y1; zj#%HxY(ao+{V}mHcT}yLp_&Er#L-%l@)IM)hH#;fbE}EWU(5w{houMW;Q|)ekfn8h z2yBGQpbrCf@QMjggXKBg+NK`JIls*ZtuGE-j4uKur!ix0zFwF9=%*VSS-{%4A`Eq- zWiymUy0Atw!P_mewSyFfqoAyYyLk&#Za3&6PR7 zkot+5m7_)OeK7SeRn&jK2gLpxZfKoo)f9j2F4$q2MY~tuA0;@%sJXu)y1E^PaSf)ev%kSR&X9vP`VJ%o0*;*wksLH9R~4|zAp(H z%fuEUiXE3VtDqiwmYGAI_VtmUhm}&3ULP(*sAGXG73?&6w%zjSg7Xp04+?BAmM@<3 zg%CtHVG2KTiL>^EAvI6|@eXr}G5#e9Z81X^iGdTA+*um7qNvs`0hectF|xTB@o;f{ zbt7o}hO1fZhn1QwMRGWZ@ojlDS3s02aSwJDA1ZN8Zx$+g#+J7gmdz0#IRg9}Byf!7 zPP-!A&#_E1R_ija_4D=!+^xK#cO%biUWAP)$^VE5viTl}@0tIFy+5q;DZw(Pw?TsG zmT-l}=LL)Ol9aCwfF8Q-5o!Zp*kAgO2X*u|_7xAuq}Oe!X455(Lh7fpe_fboWPHA+ zeI&W7z2=2hPyM@KAl!P9UUlk2H2J4dNYcDn&fH2`I)vbFyp@QfFBKkk>xj&nex5^(Mc6{7&ubXg(H41sLn+4Pc9QO-?6PzIAKI_L_=EQICnDcX1NL#C#} zD}KntX6|uRTwBC)?3MH^Nm6pgTYI~Z6@ZsmHe3U?hve2dx`(!Xhz{9E zEmbcd((LkPBKcf&fZi8lYez+?*vRQfp*I#vFfoskOJy}J=dbNRajy3Iev#zzhZ8A| zt75>Sz0!EDYY@Nehcg#yoj=b9zdRz&d?|&FG|jA|7K;s zMaz#>%AZv>gR^W;sJW5Lsvs4aa$@ls$+m+cbciMgqkLHgsBvz3HV z-mS6r0D~TNqgWcMh@z5kcaKN}5uY+2xk|C3fbh17irI0K3D@h82kwhW7Kf>JX47VT ze?F>V$U@iji4Q;peAgit)a{!*@JBCQe6}fJR7JS2eO$Ag_W8?)ytn(|A0e*!&~Z0$qoa*Aa1v ztoG@PxA~)eRv8{VcAyG68(2MA{<@$W*fLo@S}A#Hn8D=tuM&R&cR}9NTF*lON*t77 zB#l8}erMz{EXEVdsbd_7*V@B9Z@;n*Nf@yn?(yL4@xW5>z>M_3M1p=*faW3S6s);9 zzvZBL@}b7bH#TaNvog6P75K?HWy{9qr@r+6#ky1EEO|j**CrRK#63BXRe%)?Fc+=N z^P3D}Zf{6JP^m}`LOv0D?)_B#K)j@yNSvc$W2d(ljfsm9s2H+{Qz|DoJcR6Y-$f|Z zw7wjpFns(<3rUQ^HI}Soji&chi}v{ABO-s=gZQE+oGhXKqHpp6ng70&@x+NuvAyZL z12Eli21nr3JnQH#J1+A3VC!OrfWgqsg=O5;q$9uq>Io^~i?t&7g~;45X7Nei&C3t) z+X?{zBx3?0rUlLRR_hl~C-ofN1}0BQX+zew)@E{u>b(dC)pAk2NWO5A{ii^jQRlG1 zk)~q+hEHDPis>!>Ks6fl57su-nTmvNl81m5n2nt$De)Z+G;9~Uqp!0dP!%iV9H;TD zV@waKTb_ANzoBDJSwMHauiqlT{-ku&qCf zud~{%&^W{*^KW~MuM53V-kE(?GY*_F;V~x*ws$x&tOLOT4R$!Y1Px-u5i>=O-%OdW z3TZL-LrTq(w2%=+%o*dqxP7Ow=9o%YYnRnF>8DGJ0b-ud!(BMow-)eHvW zv=%)K0pI?X+M;=Z$U2E^*4w!y@*tIktU{{H6Y`V-p?h@s)s&;;d8EHcCrMLyarc69 zj;Zu+T(g4u-gIq9qu&{==np2gJ66L_!w)uGY6&MqN}o6@{>&n(eR36Uq-04fsV`W= zokCt4e|K|{fm>3`v#DGTKIl7oc52o%5D&ZJ;LOwZ$$9SzT1po(Q83yxFm5Jb;b$Rb zac7xfNn;sdNMZQSP|rXo-6cIMJ|zCbL2*f>x*0N$No^J?B2Q&nZ+dJh%>4bh<*3ae z(t_YsX_Nz^%X^QZOQ`deOMANUT2sk-sty9{9+L( z06no3wnU2H6QDXPA;2xAvEKMZ&OO<}iSt0?IlYK^oqCrive4|ZZZbN>s_c|WYA0kz zV*SCI*ZRhK+&VGjTR?pPLcmJEVnA1b2n3iB#?IXsN=i6tkC<58H%=k53@ByM9!K;y z+7LBbiF&32(=YpUE!zqsY1i>t07ZBdgWnRJgSj!iCp^kL>^yorPPGBr+?ZNH|6~3a zO6-_Q;@S=BY3fN3BZ#i@TNlOT`_f79lJozIImh5B4Flz&r)xA6)N~>F@1Aj6MsZul zQ}SY%`eGR0-%w=KB${XX*ED8Q%Da>ev0vWo3;;+p-TLmG5*FB9%d#JvL6kuXEeG>>mZKwa9C# zIG=uy)a+J)TKD57Y~4k;TfYK063a)LJ`|!4{TFftwnqYLvQh*4^4IvM1QTLDHZ zHI^OS2jGnSkJ)uT;9RSIBiRSbs&NP4?Gvgxg+%8Dt_9H^Q>8}FNE{IbXR3G;2;1=# z64iO;GC2#o%(aUIu%+vFXq}|4Pm?p8!OmyJP<7myeWfhm*Yc-≈bn(XK?6=>CLc z{UXZD=lqVqj(e3ff0DeqKp}%NlkSd((!joIWlC<7w**YWLBItS9O2oVh__pRKDdKC zkNR5ZmIPL#Bubqo%^I~&e%6EQkHu^I=0$=adzrf=AVQF#KOk5X!*Aq+28nv>0oYl1 znPP8<2I5SnF3$Kvn6B}2cB$DCS$l}q#q%xBOX1bZMm!&6pB`2Ur$1AFP|dXStQNV% zJ9uXnO{GRzHSPD9-W!9E*K{saMh#)VR(C}-8*84Ut;qCM{-t3<{5`pvLo-ADuTvui z;*7DyztTXWhLcC4jpPLul=<;vQ|5Y6U_+MJhJ!%oicEMia1}|I#Ya2sm~@m{MY8I% zWB>D(oyS@$@bzjrc~H~kc{$$ukq5o_L2Z;I#?ZCC6)oXjiH!LfjMtCwf^3dPgV>KD z@!F4xO5Oin;y-zFEm}`!SBtg=uhpQ<=b^wu|3|UzmOKBf`%xOVR-~39FJ_dnqxKMM zGNz9*MxA#Lqmjalb7b^B3a6Ur0TD@qB;3%;F(fUUxk1j*Ue+R&VKUotS)oX)jy^KI z_`5yn&1=iGOL5KNdUdP49O{tGUK1zk5bIu3YN3n*_2ANI=GyRr&~2=yj$uFBC5o(Z z@!%a}l7UJ8#fCq5!snDwn6(0N4~Ce+y6cGN@|31@wpx=)L^2hjI+-GMoew9q6%X$tind-!zvnJ-tAl<%b?@OtfTGC-*;R=#=(@Jcsn}T0WwT*f zAcMr}pEenbH(Ie9J!k5@ycvdPus%Wqmb^iq*8ykC`K0zoPF3d!LV0R=GzMa8K7kVw zA(9}HZ&RC70#h+l7gNMjLvP0b)ajqPU(Z*yTM>}DkTys*u>Od@3dv&7v3((r+m7D! zxnLpmr=Y=Yv8bA)g|2nHa_S_wwN)y&khCD>0)0Z8WAf{Wd(f6=-&R>nbZ_vK#kp-r zRp@)@Rk`R&?~x+(Cu5iQZ}UP0x&~vva{YmQ*EK1vN=B0gjfS82J>5(xZ_U(uD1mvQ zkm?Y$Z1+ln4N4Gbce>EUY-d_%{1PEpKXIs@zV*3rW@&`4?2g zdkDtv&CWI9QfuR+4|%_Gc#siRJt)clMqy7jxJ zYwQM#*)I56>gMcr?N;Mv_~vw%P;q(q+bV?*Efw|=R|t3IZ9G<8@A#Vft-qJ(SKrua z;6!t}=b=Jh7e1uN2rSTCXB7F+gv{lfOEN~yU#xekfx&!#4ktb_d!-Qnd4G*AMYV}a zcEW8C>6)bxbl`QPT+x%^^Bv{?( z=SKVvdBOAW!BRmvY$rxOGZ%GKPo8N4sFanFMxG6IlK*D0R%8cWsQ8cL(Q7F(M7U@A zf3WsHAZF28MxgNt=_3<6S6TpD&R7z2#n&&&H;T~_0BC2_x+>+k_2&&1OLQeV?pZuE zh-LzeIOO_f?{lOtolv}WY@~a8Je~ri_C~D#>2#V=ZzYSSEH@1EY*u(X6!T|#b07WSI z%3k=>A;L24TTfv(#Agp~AVeRs0|>C0u5Kl6M@(@o+AK$LG$k-xc_Y|j+)DuL1UXR1 zPGI?xeV|wyN=t4#N{3wg_jb8<>>yuLX_FD0R=JLSkVD8$Knv0CvsuGfg$4AS*J zNFthF19wa6+^KwQfi5xo<(~+h>&~*iYs$GcgP9D?{eIfH>N!5M$->{TQiwm`T3>Xc z0A1KLE+6kQy1yf2r?}UPl+vuB1lSYK>HUiS!6(YY%iWg_%vQK!HcA}@{N=rs;8Zqt zLY{m6Ej~ILCT$7tRUP8|LoO?cgXR1a-`2`86+Rn03-aM!;qb3@4AHWrzJ3 zz^9O=8uJq{ONRuL6;A!3cDkLa`>eG=!2B4&6DC>YWRRE@i=gFlnvI}M!vGuxjrm^E_>$@N)S-y6A>UE#_#J9^itYOJY$!fo4xN$IAuB9ra&@WkWv9a>FOKm zE*(&Vjkt2V>Y3T%_1;ouOhAdtGY@(yajsv;;T6 zuM3v=Tm&8-ferHE+ExT8e){COLs$9miaN%O)NTxXR`?d^3|^VeH+4z$BXauSA5gsG zw$f12^g!hxY~zXmd435&7gACV?@-}r10~F|o7Sk92wax#02x??$N~&Up+TE>`0wSe z%Eu>KDO{)Hhd~2`^#;xvpIcQ7*#2G1=^SN^_g+-}Wmq86IWFd{I&5M7nt|O4F*u%e zi^Mh=cvv<3V|Cj^)R|%AlVRdfF`ts}g#3lsU}!D*TW7$xjkVcV+U_oThGI-?0L}%4 z-hcst>8L6|ON%+A|85q?WKJ0nB!-3H%RfCCzFYf)j|k2U-<-Sy*@K5H+4;1XU35)= zDSD`&C4CwFOMNU2b#066PN3Q(hH~C37COvucCJ{6#mXs#&PYh-tTi^%=_d>y#lhich1V-6d1hT)xdV z%#RILbC9aoj1~S5ZA&q@=m~k1^euN0yc*T%A6-C%bNzg~D17asRZWj}eLQD^U3%R4 zI{{M_g^FQ(09Gu+N*rZpfH-GA25zm(w35jmw`vkfeKcSs|MqN_(uq_YNjmZ;ni&;C z#FAm)SeqcJB4T9_AilIE;~2ngxIx3yyM9qq?3hDUzmwh!IFn<5Yt((1i+!0RT>K65 zE99&GqXyEO?!>b~dHW#fQB7nSU-aT06u2|l?UwHEijGugi{y-E>D<}MG(5f+A{6+1 z-9gyk&O*p4sAyC9@pWk9R3+tm!H`$&#JCgmp?MW?VKIv~{R8bty-(SbRaeGNqD$DA z9n}@+7OT#=Feqa=mDYM=qbtbwAa0{{Qirs5FpjU4%_w#5 ztd{2YQgc4N^g)wgKl-Z-4RLp$p_j@+5C)r(J$qiS@xcnq{z(gzPTk;7S+bManRO{? zkC!$N`-Xi2-&!x$SR_o7DdM{@u7M?mLAO!jb`uiCg8bT2bwr5$ zvqB-BePNjPlSy@=CnnpimXY`VZlNfxS%V>7l=ZrpTJg{TYR4cyd*;R$evhV*?ZzvX z2G)4e2;x>9>yg%(ay@Hxc&23nQyN!T+$~3iRLu`(-i`MHd%35p%Sx;P-s%hKyD^^? zr0z)E_4yK-5}^_1>;veD(+MVp9^8Z~``A*f8gY3-?98vXA4Pro(eyFgghDy9_vkPT zO3nbk{@mhktK>u*om#~{CCbg`I8TW~q7_NUxePw5{q~JB-Q3GbG>+B(U9#D>VJfYq z!5_uwXf8_)Bq|;z^D_Ay7VLyUywNP^p20JQ|LsB{L3|@#b#B}+#b)-zj%EhipKeE% zN+q$2VVY=N%3C&93v$k<<#@eAt3d#A`;mt9Z~TNoOzXbV$Z_ex|x#Hoiu$)mkc#Y7oKFMIg@m>&kD>3s@_tz zyTe#u1TrJe8@;zh0R+ysMJV!I+n7e?>e?o_y22JTy5}mHzP$!F)T8PKI<&IlS7H=%T78?4_Vi$iCVoY z0)1~XJ#_({vsujjR+Vnms(DBZ-ZpoPKD1()Nkn4)ay#;ZOanEiX^7dAM_PFa_aBFC zsC6-$_}#TJ$w%!4*ydAh?**p-z%tp`9aG1?_~tZmPjOK~z(VnU4B3FYFILS-IhZH6 zZ_pUXbfUKTzxcp0@783MuVVDurY}=2u7Yp)E$S`_v8qp}{Ig;wWIy909gR8C=ALiqdM zXJ>MCmPY(N)y|FA+PodWTu$|+dE19K-0mW%-e-T;sK#iAlACky^LZU< zc&4XW{2-gzvUxSe@$cGFlrI9m8I3k7#r1JRBYFOH#9Q8$9&WNC`zQ&sH(VsL@bqSQ98Gm+J4{>zFLKR?pNkUmxmUQuw;+LLaAzb) z++k_^B~z=@_YqWMM9}$nvz2EupjI-OlYr|I7t7rS4h()6K)vr4j zRZ2(pl9o|Ye|quOi+O01HSViFLL@$W^DebwVQ%eg3s)-Nj092HqYX&C1jmnPL^5v) z=R5dYAr>!vat{0_Y`|qWnfPWFRpp1T=Xw%(n!s^#=*Ak zSPIQ+^S1A-@1Sqg7ygFMXjU6i+NiT&e*D163B7h6#2b7r?lHF2Q9isdF zP7GCNZtm!B*;13;-5^S1oRPtYvG6^l0{=iPOk%YbS~7ccoG5J)45=fyY zKNaa6_M=@MZ{z9{-Ajyi)@8!`jzA?|A2mvuz88NyG74>PUvl~09un%g0M#Dd>j3ii z-I*Q&#Y&OofVkr$}})%Ga>It1-XTJQ*Lwi0`8O^;uWO)aCs*CX|gqqt}P{<>llz zUHhIXpc4ZlO9UIfpi@j1U!@Xc7Y$?=&FFuhM8};=G1t@_MAm!n+rRd9PyaOc2c3Jt z?N~ZS^^BYdWXEU2xe1m5V9Tdn416<{F6DC*1m`%5=_oNhvPKBgrkODi^f6@HslE z(}3tfSvs+gTRhtvU%5nub*E82<()JmS9$mT@pnEN?U5^}R_|guzaU=AX~$dvIr{s` zJm%%a`O#8hMwLiKxO2cK3`AIP)wK-C?TKJ7K{SWv>B$hr^7#X3U6LGqr;#IDup?8j zqf=cIhS>iX`$R!uq-c2I>hrfc!gK5F^!z{Of2rn5)NRffaSUkag+CD`TS79yN%m3} zQKa&tB5988hJ9XZ8y3!KWAuL@nfkS2#o)BRbM&@;Aig1UV|bh|h>*|T7#`kd4)?LB zgiK!eYa0CiVD*i#!aUe+qb(Dvi3HpTB#JSEi;;sjp=vaxc9RG1Km?_B^J(Gi=KQrb zDIg4XvoG*iHLD{q7hKYOay(8WlTUOHyb-S60elA4CC;APz(5$s^C`NHco&y*m)dHW zAg3<7Sx2@yKC>o3tQrWhkzevzS-t&`;huwXb~(!LK{%ck<(bhn_(R2BV=_Cc8pHW7 zQY}@6Bi{G)HPfz7^A2hzGCJZ+CTbzo9vs}i2DEPqVEhFnNokoo1ryZ#Mc?(3T#%CN z7I+H&-Z9o%s|3ToGZD&SsSdoaZ<8|O@E8%45A>E)4xh#7#D!V)s%BEmkr}rN;=++O z9DVpi9KQLphgi`4#1q$aY5^GQ0uO3`tVaL?5TCIpmp%gO12J~whmCWP6_|OSL+nq5WkBFyG0JWMSQ*W z^+QNtv33t%e2)-(reu)(W=z9o^$P0nAFC1k&lF6;W~LkcJ+g@GZD2SwbEZB4;~;Ux07!0f2;q$UidTo9zH1EkVJh zw$o_^uI8SMt+m4A;4XG`(aGy~&g|-B!1Dl?(bhC!EifE(2kfKQ0H*O1%o8u@72h$9 zWmX--GPvf?be~nUF}Or<9PedtTm+>vw`T!LVcs72-&o5co&)Ht_|cjFT%E4H{Q&5& zIiyX~7!O57JMSdgYT6KJM5$cR(@}m-1`M&UtvE$(W**O5@SmVtSas5VT5;=4JYYp6 zUUA;&ysWEtXsU~R?02zf$N5m4->FsDE(1#zHW$QkvA;lyEjwV<`FJCBZi8ZqE~Kr` zd>Ap0jN8hBpG2DsoUxpjP8PHKWov`u%yiJ1uL=znwJCC5;jo(pGB%hbysNgr>rY9IIP&*0{K=rR1ah%}cOKKZ-j>IJ+d z$d7pIvhsWJ)w2$<1ZrU3grJYB+7G}(0dgQHwNCwCs^5sO*bhh%>gDLO_#%n>#x?SZ z99I_eCr=6^f$!-aGk})Fl|hdIvghWoG`hATWTuNXpW}7si+vWne<8_j-+h3;t!t8N zI1g0W#0r#0j-qj^j$f*f&o2OaEx_OPZKa`Kj=rj}ga}I2Yjvf2(i7%tOGR(BnlSq5 z50Z*}g&8?!)%KKsGN?ch1r{zW(R&7D@L0`eHaypf$iiAh&apbSSJl6W{1}hre28!_ z(u7bCVzM-V<0~`L0GNg6yrW{7E>bP<_#oF_+tuxdq20Lasc39bMfexTcL2B}6gR(k zPnmF+nZ^$Hm#lqE!|yL{T20yhps6d5p*yYTaESU6y{WMB2rH2_t-X4;2)URVJtZ}Z zFl|BJ;E3x0E_He9UVc1uJ17^uFhPVKn#;{=X)r1iOEjMyK0XL{y`& za7%}|K6yBYGrn243KlDd871V}`YFmkI1=&}pct%Q7;Rvqq(|_h*kiUAoEh#I-60Q; z$x<&SqYc?Uf9w=^FO6$OC%VhNY+i3FjYrV;J$0A)a{w4Y{aQr5Pj0>){i|F|;Ni=7 z6GHGIXrk4gc<-P5Lw82nr_n`9S_a-iF6c`CmQwz-YvIO_pT+)6JtC$sj+tVkG}*|L z`_tFSm6!W3*#yz0fhc_U(dmvfkL%_4$tcb@Rm2kT=c%iz_x*oRZy$}(IUj_nOm6z$ z2TD428J-i2D(QcbXrau}Z-77b&6vO71mL*N?Q%&io8xBbj43mBanAjdwhTi5iW2_H zcyE9Mo0q6fH`9VZY_8{NGm68M*HMg->KEY9$$opr23WMHO;I7KxI)#eV^W&>eYkefiNuW*GcS!WRe$uwfn7~IB zG;NF<0`v~NDy+bBRJO-nl;=l8^vm1c^}kosFh_sjU$K^@Y3 zQFDJjeO_Dt8tJ<(KOI5#^Yl*sFV} z{LJ}6a>6f7G!z7VniOyixo0E6_nBJpiFQm!T;${Z6gJ9%BK2sF1i2vLQ=UYjzYqNU zn1_<|#DgMm&4T!N&~L59LIs?L`_TWa(QupJpM_o3ocIbz<}401{p>4RWY?$O4RX#$ z(k5j)`r_=7-?xIe+j`kd>~aysSX!O!9E%Xv8P#jcV4rz+5v=%t89}GY@`uz8b{wL( z6pP=ENl~`r9O?zTl`*4kO8wrNO!0dt?^zQ8PaP6HHeH?1>P3o_?d6nQt}z67nxBG|ug2;Od9I*-WL>3daiNL`wUyhThL)M&!@Xk8p^hmig`(Vqv-U!>`# z_DNj4C~L0Fvt!Vx)BN=qP%*nr!4jQZ(cVh$C?kE;C_#KKh|JUl;|J30$al$-r`cTd zeOKIOtGy@p|E;FayaH{zLoG&8yyk0mo6c)_?M14Ukqv=sF zxrlN3pMGy(w-s6Hs^pMhO7h4~7?y8iEo=A1a;i+Nqbs$SiKy6pZ~G7Cl2e9RPEH&n z`-rQccs3iO;+S~%u^e^x{EI4fXELR=x5M=~^EKxq)?J{JfT zo3B*uiX(t$mF0sqg~=N97l7di7v)pkV2Iw8!k^Oh_j2mcTl{diuwk@rm-0ZBXfW2QPleQc>TOEWrQMA4-T(1hFfQHR&m0MI0(9iSn zN9U}bc*4!tW}wax%o1N{enX}*&XB+rw8yVk4waFA>6zLZb#X3ml$um3Qoy9YYtt$l z&G+q+&`f2ia~&cvtu05PU}|f$M^$o+A%UC2+3mj4MTcJmS*N0Z>T zd7`JT%~GT^pb}oArd;|1tmDR!lt|?ric2H%R3H`$h-xI?C#NiOtp^y0`I9e9yo?5n z{KFkCi20RP4Ho5}&l=t#1RV;qdH(;5?jb9u$_K_^A+0XmL%}beK?Fs>Zv!6~eVGkA zF@EIsk!vFSuV43APUjX9c6_VncPcKgQm^ER9;ZbD%FQB~o1QYaET~dX^b8}&HfZe^ zg65OFTqvV0T(^RW3t5?Z{Qd|fd$Kbx7`?@Rm7>$ zyi#=9;Jz38HD=xOA&d3$pi0dyF|7t|LrAn{IF=Tz#q@}$a>Ps})osc0$k$5|DahE}Y{U-!&4dBQ9rYyI?qM3o6n8 zHmw3GNEbL57dRNsb;M$w%>y*VM{+qBo*6C3IT&u=&dW|7jX8_qlK6(hc3o370N03n zMw5%%eitc6aa{1&!R{p^)^+q^YsC4cTeO~-EK)ylLs#xKBmQT(eS&egoLx(94-q;a z5n8SRLOcGdfs&8^7cs4K3xAzRvjyIB8X@qG3PR56Yk|)-F~9p?M35ZR1Nw{i+F!lS za>lflWW!2ANle1-%plmD>sAoIpmJ$J^Dp5y{6vW{533mg?u-cdwDtp6#^EWFq41nHHy8;^ zA8{Ij5%g_ax59F<1nx8lww!h=p0;dym+bO0+~1#=}0Kcx}RSc_IzV!^pTMRsIRe-hxc)uVvz{X_h_6A)3>a- zo59?Pj`1W0iVk_a(a5&nvfjusGF%cUE`cCxP@^xbD5~a+O{sw4LFOJrVfmTwg3P&} z?aDX8XQ#4)&G9rb)uKi7Gw~IT3Wcq)6vC+GHtzDBJ3=(}0)C@g(+Xo`Ekw@=42Y9X zig;09+eD`kEar%poL3}Sd5UzRz1?7HqshVlLKLzhoR-G%NSa#k2L)Uvi!}Wdb<9d(YJ3+K0qxXc-MHyo- z7>qtzqW2mlT4apQC4 zV=S(9&l%nUzl)!$3bL8y=_N!WWZK&R_{d2zU#=cjHvMSZ_}X_51MHQY_wOKJY>CLO zMW;iLv}Bg)w2V%UHe$)@Mh`lnp$gff(5)cP+S}j=mDL+Fg{mj|Jz?+7gO!sP`oDxA5c`QS_DO^y7@SUUHQ|KBN+)X_sDn z+U&a_v%$GHc`s!Ag$nNy$XL3WySX?!bLafIzp;uv8dc2fO?RmLpnW2biqBSg>INg* zd)WZPbU2~!=vap@yvVnkP8?NxlXO7J+P zYq0ZyF~rY9!TXVUoxI~+FjMtN-w1}u1?fAJ*L}!XAK!uTsO01t8h`7polJDD$Q?hM zXwP|TXCPapFupWOkw>b2f$*|*qEVFw*ZIJS)z5sYn69_j2!;rpvUXf?n{xeJ|*N>G(u_AYuWyj|26@fEvW-I-6JwuUw7`)b} zam+9Bx1^=f+bToJQLfFzb{mX1T#C6_eR}wc_k(kd5%tCJ@;^ud+}hZ)Ddt+#6x#P* zE1L=bT&&3-x4g&m-VAr5eH7?(HCl_h=`0$?@)j6_Cx7^%+n~~uxeG)B`N}Oav%W-F zfuS#oy}q+d^q-^!r!c`tTw806=Qy6=i=Td0s)mmrmXZCIfKeue`e-cJPh+%6qlzs9 zx~n>M7=ZbM6v(<}{d=07RNFgD($Z$~12rdpmwc3X@_ZZW#e$ylwZjB6lfqTN*U4N{ z6sW9N?fmCf`%)PVvKqgF{g~B?rxfxQcEHk%S+c+`72KFJkf`FHWG4sE6D*+cGxSF1Tfk zvW5b_nxap+WWwyCfn#y-)Q|7jUYal%$7u_c!^btT%)MQqU%DMeZ}YyL_hP%xE|NK_ zEpG*sHi41Q82wvX%{|Z?x+HiNqd7Bh;=1M}YrAn4eCl@)t}_$6NVw)@t1@@0#UhXa zyIoRms5~z0$4mvER!{R|W~LZ-Jd6=eJE7rwa6o&(`K@nPosay0vWDEMsq}=h--Ovw zLx@GggOa7O^fb1b95u1%Im$8BSb8!WyocGY{b8CbcqS0YY^7ewhl#e@2gqH>%?YCd z9LySiLp?00bk5HkuA#}zW9n_JE$$UoE=uxRGq##Yu8Zxl4%83k3ZK;g`)d7u?WCYA z$64i)D~+m?pO=|^0dmN76pSS;{~3a+=g1;?84hf)#Y)i9q<_Q}*7YY=lR5W0ia#a? z%5J)CkE?{18u&QPbA5U(I{K?Ir`!x)x7Bsjt`FIOiq?C5ZTwTf9Q=|AcoQ_ha#D_c zCXAU9%*b-pmmx@Dsw!41B;c5^9=jB+NH{r=nm6tE)Q^whZtX|44i;rIv`uOFM^*Aj zQz2LbAvG?CC0jRuuiXmW$+*RQ)1uEzmwrc<4+N_U#)*z*Xazj=qhV-c*)@M8i29&@ zqdjov1#D`%~c%(U<1o?PP>jidfD>$ixh zoeQY%)BJqYZfmzVAP`l82`4bX(T<8Y!w>(?fne^slvYySxRH@T-j=Dwvqc?#_1h8} z44W-1Ku1?}a`$npmQmsS-EP|eGMqE+_Dz)$34$XbOLY?;t|4*rQiJViyL;(=eFQc> zfp)~tCU0di4?aj~VlfMW5%&%l@;l=GLW0YSM!nvZNxY{9NW^ceg+(lBx)vW-7QdVt z^MKpn{m2!h%Au`L#x8Fjt?~E|5WrQB&>&UDZNVaZZNs{5JFk=uNW?yEZR~^OJBe?)Pz^SwJJF z%OO|={l@OD`<|m7Cq{YI1878-jd2wxs+po2*6DZcnOKN!j?iPP%85@>xllTSt$(disPyt zGsnB+*TyoE`shJXHuS-`bn{9RkQOc!cLkbf2XcqJGgE}E;<)}Ab|K1`;|a!HKg_O? z_2ktTz9q*KcXth6OsXL%dSa|3@Y{Hc6Yo~V*jj;L9Kuu)R%(F$0et69n)}%JPz)7V z!VS@CkhaE7+MGFKH*kt+w&|ImvA5I$_!PLcu{mXX zi&NUTGbsJ5EQydWTY>u?0URLP?SC>}rcE&oAX8U^boc^EB8j2&22Z5;6Y+=>?B5!`7sAjxS6i!q=NH)V(6yl~;BU-(AETlk2F zUO`3S>TnQ0F3BtjM(>Kwg3_5-8X{_Td2*ZeYDXZklfpRzQbcfbBpeBRLg^VHlxDqV zG40Gkiy{1)5CzDwIYa~Z0di=eU#(o1unor}XaGGKH& z?GpKa)S|h^znR5n|0;stCgXmr*})XkVKoyP>+ou(KG@@qtS(92YMY5a_F|hk z^KSgti{@#sa`>DF46k%p5B-A{Bza1oV;-m*-Yq>x>soR_=6kelv%WZ#9!{_s+Vwa4So%rzUYd;BGs1-D8^ z8f3l{n}ErzWN6Jb4N;3~n_gLg4ot^}cGbu6yEe}+a(JCf1+X{B%R+t5F5{K2UZU9n zcK$-lFMAp%{`R6`#HTYy3gWk5R5pe-@UbQCuD!cBn|?&7Nd~W-C|%V>KaFfHpZP#m zy@F$hbpd;LsLvt!B?`&NQb2fx@t0)k!o5RyFrzEp}kq zH?*qO#e;Yh!9_j|JdqSV#9Vo#$JmzC*f59rgDUwEXJnAex)^&}aqAcB@-1z-oGS&b7WZ5i zuu-m51LziuJYujpbztE%nL^pMUC0rC0&c1`c6cyPJv8m1!7>#Qo2h6k@jB6(@<5kB ze@zuC7bdB5k`{I?|Bu0U2a3@W;{h*omsveB26I_;z}TTM-zR2JF;>=B3|9qagRKVz z>BfygB%uzu6Be4&dm@^?OzHm5-81McX?UxkkRJkTWxP>O*DJ(Gb5oLc*j3ao3f(fy z7W~I(?NBq>#p-7#X2VC@>OD$NR}~4CyEkAtc>~v8(ang~%1O4{dFtke383TA2~{nX zN(21HOf`^NDfqKU)pb&I{%x0K_SOydnhW*yi-I@Sm88|=W9j6jHfR$_8gh1OO2mJv zlnIjyd9_*dOkdQxej)@_M(rHhu&PKTz`^C^Rr)RCnN3<`DIKKznuWN

e>Tgq?rQ^R&S{1DU zbv8I-`V=>Toa9=bK=ffB3H0+TrEdDr!;UIqfH*3#VfJ`R8ezS#;Kg2Zq%L||P;8Cj zsrDQzCMyj`e}bfK=|563gsY`V>({T`r!i?42%gCF6iCc`dRGqdy1LIk-Rz#Il>PlQ z<|n;QzsA*H-_`2XpAAR&>^xH6=&QOmG8*Gr!FlwHouB%5+BV|fm+MU6x!M`@F zgTg@VrN0_Vnf_;#T*}nzDm(sV?wcqKRKBLgCmfIaOz{(LeTfDD<=9^IF|u}4G8FXI zTJ!{c6Skp=r_Lq=e$0VFXYjb+rH=qRndFDzjle+HGmQaDUxW1t90&I@Nn?FNS1n}h z;$54eG?_d<=!x5J8!KwCdZlQyLT6mIgW=B>Tt5rpb~I!sKC@y?ol7(D@&abJ#``W^!9Qo(R&*Ha?<2k0qi1wB{q8n^kaUh9WQ?H{0U zAvD>0Tzfa+C854axGPM5MYKJG)t*0m93dio=@dre3IGjz7zKN_I4FEJ+7!&(gzIsj z?X})OYKwxxO3|d%xYJBizu&``gfD7@xd!sX!FPDpxQf`O@_qKD6A4NI0Dg9G{`Too zG+FNzXz)~)X}I(NQX2&d<42QJ<4!V7iN~Q#q>z;8+ByH}PU z7qimMc^X1a=x&$!y>S4Pdt}&YEV6_rjO$z{ojfW(nhvEsJ`msSZki_leF+&!&9yGr z2Y5IuT*70fuQC(A*vN{qDpkO}ij;n)Nwf(Ju#HFXaF)AfSZD~igeQ<`zlH%`1X=MH z#FxV^;qjNy=VVx!d_OAaK)k=Zk;Q#C^fgV5E^OTaeM`qdc_wDktm8 z)vT@yA|S8SO<>p>=|1Yk!CApEc8|eV>rLn5!0`CXVSu}YY@9wF-Hp{#m+~6Ciqkhq zD@QVd5d6Ml+?3Ln$qw;rlP5HzqIWQMeg}d(m`~xTj|^L+4*IBKsz}nDIKp|pUegnL zO`RmAS-t4`K2))q{g@i+u>E`R#<)HINT1&-q_Q5avg2z0YNQg zNvE@O#GFoMZ~Q6cL?2mJt3XeF&r;`oM6T0kO~1l1%uQ%NCkF-3V56k5cdN5+aQjvY z&~@rSle9C6{dJyv#*71&1tbH-YT?zhi*=E?Ls1a|q@xYiq8?Qz!$CH^VO3WbKyU5B zpD0$xP1=Fi$E0pgKSiw1QWvOsZK`4t~x^d-g;x|F0orwT}Cks%$(sdL+nq|#Og1VA@E7?NpJ=Bj=ds z^91$ZjZaYA{ejGM0fm2*cFGKQtON_Tw}yV35OR)$F@o!i_gj6f1V;n&LMZ=yKODmf z^6dLYu^9j(P1^*&B**`3aW999g%bAs`4l8()^0cX!!e;XVTOW^(Om1e(5dy9gYluh z{Pk}hggpwW@&Mx0gSv(FG^fU`MCS;s-x|?#C?<_uO zx5CU>OHe3%!nvPkhge`#PG;uDsE1=xLT>NkdM%=4b^D?B9&kBp3X9@WYA6XBzi>(Z zs>bzKRkt9sNM!Za!QVch+oK}im2H}QN3W-zu#jxPMuX7aLesmYekf3Vb-s}@r z{4=6CsSjtIeIv8h#551?yo#4Uxsbjg)>oPEXpeOoNH%r8sIO(YH#?pS=F!HM@UAA(9y^6icP!v9TOae9AThD=*Z z&0>WFKm^lc;_UJ+cZrxBPHXyv+OW!A?3au*0k4KaTam{?$O-SHE2_@PVBg7L+28~w z1lo=op5q-LXy~+Z4ujtYd}fP0)K38YaQIE2H`MjCLw}A^3()$vp~vFpnH+xqryXZ7 zEII4H_w7vpqQ0GHod1J<{4GtOpQqS~_W-%OCDkv?LeMczqP_bNrIe;=Sn|C|3|P&O zYb?qFgs%)roa(lAUEt**aq~k|un;{Un5g{Db5^B$y8-mFB?-ttAag)9X^|M_0 zuS;*7mW7Ol>k42v7d?iXINLK!d$S&$|55z?kI>z{XkHx6<9>li{WWS5Q9^&VRvoRu zm`!#>PLL6Jg`J4ptC+tCwGa>Od${eS_oe%A_I|dr`~XiIMBwzknZvZzp!Bemw0g`b zdyr1>4+i9-DDkZ}?g%zT^}kFcl@;ZPX|pjQ5x@~#HtN~UQ4+ds*5R}H0fG;mAr_Gcb_%O`>Bg$ov+7xrC%~{}%T;$=F zFVdUk<&L0<@7M`M9EY;};0IR0YbhzKUitsFEc(8JgsFmrNs!ih{UQKnUMzQ?YF;*V z{x>TpJ8a=(!I#b7#qgYB;GAMGwc*1fH<9N**NPr)-D)kncDt97w@82G+U>s3VSw*w z_FTj6Q1mgV`Ms;Uef#sD)xHUlr_a~cu;r5Ht!0sfB({?aDa#_jy*}4o86a3@efoS+ zv11oJ*IFhX^Ng?5t@q)no0{Uolc4)?8%4C89Aze^x4*Tc83VA?Sw=fVGaVT<@3?8b zs5vGrC%st>V4-fzkqFBVE{8*}W?a7&DTe#anX`rTg9&nmg(weOeNCBGwBO4A-0t~8 z0*~XI<%|vqgbt=~utomX4@H_^4Qi~vzZcd{#n#xcUuV3r8~a6;f@>EYh*&Vgcd z@@&FMc;vv@s^C)ccnIPCCD?sr&#>2^zxx^@)W2&nwj6^v@sKdx8?ZIGtIQ017MwMA zi(KD_(bRMGCk|VS5m@nrIfSh4pIl8NmLDtN>_qAeC_5^Xn`=ZTW0hQ@WLMjc zwoRiy%d{GiV=AgpHBrcpcnjCh7kiuKz&~<1m6&X-pOsqS`C&MCTK;%jdQj-ieuYjv$$iIEZ*P|nvVFPL8_KF7YkN5z9>^1Ywf?2~ ze%<$(4kO-rLcI;V&@1wv*b7x_BbR4av3D3WA<})6aJX zmcrf93}tD1MV5_p^eMq{yzQgK>U{?x_D4K-Lq9XugI7iao);(*?65QPB_4`QrJxkc zcbnQq2OU^>tjiztWCYFpFtvmaSq?_Ejeb$@+ydWxVb@s6@yP1#lro4#=Y2J|hn^yD zB(l|E1_W-b3XFg0JhWY5b9{&Sg%aVDlxu}b_k}FtdcHUp?#fSb-lgX2Ivleqmt6hY z$9=9zqCoh7<+@4a5oc^Wyo2mF7h_bzE~)AINVFg;?;xK*bjCjGWY zM(V#+iptZESr)21ZOdlRwb0V%=goMMQXZh&7RKaEY?>Fm!?#Jgp3YgWsQ5cl7~D=g zM5qp$oX{wC`@pJ4FJXQR=h6RF3~jVZB{^VWgQ!sD6N+cvKv=v?7bn*B&AFh9r$%a` zLt*eJra^kUU60U%3LSy{m#?MNy*~LD~q7+Xs1jar5jI-czYWI zV83xeyUqlx;2BosiPiH>Me8`m#rMT#1d%uz&7H6I1mT>gHvF~Y5X1>n>PajStWl@B5Q2rq*wULk6^f&%ueHq+$~1sem~6|w)=Av8V?yen z5fJ3V;a7$}hT~btZQc5)*1gL5KGRoj{Uqh*=gh*ilkc4(<89|YKl?3p9cI^W@Jn6A z{CUK|{KG1DP}TTw!c^U{5%65x!dy|aDss5|0N$vyG^EyIaX>WsjsYwqA_tAPTRgd& zJyc>zqQQTXpj=qwklSU^iZ zY;3E~^=!|k%5xZN;P~kon%H9YprTZ<=&k<=%%1`PH+|uPnSYM{NrT>`wJ{!CBbne+vRqWO)CdD)}<%)$wyzOb)wmUS> zJi|jj=E-a2-jrV!a3p9bO-CxzV(!^|ttNS5$x8C`v_(;OyWd(AN!N$CkIIqo< ze#W%iIwlxRZl27kfdoAgYe3xj=*tQKWvj3FleyD}>MRTo%?F&@kPIW&TY(2iQ-;PysR@al3#$9I<%$s`{6O?Xy9x zY*FOxUsO;y%xBDe9eI0mGUsbmsJGv^T8hua)xho6*CDy4wQgqWqbbEhj+VAKeb!Kvn7ESWQEaa^aqt zU+xf8jR&Z!d(mgVh(zZ%>){R|QmwX%(HTEXkCigP2z}1S>R8+p;0ol!%Y}mq$bg(9 zq12b9i1$*0hK7GNe6Zl7#K73?K_o*#(Bnvsm`R}2WvrfKcbh+uC!9h1sir_@V(oC4 zT~dVammzULFNJ`W!5ndB6ywb>5=!?2oXASr)h^+N*Q9Rx-pZwQxU~#deQ$-* z)!?Cq138MqE@9mEcQ(3k;s+tkRpVN^A4_XN- z1TO_U!gxoSbli%sO6NS!ZS8R@W|y{X3CUCzM`#f2IdEb#ZB!{9c}Y#Kno!Qm8BMT8 z-2RHmlJT3{tGJ<-;Qf7nDmM90@sFs%I){KQ1x_LCDNFWB5@&`4IGOo$BQVP~BkXvc z=E|%+oZM zcOp=Y0Gs8|&Ui4D=k&6)ISbd6#9hWg&+_;lh&LfpZEV(B`l?f3>SL;>lH%vm{=Ry* zvYzrg*@a$HNq%Kym&7W?GN1}ag3-j*4qTke>NFp2tTIwIeIr<(Yv+2eTP2f_-mQlNebq~A&g1%1cHvz(qC(~qC8y7i?MQivVb;m@@gO{=KXYVed zpr+Q@yQqKk9?Y#2b)CKATpp-GTRsU1%l050c>K~QT%%2UTIkgM86{)Jp$-x_-xaH% zkj<|>E#BbgXf%!`m5&3Ty)#)g23`^$K_%IOv~lu*l*P9docs`+%Y$LOH!K1V!nR+Jj>ZRkTf6SB%h>rzz(biEX$PvC<7?5Y_kJksDagx zwBl^%#TDE~8IH5^sCEb6s|89<9~IXcc!~Hetu^qxg|YJsYUI%qbzhF+v0x9afkvXM zJAWandXnhsC%sFqnJgtJ?~=cz(42S>#sc^~Zq^Fbm zBXG%R{ESHcRDJ)Qk*fiI9&;5%fdFaX$bdAr6~cXI89N89d9OG8SJr_^scYDPCKlAY zJr3YThq}M~Ebm~=3xKy1-PXL~PcJJd=}4l;0;n4t!9<}k`|mDwuAaEpwzjEybPlvv zGYb0+h-99)=c~={zq5D6*|)1_9=jLWj-7wsQPIUW*@*}Damqml!3AboXPNkYV6Y~F z!vPLl8_(#GO?Fq0-S4Y)hNx4#DoH5e%p?n0CZs78P(_BJ&A@#Y8HCSxrJdZ^8Zh5@ z)^wIb`!uDMrus8Wwofh`vHjT*`IEj4@LpvF8OLOBUc*f%hVGX1NyX)s?i*v-1Y|F% zCk>G%UJwxt3LNP9NCTLH6C^f}PD&*+=$t54ea7Nofprda9Yqs&dbJ!KNbPCqE8My+ z0;7DBHO_!15svExw(v;?C^BNl;NyYJ{A{5JOv**H8yNBJYM5)iWi+T1$*Uq4~5T#P{*B(}>fxyUV87 zx6+{`2bdWc_z?9tk6}>i8eUA~KFf?X#8gGNH+rg9)i$ z{-iZY^?FL34CmNT&`a44v67|^ux5&H8)Y-dnNEnXChf_ajs=mWi`v-Dx-6}hWm7hj z-@jkgx#4#I;Nl<5W5gUA&to#?+;!U_ z{<6a?tYO5=R?YEZuEt|>e%Jrv@q^0dS2xOqo*g&85`NhW}Ieb$O!_a4a9#4MuEm-Gsis|F)Chg3ZmkI%{7bR9P#$8hL;otd&XDbesbOw*IW3LkB|(R;!nIa% zo-#+ON`6lU7vom%31gqpdOxLD8uPCP&4Be8+mn~Gac{*Rk2;R|@37xzk+WuFY(Jso zO?sbd41t@HVV&0X(PzUhT~X``c}>$&Q)Zp;j3T|I8Q zrZZ>yOh?R8Vum}rWU~vt{u}ms(G~Mv9zvGNt@3Ul@ z?Be<3Ri9Bk(ahqGa%y#AfwGFLdj27+^D~MiEOI)rv1&#-vG4m>R)nb8{?`mDkOv80 zHLeY(WLc3!*h!@V0oj8zH9+j0{}bD&&$4orn$6{3)Al!3z&JHr-(^MO%vLHcXmx&b zkcLxOKu;5ZD)PnIGKoc-s;P-Zb)bsn+tjZA8n>AVatmSpbZl5v#j->juo0E<>a8C} zG(^JuNeJUrwPyL^vH!%@ZvPv0Dd0BzPi$5gFd#u-Gn56yt{TyZSMVpn{)uI-{hz#5 zfc*cHS8;;eyn;V{KMYi{^b%=3v|+qTyJSQoTfx5$GhDq=C|3-t?J4}O`m?7n1ysNE zfja766D@lgyEPEHUBC1KZ#8sgxJvuSh=%gt*rL(@#3uj0vBZ(I6WU{sDOP7gLG_L) zZSbLegF~v{hGZ74#P(!w?JaEmYFl@qoY}V24$Wb$X9Q{!Pgbq*cvI7~S@liC0gPnQ&#O3*_e|yjUx_;_xput7 z66=?6Y+@w2-kJaSTt#kM674o_r^8%1zWz0^F1YbGZg|**3-w?QN}RSS7e3 zUUT=TCt5(Ei9I4?nfJkYoXB_OG-)l_(?8*cl0-qd3&rmv$%h`^6O250%a~MYtZwUz zqgF-0d2VH>p*&XA?lrA1k$m&NQ~pr?oMP5>wwQBKVhYu$Chc@!<5YX6qg-OLvPn*P zz;3>m@Us>y-M8;JMw%;6$Us4>p`m&wW0O5#S*Sy8EWI_GBeB+BoumsO_@%w z^Jtd~Oev)4GaxHwZ97A&=3%rn_zNY8O(`NDxn+-%BrR$}MGfZw_@uu$BtDvpBGY-M zj`>Y>%E&I}C0l9|i`-Z<0xVQ5MT2(k^22ZWZdyAdbu{uO<#1ZopzDyT1=-jTd|w-% z-(xA;*a;h!ok=|V-Hb;g0aRu&e?781B2Dw(SkP+j+cC9a&0@kbm-I>{#=N|JKiRB1 zft-g{p~u!$^g{-wayayxYYY5v@OGQ(kK|I-A4Q)imzrI#$QPbf zj>skc+gI3k5035-#{0aqC_MX$6M~s6=wA#mjCUes`K3?JI}9Mt~*l7 zrkUdX(Vq~FrXcu4yne(g3B-p75ahDsNIfA`xu2uNO{jVzpPIGygO^l_uBU-gUkI-R zSChJXz(7H(x`kh6);p%pkdgwYDq}7V=EH6HeR(P|z4?3T2~tK2$psi4WA_>O(}q47 zsCEhlIa$349jc2}T|#xpd@6X*CN}a3%-v&v^WlNbhksTU{<>{g^9#||d_OBmT8eO( zL+T=^q7S)t>?kGA9g#oQhs1+e`;f~)Iz{ULL#(bd_P3A5UXrpHY%gV}jrJ&i!bH%M z=Wb{DV}Gj3EVv^V>|+8)f^_yqT7b7=IAOh@YL1DZGQR(#-9`^+cLss;?c}fl-$y?o zd$v9LHAdS%Av+GiBpA+K4r1VF)Y8~X?fsL{KcL6v+<`NI_V6KiXQWOW+0F=?1W9p> zH#{b5DDOso>J5_$}wxwza;;o%~)DA-tgp^+h1*; zcYyYUJw9-#0lYmDZ;xzugu!Wd7y)hChVlhK+gQpU8z45ifNV1iT0pipfV1E-{}4T* z27QF1gqNfjhOL*q%u17?^yfd?Vxy;^YBOx$m_6Pf(7t)89b`6n#pe~E-EgTb`oG$G z#+Ndg7MI#{$R00nkHARm9J2io47?oD%N}Q?Y0AIykG9gKHh18NeVgylA^59op)IoQ z^>72Zew2K}6ZwYnIpil111W#*0Hx76WE))PQU(K)`G@EU0e77btNpjO`Vc=J2nFtm z(&+DG<4o?r;gVS&sYCFf>>i+9J$y)}A1>ce`t(v;{$K4+jgfzG;3z!jZ;1v{5lC(0 z&t|DnJVLjN*Ge^ zDcQri7s-+x0d#z+VXCPYSJWQtlQR-w!*~3CfSWKsz?b0C>_L+LhO+ab zvEG2l0`5*|CJ~nl%=G6?q3_8w8BYzDPXqcoFu&@i-*y~JzqEeav7s=Iz+XHM&0#}c zJojaSAyQvf+o(El?Rj)9>gZx7Yw%rD9ENwuI2CQlG@f%7IB!7XPm;FsIVJ0>3^tHg zX0%!Xu-if2lKzQR3)s)Nojc$bRJxZd&@pyjc!EL7%IBNDzV1HP2&oAdMcdROyJIOPF9|CegBvq|}3WYJDc{?3kEKg}r! z_YeAZ+HIHuzT@{ew3Phj0#u>Wa{-in00Im)U-_03u^@>mjg-9XAN_~JXA#)0JwNc{ zuqT00+)c#C5z#K{EThx=T0_cHz~&~iUHk3I20!tn(_fo-+O4e0qdaHeL8xJwl_)00 z+GD*HjMe;wg1of@@oTna#`>J*duxLk9RxjR5%NOx^%S(6f&MhEu|D2+U_@f+A2((RQQVURZk?(D3wQK zKP8RxlII9~MZ_PzBA_$R{Q9xZykBezrSCy|+!?8q&ioamUdBrsL;=VaH!g{vVIx~! zhEcHW?Is^|F>(2?0gM#zrJ-2!_7PwrjSf04lac{Rf0{-ZBKNT(kY1R=GLV$o1J42^ z4eh5STUqjy0Fr86CXM>TI>=!x*>xneB*<2=sYeK;VzDB`<-C;rURLC(tzvVctzz}LA>~WJ zxa_SgG4^8&C=Giv&JFuPR>P|{l#?Z7*Oxa(s62KClGHQKjns=GMm;Evz5`6_2o*|& zO`GtZJtMQo61z%(&?&grYp(+fK@w!hAd?$Qy4V<1a8FyzCKypmGY@2=Jmowx$#RZPL-NKDi-M zbiTIr6rKm&*dS?QH%Ep~5qbCD+}R-la#H#qyz-d*6JaU+rGx2sn$Df!H=EtwL9fTW z5t|yQ2_ypej%3ZbU?J7E(mCLjw%shS{6o?cyA}Efq z1U0z}_wV-<`A-nu$Nr66#s5cRg79IBx`S5M%-@KX`%KRB^>Qj!6dgsg|D)2_@Lwtd zefxhdRa7rkkpHEEwL)%Xsr;)_Ehhs{nlGB2k(2n#H6{iCwXhaPSOB#M^c@gsGw-d$ z;ncO6$?vQ5s%tYbeOvCZiSr3t&BSZw|MUslwS<#c`$4^|aW+|+V8!VwG+C&8U9jRX9f;3K$YU3d$|h4%b&MMz$w<|j zEtk&>(I-QjA(Kb*ZLA_l@za=aYwidqW0^f z%J|EAI83(astRkOkha6E^AyrAfiO=HC4dKzCnJX;l#NB>1diulBQoSQ{aXSS2{Oto zTY~Us=#H#XHDEwax$>LGxLa?Yys@p=OkE$ zTWyct55P{SS}oq|r@Vc2TF+Jb$`|eg*|MUN67Mlgf8jqVn;KtbGwcvGi3sr?15zIB-vL9g^Mk7%R+}YB)*+BwM1q8cM^SY6OA zH~H|6(D3b6ehrp^AfAg8NXP5_N9E}UiZP5wlpor@eAuhSJk}MXFzEQMV!1~)}gA;Krx6EJg zOIbYmI%hbB!pk5!>?X>;9}U7rJ|*ZcK3slw&m%8wI9k?>tP1K1DN)_@;kFN%B%$D1 zl_DUyHvK4@=k0@){@MLie)i$RT7rqkAE>gk1KFujFx!s}zlNg}M2@~HZZL!s?!kMt zBdctG9zVBcwy6e=bPO}{Q9t=bA}kf`tRm)t1z6z&|AzxTEaWVZ@Dqi zOXu|y>odQbo=NOMp81|2s0(2hT$U_Xt?oa2JrMcvV(!V@5y?`MztLlm#aVr8 z!WH3Lq*>3(;z&0I`42*`nG)W3!$SAqN%KbH3N^$P)1{EIUI20z=i{MX>(F_rz}4Dv z{Qe>1$oY4Ph5hJCOG*1Tfis2dZU@3^E-w-(`w8C;e?Bd7fxnhG-Tn6U`3tDTjdIdI z8KI$uGmwMo`j`7L&BN*MuD(or+1iyR3%;jiQ9LgxTPDrA#TK+_P43*1zBuG0qAKq< zHvY9AHt2YP%Se@Ge*FD`dq9*%o?FVY=9hZ~i9ZRemvS4l%pVm#{*kiAFaPNoNk*NS zNeJeKi2?NHHMMrGbLt0dlq@y#u=iojjE*ay0fuMyUxUe5A>^x=0asvqiHz^JZ|VidgWkx#5SzyimGi24kX^kMvN^b1$m)4#PPr_;nRo zVno;XXCCdVoKv^d%eM2DQ2vmhR_biiYIV1Liz$u%t`;Y{^~py^(9NXJmxS^n)3N_S z(a39uU#>MtA4(-GSi|b-(miS2DB`VHkrc~WB`?CUB)jhv$_QPA1$~P?InwXY@Srp! zm+|Q#VjIHU>Yz68M$m%1al7QnQnXX?)XQ&L%VJhddk0oLJKv);oAC!EkJ%Ylk!q0% z8l>IMCVyVoaPW(Ohjx$R#%>({!59n#CeBkB#K(k!Bey+c>wTe3UkQ z5_P+<|F0VsGe`uL#VV^X|K`ux$6~_Uw=)XZ^um8fRo&70l4L=YrxFbHVnS5Fo{h=# z-*yb1C5V+a+{Rkg(wo|3Rwq|~y!~!s!}kt?ZsXR3*ssA7M^{~#TV*7CThiaB8Zz>L z(SKv;PqBQ9?sR@%B-HU22y{zapa-XY-?fgg$fLFH!~lVBS+CPR+?A*E3!Lyz{C zLeB#NzNOC?`Vypn!y>s3hmw0oRAoBa5i(TxU>v4K0gR=yf_RRMeteMQw`Hrts%?dF{HRjO6Wes!8p`MuWE zQH3<^85Icq6E$#h%Jr~j??#eef2MDy?Y;@A2rw`8jKbL4*;D?^)g?K-$l0SK5MMIqDD%py7j5xy66wkg5cbRL%r;C@hWH-p7q)WLv z>ea+-0$jg^SxJob7r%pjaFTs3rgW77>0$Qkn<>9*O@6W{@?=Hv!{ed%)SmG&@H#S= z23@0q5W6i+LPu`&SUbr1i|ehH4@?Zi1#e&O^_FthEadEQTm4*o^!@d$)FJyCb!_^d zvgG^u33`u%XO<+9C)bC%Fu22u z^=y&8>(5FPaX+lrMV0k6^@hIufPP;0+eTVXzbm0L1MAg%4U(SIzc@X*4K0+Dy!&U$ zNAcU2c0)JhF4UCiGrFj5;K5YKlkiBEv<2TUTDE_x-5k;5Nm*-q8(h*|x4jrPo*~=s z-TAVP(0|eRNUSy@NrU}_!WT8=&Cl+`#o+tf(0lGUy#6BjUDMeyvO_z%&+o^_4rzu|E=S5rgc=qU)GiKJ! z#-n|hGKOw74L|ziVL}K(QmFv6{xri!ECLv z#*JJy^mHWyn`M;%>*sA8E71N;Kxfzaz5yg>1eumDzDQ*l#Gu(*)EMRA{gBCo(Ypfc96 z*|m(-j1jQW2w)Qs51@Z|dE{HdS5L$ZQam4av{b{qBC^j7~8|v^@;N6z|!$%LLxYmi-%RfN8HVyl3c`opgj>*Kq?~(MWDf<)T?<~ z)V#Ug0StL~D)Do1fz|@x6C5R`!Y3w@vNN)!^K0Ll_yI2FpKEDta2z2H=1H8)i6ywEt)l~S)&bi_C0wXd+D5ops3R(@Y>MDimT@$q@ii}F*@wAi$Avn7GWDG2ZV z51jr}`>M5r@5b&UZI8LmSbok}S}be<2z>3)J>bm*eTa3|Do`ap8PW z+QX+r@@08SACPonmsKF2tQ+npI!ThHdBi2hi6`rT@HKgB(R~@cGIv#gp30eb5h!%F z++iW{DGf>fMS&p}!m_%w`nxiJtqb%Ij>IZ|xL2-UUGJFtGGheub72CoEUKeh$4BKp ziGk~khQSyyOJo_Ciu+dG&_hAyBqyh|H_{X3Knk2wWuY6qN7H_933}o*`^n26MGo5uVKsu36(yxP>W#(c zJ3?Cm8xe-rSLAeBN${3S$^Vsm+b{ysv_!;PqQO<<@!%O6Yf$U~nrN`*$Nifil@?Vo zf*q02ddmc=2N1&VP#3^p5OZ8!(o?&7bscdV&6#Yt;Mh>9 z;WWIHB9P;2tWQJ~V=(Y5m^2Dx0d3MG-UKnt$%I%K#GL0E^pxhbXZ*wgEQG#G2`MikTQfl^k^qI4h*IyI$+ay`2ts78m9(va z>rafqanJYFfr$W%azM+_WTPTYJuM|7?D_LUbMKONhjh=hD?b+pM@1V*5?H#(s=WIN z|K3?7d-#~R5{MulC%*%f*l%+%F6wjbpxSCoU}lo~I}6kVr@%T(CVERas@6l-w5iA` zg&5XHkg8bte1QBzJ0Uf>B6INSj+1l0^pf`A;Na?fZ)?*$bg7G>{ovf?CaO|1{SX!D zj9vO=l?6qW3rz56?s8I4-l7y%-ef>J&%?$eg~+6j?RHv`Acgzj1QL+~NJVZJD-i#g z*mu_jeW|(%J~6SexwFc}L!ElZb@FLnQZOqqV6dQ|TWWv7^%NrBrl1G(Zu64CGlsZj zDXxLm(2@0+fRXak9pUv5f>1F^V7(MINHAMS4BKxL!bmDT%D&8*zOiDKT~kQy9yGOz zBFN%l2r`vmm}R6ggpSOawq(~^qbjh*k@c0^XF9HmE6j%#se!>e(21aG|zT65CB440U z!dWXgUY<{wC_YA33(tTeQduSiNJrBtAxpD0ips_D(Tcrq^|iqY1>ngOzaM(bIzRXt zcBOcfj#yXjPGwj61B5?y8k}tx^n+DSs&b>2@Y6u4y?R+!iGXm;X2MszA89P*Ft5+t zZQK%}PNToxD8KQ+il183%bs6ebRJo=>ky~S3?N_fk!YY%NWK~7nO>*}J!oocw+>8? zXya?EJDDDbN-0u%Oh13vfb4+T{bI8SJxjB32Y1(Ohv<*W@=AjUALGjfg31>Vgm|OLKHc~!c4BKn7ltTS|GTcgH)D5XE;)E4%nukP# z8faBHnEEwgEb!?TAA_jz>^A;T+FBMl1rzWw2QEFZt$20^$&X}cMRTIM^e3C%!H#0p zbL|DfY=s4LiJf0?R1B$em2numc~Tbx5*WFD;&u13zP)|MpiUSEa3s>IOn@vCU0w2y zPGS3#J;Ga9dPl~=N>|t-rAB19VE`!cESw+G5wg*H7$=O@*1wCo7GH7rS38)plh&-z@}A{*U!AWwsSHrFG=4e!CW^h^Ia83!G;s zh`vy@Dm5o8MUKeo358qr3u62_H?Y{O3@%JJN4MyD)FZ^GT-3zcm%dLrZ1hSzbqE)i6NX|G@fNk*o z5j9W%L7eLWia!KgIBirjArfmHAams}+RK$)lvG^@bK*dQb&?R3=#)t3 zv?5%jVGJ>HudEOf^HGCNRyUZhbdVU3q?cO=TSj+)EMsmrD3DN`$=|b2l77Hp-ZBuB zVcBCtHb9*JE4D0`fz06$m}2ZQ)Sd8K@u|sUVwPnbcgXx<3O0b1keYGLqiEJbb_F(K zTs2%9TrJpKG0F2!mNQ%o$?9M(H+;qAesEkILrc~UkkD23aD8VSzgf@UmUJAQXkMIP zZ?WCcaU>l{^5>)ML% artZd4RJS|>EYW8#~{}81TuoPxH1g%r+=Y4pO+#FP#zlp z#4&;yxfeAHxUA+F;kG9g-(ol}Me2W{AOVa>#3|4(r!XR_BV(DE+L2%HImB-6LeG78 z$TA_sN_;d$W`OV5Jf?zz$P2;7qHY-^)*14LUCD|T!hGQoq!05&G%Wb8XFI5XL zLhO_<7y0rHZUOE!am9OQ=IRUy>I|HOK9DDPQFD3rLt$G&n2mrV3yH9(3XgEDJ1&``R4+)nmZ}>s=%`EiRyOCF z!2E$t6pyP`RJAGRd$bK@IAQJ%OU5sjM2sZkAK~M=NlvO z$d(9HJR|@bDo9^pXfo`TgHsBOqdbPU^0CpyJf~DfpM1KEx}jqzkqzRzBg2`{8jQB% z_ET0y5ZU|fUlFyG$XjY)xEEnv_xfR#bo^HDZC$V_e#U@SF3 z$F_dlE=X90kHufRyys$^(u|q`VdR{02VY?Tl5fG3e1@EFybH*3QPP> zc1Bz|NDpE3GU3#dNLEqR>A|!M$m3GyVGiPql@A8CU7r1%O1kG@`W(L9CI+@X2L`vN z2|g~*x2)HuzAg+pjK2m3x5~*j2?Feq?_-!YRF%=tgF&_d+C5nzmivI3qeEN_WAVgR zGD(h_w;tTm2SM641jv*#DNU4LmvJR!yxt+5M(ji8LitAz#Zv%m1?kL`6jG={2y^nEPLNeZcD zSv#*`jEb_oj}6y1OIpIk}s89CU{?{!%VBh%%&!E zXl%Sv;wxQZ=gqZCmCL4*ovxA#E1o4#aDG~nv5$@$KCe)_DUXdmQbly$Vv3h7A}r^- zJ0{Hi7TEwrLi@lP?!9IC$S+I%MV_q2nC)Cs&@7tWZ6FeJZFsx|s@1(Yz(qFwjYrP>f=NDd@vh_a4_iu!W!+prS<}*eM7d7N% zUz6eF+(^lBhqGJ;` zs_RS9 zyUBgx<(8J{yR$7#IE z>+$nHWn++yqQ5v(Vi0%`Y~K-3`B>6=lnmV(!`#(rO4MK&`>5PWBT+4JOyXQZS9E)r z06_6@L=lM4iB>{abOS-s613O3MKOI}v~IxYiRmG6ED#{vvQ|!W#M|;j7+S#saDUXp zFjlE>=)-2^Yd3+2V!S%Dl%M>cG%3Swd4@pl?S7m~B)$R#Yw+j|sJZ zm~*xek`U|R?pQYdU84c>>{Nae874tn;!Si8kl;(dl0%Tts0TqZ9E2fu&axde6yelD zylB*v;slW5}?|oRRQ}^yEHZQ_TpP=Bqn~ zk1#cca;6g4&>>k;Q6g6|M1p=jpPI2=GHSf|cKXr6XcBMpb6!OqOv$yQy}O%JAHHNc z-@H4R9@F?PXXq{u0IctmqV!*xK2N};Z+v0Uo{%YncWD1B2asnZGMa+mVD3y7d568y zd)$(-)gz}hjU)3B&?b&UR5GN3(=X_P3`tMeEdzUqTw9{1FC+~Z(MtnC@A1?R^7uMK zPVw8kOA7N4NJ!uD*``S2vDiF6D5k^Li_@V>;z|9zW*CF0rqnA&L9lU7QbD|S-iG<} zQcGaK~Gj%c9dP7N2$c3PhDp}n= z*5YL}XS&^P0;num6S2KqkGTxgyjIL7ena3D4AcfSWJydx6R_HwR0C*14glIT*OQ(5 zyrhSJKjnV^bE<7Qs5B{+)*<_z-#V&nXFoIS+g1WGFcA6FTyW6H5bRh=aL~b81pori z46UK;heLFclgpIl!>U2~(FE9UK)i+bM@J~I4SdmGe7;6N4ABL79t z+9y09)R;kEy;n9)&k-HHjuG~46C5>NXNY8yAcI@dGYj$D+#yLI^8eSJ)?_pj&2A(O zeyn@s7dV;-kIf}4QObB>_4zfNS}k5ohb)n-@}9gJ0Q8If@sVQ%c5Y&TyaUKD-Q|Y zv!HBDW4@OCVpd&aV_p}$(Lqh3Z`4oN_(2c*i8FFUG&(^0a`%>fwUC$^i(%`^kc?=mLWH= zo_M$no;?D6#t|JGO$<)Q=+#S@E}#Va3;=wlyj00k`QAa-BeUD7^+D0+WXPCHt&~5 zoiCfJn8EUKj1ipGSz2;s6n-=SSfIh*aFlZQaX1rl5v~_;^KUS~=5dS_)Q{cOB-bHQ zpf62sNKma736m`=gfz}$#E#Q^Q)vg-nE}k$oBUDegy{&oM2Ebd0#zx(73E*Tdtp%M zDTA)Fc5E42zz`8~V=Gsu(2A*u-90!ZOAg*To_{lIZ!Ur5O(TY8%m&CC6*#b}oI}a0 zV<4k8fvV;`Z~ysHa%)sB*l$4^a_ket)lo{+dl>Y=J#Zuz9Ni&PQBz_>v~gG)Ku~ao z5cJWpQxbXD=W#R>+|jAff4+~vIdad`Fz1($b6nG*T;f0!X;=qvwi8_2VCrL>b}n!~ zOoof}b6v@y=00O4ou9k%70}e_P{KfzQdC?NaCA*t;mC~btuMgoa~3ePVA%S=^>7^Y z&1L34n?M%S)-hLdL)3RzgFyShuXB(VeA5ux*wqnSIam2iHl~Rt5|r0rMn3GmjKMz>-w2;}ykWcHin_Wxw|A7)-8WglPZmWPkr&!8%~cAhci zQLxuCN=d&7SPejTb9m7=ShaG1)bdd@J7R)R$ul9**c_=c6FAATlGRpi#{(egkm#VF zOgl>#=~jX<$5GbtZmS)?|2`x+#+YA!uK}pE8J!VizB2yY1wU){1IygMW8caaA+g6(;i^$`JJ6=V z-;gvz35+wXmCn)LusU+Nl+1%orbC=3i+q>K%OYGU$<`2uW7|@rFc=5p{n2Q)ZDY7Q zb~g!~DqP9cJdnH46I1`GZrD{o)Nv>i8C^D88|g({p09l0(^CjS+(JA9c7PILyx|-` zkRj4bT$kB@ zov}P=TeJuqL$v5{92Nmm@_N{{a)96BMo}}TsNw6Zj6Scne=m=~ocO51*t5x%;+WMr zUP62JA?pN~KGkO;F-X3rAd_YV#q#zl#@v0FyCl+NSaT2(cK=d#sN=wF62Du|z{R~& zGWFCm>zB(ksK-`sxyQtSMM`1qf6>8rJ_pDg@GXeU3$JEYOY-=W zCk*`X62PEw05S4aM-f2marEEzC`P%5z|=uy6p2H&NLevoVOyqseW1{B zNAgmMlzJAl#vUr5<1lK*$`M-(N1!8)ErpYL27Z78&*Cz95ZpCZ%#Hb z?J9Lx6#(5Y(32(PIA9xFwpnQ)k#q@Q8yc2alEKnU&M?#*U>3-Ie|bW2{81=(78%no zt{^vSUfRLX6WPERF-)>hln_|uLG&J((tyG+W(HneG})vvI%?C?1iRE9wYbwC?v)xly?JJfU(dDz=QRB}Wgv0ZXO)O=V8Ld+WhM$&22 z^Fu+^_E^Z0PgFnH)IpGPu-9=)(g|Rgf-!R{X&nY>0rV6bUSCk}V>|&nl#SUkK}K*~ z6S&VDqm=P#6bnM&7hz5mpg{I=cob0B0dG`fSQS9vaqO3MY*>PI*mQl=blJ#pU>fmf z6y-yx72|LDs2x&A*yRF>F>K!S246;R5tL@`ftB@~v} z2-vIG@If~~vqLtLRp{DLN|FcMVij~2xFc)js$^qFSd+><`$-{y9mv%H$PD-%K^KNM z`A-S=K+sWN5_wb)L%5L;;BrOUZ~)lBT0A5yaafj7ut>|Y21pcXwG)`!^WavZ?lM!< zxLK$`q;*glh~8mCQaf1kLeh1}5|GHDWU@kVL{Jn^D^XZih*f}9utiXN(Hd3wS^!Lt zK381&S6SmwfMg<|M-aS9wuB%K$RHI+kcwVgfZkY@P`*<%R7hR$Mi6LFfl&Hah(;U_ ziM#p7;;GrAe0edL8R^pxgmdm~K(sGBI2S;mdR)>@W4++_#N zVUHuamlQ37A{0dwdqIqOzH7>wrK2sJq4?BlD)ecQFHF&ZQ8Qx87HK~&OyoXMtWlU% za9waJ#{|TX65)75P}oyqV1Kk=bgXF3K~e5iYiu5A0HRYtt6cwEvQXq*uuc$O@NW?O z(2Y?{R_Iz#PY?)@dr{m|Zc$uOWK>{RU|-NHP%=;+Q4mt-MDPmG^-=6r6eDM+-ZuB) znabhcf2>mIL{K?O>Bw8qa5diHiauArOzLG(6kvZB*yd8CQ}A6dU+`oQ1W<@lpj^ve9Tx-0MRH_;79OHP&!a2eYGX1TF^^S4Nw46j9YMHkVnz_R+vvw zfDzC;&=Xio4m+ZS^%9uTV{g}kc5()&wS9q_je(hNu(abmA{#g&3*c#A{Ao%2X-`bC4NP{84sMyjKKU zm{hP|AX!jE09}B1lP#)XWzYeToKW*qDp3?&-LKEMSwKqA2OBnW&Qs7|!(nJ1P}*UX zyo3y6V9nQdgJ5(>UEpreXVCOf_+MsR)nGvU)s&EOPjeQp8rcMxmS>zG>QkQull>Q2td=O4j~1Qs7ugGvp@A@su25GjK#{61CU+Fn-W! zP=HXrQoL0VT@ZSZcwjFqQ9ewNCrq8HJR6G=W zuh7s{SVwRQ(IiorRv=d;t{SjKP-Ia0P|jE2Mi4j9cvBo*@NE;&(olg=)2}sos)iD#r{9l38& zAXWHBa7*a_vb}%`|JuxAp=**iQVim@FI7x~wufFtv=E0?Y&s(E3t5Og9--xEhxv?` z1vYKo!;C4Rdz9xw3>qN2mr;N7S3&q#jTct@v(p~a(%x~!CeQT-#?+uF<)V%tmE=ss zs=POR;L?@zF^kf`ibfnh6Taw3=U`XH@K~N1cH6VqtLT(*XG2zLa{LX%nzd(< z(p?uI9>+i1?pG#2_|E{cGFgOOl4P#xUiSZ3gR0BhScZEemEL*(dsbJF)jg;tZqNbFOy_0?o8X zS^Esj&%h6b=t`JZUU?{kmvJQ%Vgh~e2mSCyV~X=^OI)S!?x$ay=a3m!lG!+K?XcEd zMl~j@S!*Ej3RR>V5iKcDgW4=%VF!p}BDF9^jO(%c+P+O_@UrJz>;WL&?C^P;b@%+B zne5_*bH3x|-|B!{+Kg@gl^LrqP3Tv#Ti50D_eCf*ve(oO zROvOGj#(-7oel+_oMT~$*&CPNL~H<|ag^U)ESuccA5Sa*px)&H@5b&8XrHmi*&cQ& z&$4-!*JteOAlkFbl+Qs9N{laGj}@IyPpq6F1)c9&Y=eDJ|FQ$zmHE^F4R47l+6sf` z23Ix-FeWtn-kj#(ypz@3k97Zz@EI+|Evld*u_2=8HRz_4dEfSy=q9t7BkPrKk`ru? z^B~gXQ|D*wE(@))b`5-y-pLlP`MjATu+-rD+~pRLHV2;-Utr8L#@|Q*%7H?HL_ZrC z0O$ZbwhO*Cp@23vOA0sILmyE68WbsNuiX-94Y>{s*_*)qxAGqGDnL}O0` z=62S_YB7xN=kk`y8bxMtcxb}g05$|!M5AOw#H1uKA2~6PequwDa#93vAjC7BP;qP| z@#B33y@DfHVO4OHXFh0OHZ)Hs7t>TZ9SwULRRBTY8?jemRSF-7l5tUvjBsl`l*Thm#(6pm1ehkHDH5Q1D50 z0YNCfHc_(kJk!hO4?+u_QGM5RY!e`7lRt6P^wGR&>0w?xo$M-JJ&0FkWuSw=v&!J3 z*-U62t#y?iN2toNU(s$DqifP0IU@(qKUFSCEYu-qmv2Dq7NJd)FJ3G!T|b?pO_#4= zOdcaYlAm)tWNND@S!h>&iL^1u>OR9~HMRnz6(t7w-NfmL1^ntb$TnM4v`C<8pf*5x zdg&S?B?_Rt-Zhlqw+|LD@gPLLzVfH=xvTg#8@6A~1|U z{Uhr=U9)Y*6982=3(_1Ls8saObgaWe<9IF%HW}GY`IGnVADY4@sgBaOX1Q;EV{FGh z!=gu$KF)flA7);;Z+=sLp!HZf7O2LJceUs>9UE2g6BR=wq>cfl{MAF&Cn3+WL4IW*H7Pxmkw1rn8bycQw=T7Jeutfmw_99#W zUb5x(hTI%_lYO7TLg<*`q;X&NxGiTOl+2p4W`_5yfI?ogj387Rmm(w>&6IGMl@oJ> z-i#`-1HjmA9JDCeLtNhiVO(Ks$d|KX1(0hC>Cn{lo>p^y16$l~M^ka*SogHA$nrDD zH|ccH6x#<})&TG<<~&(@Ho{1&loyWzY9Y7Peo*PrlrBJMRD3i-o8Cyz$JTeYaM`I8 z%3XdCD#|2xk3%$;yhK@La>T)D|EAG*9bk01jnvI1+r)abZ7??_8HhDcGi~XAWU#jWHA7N=a%0}9DBdw_o4Ha-c@9Pi3~Vsv{#V7 z(EXEN82(o*A$5S;wER0!1zEEPmfeggvmly+Zegeew$E6Cpi!J&a-ad7v1uR>c6jVy zf;k$A%9_GxT@F5FBhZD37XFS(?zn}abwGOic;-7#KatuU947H>dds34c6(@)dfF92bwP?v;(-|LocBuJ~!m$1`M zl*}}%Kb7*G1@qy~S2J_omikTH1ZzsnCTt$uO(qt@pE(fDEFY@z2<8D?r|&_QbIfWB zDMC~|j2MTP-a+Z_nVxZ=8J)1cSJc8LT4wfG0A#?*ESU!WW9?z8W!VbVLX`5D<$8LP zgV@k?Z067ecZ$eTZA|HSLDvoiDV``<>A-Q~*egpFY8;t~lyHP&$!ld0(E&u?+llUO za?J5Y>=9Xp0C!v%+UCGVco-@AX5`SW}$6*gfga__ex| zWJceT-E1bYL)E$4x=&X$lw;J9)ku$(8EMui5Yp>dewv>$a-TO4(=Gg_oN>#-9x#V8 z-!JK_MjaviKF1T~(C>+uO?1o)sxzK;Wba9%9c;+O(7! z+EIEj2`L9c@y&YUXd6t2SwKaNA#OeXI} z;mXPeVKhwCiMjJvXf<_3&)&k~HBrt5&gxRI*4xqHAbR%$%Ob%?$tku)P&BI^Ww!F~ zOw@=qvveHkWI?&VbeU^>8&}4y!T>boG7Rdp_%Ycug;uouwD`keBCrUxX5&(814%Gs zklq25`+Huv1&UCfs{K+#dgNe@yewqnm%1Yjei#;ung(J}=aduYc{%pu?7N))1#JVApdY+9R4{FXJq_fec}5w1Z2-Ne6@nX+w?mWQrRtbc!5T715-g$Z6o$Z+ph|ztmCB2TGTH)r;tO0ZJR3stGVEFaR4|E&QCyqRV*|3# zof0O?0E-!l5=$b4S2mchD{ zgambTCagc>aPuQ^sBKIf)I|IokYo|$beXeH_$$!+RkM(hY=Puh%#8g-<=@;}%l6i9 zz!2X!RJ`0t0m{;3T?&ZCaX!UY^df6plwCl7S(HLn5s=XE#BkQ=u-J_Nn*1?la{ihl zpN&Ym26AyRAMl2a)ZF*gurr>#1r*LFEBb}xM1nVz-Y4XGwxIwX42a-hfC|-ZklN@@ zaF4QaWWut3pvPK|6zMvcF zKyMC{5K2yJY(No~ftS-5Xo)^>vo;F)4y#K&o!epv8H;E6Mom@1b`zL*I>U$apU@G! z6vLCpiQFpltaf5TyY9f37f{8_81FcZf8!GD7p7`fkeqE)d;h|{^&-?z-`iG$gz5x$Jnf7qO>_r9ip{#ZSYQg zo%Iu`lq&>bgby~t^b3hv%Md*FJZ?})#Evu@bh=}3^NRQ==7NE}oAPL(*N{*^D=xGf z(5qV~$pJjBF&Y4yhjZM${uaqHKtvwwAgo{-*W~#_=&)+Y?0KUyh;~n_vM_g2Cn(#B zV5z%B&uuURhx}72rOpoRGDxPw26{R-WQb@{xTcz(QB8Y-@gRiXJlsio+2bL9p5~%ox6J7`4jCna+rixjvN)mw}DCWKL{c!Aqn}#S5{|a0} zN$C5kas43m(O~xB0J5oAxLnCmQ+#pBQr3Jr*hO4^3D^h*Nl*dvGNwrK@=8_>g(87f z-ekb-5QqeC{n1P?U;9B>hzNLrMHUU@(zK)__;HkaD{>@f<&SOH7;^YdFg5S`#ozm2 zW2l#RDM{RJ;8l7-^k@N*bDcdd7`A}NI}m!p61C)OBSbJ6hnyA&65MWFk1Mr^N|TlN8;U`_ORvPnI4NJlr{70|^y%WnW1p(JBK5b;0)Jh{T|f_>A!@wXyIDN4)0MzZp}1)@!m9^~3nV*htKv z&t>W)tBmWO8NK?PVJ&FvMuXVFJq$=ig_;t|=v-q5h4%*V6dlTUAN~_$vrt>*Em&^M z5bE<>hp9C+%t~V^ToOP^V_Xmg1-df~P#k36k+dwhgSzui(ld#w|CE;$NPHo*8Q1)% zO_u=_Mrv1(1z%nARNm0=bR-Va7ZzA_BrZ{x7t8j-D!KH+>N$5%A(o`Ms^BL~o4-Xp zr_~Nvw;=rPtx*oLi-iQey70z@377?L^Uak5QIgOiS6Wb5Om|NZ&1g|lB(u0f_dyVT z%#mv)?~UpJAtJdKjA{TDJz398YDa})^jLoMSN6nKZb@VpP!pNtQIYEJ9Ed%K)tUBoZU^dqwH#Q>j`>E0B?J0{4GNZK`fk%@*Gu-0n?OP`|Na zt2+i@!-X}U&>K4w^Fw$E&Et4y=B+kboWz9@m|;cseJO#tB92J-!@uWUkc-@Qw%(QuWLIK6j zCeComp9I9lCZ*(98o~3PEs^0dEt}o|h~UxdG6QZrd}b8L%phIbfE79h-@Mrzj>^5+ zDQ5Dt1$P}bW_0d6F)%*l(Ix$PmuAaj%^22}x)fxS0&&FMK!e`fZhnKgnMDf0Q|`nN z6J>0ctQr=bK+7bR#&JoN#h^n8V`06KY@UvUqiY~Gz|g8fS5DN>x!q+~OW9;FzKSUQ zQy0nCq{U}uaBrmEh~j}^JNI`+=i{=>k9|7(3e z&E8)_;g@NMurFzFQk@uH10$1zBasQ|plQjWiOI3(%HHEb2Y5IsJMm1WY8N2rN)+N9 z9pm5AO+9t#al(M10t?Z68GS|>Xm%4G#QRAL43;1%!%MB_E+AqB5ywuJ;vSf3m>X1! zhHinn6F(-lo^=ynHC0UXs{y>w{OG~G7r~Nxif`pimsXJ>k>=>Ij=V5DTS!ZEVOAkX zmx=+Q+016${?frEgd7beJ4X!@6o&>uS}1niSD-Gf}eXccrT^SOq0#{v%m zs~PONOwx67*P0kTx)Wh%aRUT6j9xOu-!KS21z6qEn#WU?@q|7@T@jQ%Vz^rbGGnM| zWo>}*Gc2~%aZ20iLkK!uv=x!gq?qOd1ZEU(NxvN1MP+4}~cw&qN>NM5E$0Ab)zP*6}%P*6~jIODSb literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-Black.ttf b/presentation/template/lato/LatoLatin-Black.ttf new file mode 100755 index 0000000000000000000000000000000000000000..45c55e4e2e5349765f35ba21fe2531026a48c933 GIT binary patch literal 144228 zcmdSCcVH7o_BcMXyDDz7WmQYEELoOh%aUAVOLFf8+>LE)V{pY((|d;iAqGN8LI@$G zLUJiYCXI0EA&rn++HuKULbzNmm&@gImrJ=12lo2=W>+${F(mo?{`!%Oc6N7m=Dj!X zy?OKI%@|>XkQ9Cx6j4@NGi6)j`C5eEosCeJp=?TH;X^&Q+={5=9SBjM)=WuCy>saP zEePR*@Kr~5U+1E)hIfV{6jY3ma8vh+WdLKJA}edBNTG` ztj?v2;CTep-vL+gtof^ZZI6Hb3_`j%gm$CZGdp`iioKsh{W^H>o(&JeFN=PH`v$m= zo87l;RZshz=ivS#LZZrfGnXu2Ke{MD=+UzXBWnJ_?#?%D-?k$38>o+dsIPO?B035u zL-|$ky^q*ZrPJq7+%J)N^ zfHwVy`mdiq+8&<$6Vi&{JA~f<`k~d__3s70W9!)ELH`!5hx;Hzk*Dwvz7svoHX#%& zV(W%Z2mPC?iGRlz_>eroAEGTtgcbwsDP%*LXeGQn0EvdT40A8N6#;I7RRTGbRr6Q+ z6zZZp09Lqwq9}%@=z9=)ycQWIa}~qSvemVf=p}?MGs4O28oXEZG=A8C&@JRW6DAmd zivfi&-6)AsCxKwK^EFAh(Xz0`X22TiiQW7HE1`N`rzGBlp&0S z=Qb2ZEkL^=&7o%@xnLWV(Ll;U6uF8vK^anxr0MVtByl&&W-daRf5EdEC{tj9d;`*P z=@q1B&Y^h0AJJMa0Zih0#0YwZe-LC3|CMfM+BDuGD3~eJwJO#GFU7DS(egNW-Ndq!S!M8bLN( zv*3C^(ui}AM)Wq)iOwJm)ZNY{_wb;w2ML(`;s0gQhA+|&ASZPm<AWm3~X}|?!AzdkTj4akXj+tLMn%3gLD|uA+n8&UynM{Y<3_$0Cd zyjE%|s)N)^zliD}_0lgO7o|f7s91Cdm;V;cW_F;5g~ezgeFD`$zLCm@wo*|hq$FxH zl--OHsXm}VA4;L?Q9YDNCW#(KRYC^%b_XhkGzCA2rqIP`ir}{>OL#x35q6<+k_11Z zN;)6M%-!WP=nBiNb2O z4xTqcS`UfT8_1LUen>Y%de8s-KDa&yX@#&A)iKYbG{JFH&fJO8=`Wz24?so_qf)_C zR03tPsgH(Nz%>(+5t5t|18?m>xsbAjfGd@Q`Tzz8q(n#=g3nQo;C+-U_&X}3A4VlX z3xFPB!)NIf;8`204afrYE#ZrEoLqg!%LI`Jl9iZ8Z*(I1FOWDrNOa*SeHhS-8}Z2=v}={1bBf=tk7*GZzcK+jz#jp)9B4jg@5irR@j9G!?>3?!l-14(ch_#&87pLW<~1@|b@^ZpQt?G2VB0G8&okFM4S@Z(B5jjvY zN@IHJ9--Qq3BlsSCH+}&>k6*+u zp*PX*(I@DS=nQ%hy^WTj577tcBXkqmkNyRAk`DbB{eXT%KcPS2_t7Q9q9Jq?T}Io` zcKjYnLUVCA7Nh^5LFk6>@bA!5=xOvQ=vV_b;TjZ;=Aq}%^XPHpLyw{3=zq{KejE3p zzoS2(C(x594>h8oB`=x#7?!Te&tCPZy0pMw`cFKhs;_fuNRL%l)0MSVu!O8W7Cp1`31zya#GmL+!6a?H`ZSz6olV8Po=y!NAp?0kz*hLG4ngJ!+)(9QAlkU5a{P|nwFGBh! zLgxn|{ptLB=N~%12cbWui^0nE%SbbZJO#Ek^%0-=8mV(|cb>XHeMyn|1tPzEj(;Ec zr9Ot|kobSp2jog>11tOg&k{rd{}TQ`hyH|~1u57M{J#zO_&*^39|E`i9{qrWa4@V1&JlxyBQ?*W+Jm-n;im~y$huFZhQ|&&|Hw)7l`EI zw@@EQlNqnT7Q7N>J5C&rSK|b{1}EZm*oN0)J4(Y2l#X3^3r@o~;B>qdg(5Fb!JDuf z@4y~>6ZYbMoPl@ZOf(JVkZm{@@5T9eKQ6$xphz?W7ov7tgm>X$d@C-&x1nxaiVxs2 zd^=L1nK&AFR*8CWIX;Lh@SS)Pz5{=NG-x)i!}sEPd>@{I?W!!^b!87rzxEG&BRq))b=+Ue6_XBMqhr5*5LD!oVTULFu)h;?D56JBmbSjmrUL#laeph zHX8tl{!W80xVE_io*2lxV3Ko_oV!EY(bCeQ_2I;p7LyOvHqUHnarkJvp~T>0%$)#` zps2RlComQIgr-6Ozr}|;96rWw0=Nu41A?wX19`(YPJZEiNw<%-8R2=6q2JICbq^#9 z%z##1b4RVVv%aO-)BPWEkVlPvco5^`$R>FCqP|rq!Gfcsn7%@HWhaIsIFcg z?uPn(0-M7pvKt7HAw}IM8St18*nRmOEu=_CF$bjBenJ$2ib@J?#t~u%*~bz;n6CvV z0tiKbafhL#-_%Juf}<4D5^DMkS^zQtrH?k7I*a)xLay<-FAlzfk4I1&{ZT048B^hj zkYKu`*{C%cTWm&$FU&qbQ6;{f&SHm8Vh02a2485=WP%rDOoc7JFmhK9cVTen@P$J) z5gbVjK!I)m+b1dNF!XmAd=em zLPLo!1eh`y8ty1GbU^b@MMPk*tqKeKI|d?!iN58D+E^fy9B`8*I(!QI047%@(3xCS z_5qq))%F2~T%+s*0&>;Z2ZZFRwGW8MRc9X%lWVknAc$NO>;|U~Pj~oiTxPMum&j$7 zIDC3L@`WY-A7G3D81+!M0bnFoBfvd2vngB*}jRP3T)eJC_s|8>rS1Z6suJHgP zx!Uc9Y)%9mb|6hehoOj&iS%bDTzz)JZ%(_y`jk za`=)*x(6$LNwxt2R+Kb@8X}#LGMX}1zfQFq(m8ltP!5+|EzzJTCIpW>N6IIOnSqLP zP2Pc2tN@JC0Dk~@!cRJYu{*sEU%K6?%69nNKUWl(up5edpi7X_Y;YRNi0}d_C-wK2 znaV&}G=o|PwFnaJ##kYT_PwBGlprARKUc&TRFpWg-)S-!viqT~j4Q7VPQDHw19d_v zgRg_gdwyN>6BKxYv`D)X`(|(M6p- zpoXZTPA%j+T0nNkf71ydfnqk5c6zlYXrUDFf(zFQ)HgvR00>c*3@8Agy#N>rRQotc zpvF%4*vtU|zcA7eEqA3Y;D}5@12BSp0*jvprfeWh7WddE1_3u1N=;>?G16Pv9LWd* zeu|=oW~U(=#zq3M{~=U%h2%mr+)aX4Bcm_hQCBlphsobF0Hec~7`4tzSMOo83!O$@vlQ)!{ymyy^H zJVcnKAH?#ihM`-WJ}0za#F2|IV1T-WxlAAxP7o3v#$r$!pu5lWLilXl9@)z zkW3pXLo(AznNrBiAZ19Vos=P&4pN3>I!T#A$aIl1B-2gGkW3FLLoze%zRVFa_mUf5 zEVoDVm1?7pm#(sRiTS9%_oBchr8PlSlEn9nJMTuxMY3VcZz1;JBs;VG2Q=joo}fjGRQ4y?-^ z%>(4lLheq9HzCaA@8|{-3m$?I-SR}37>C+U;^A#RW;cu$#RGz#Vlpy~{|9rYeDoFi z3Out&@Cg$JbNOe;s+Hj7;qL^WGttA}v3K&TSTJLQwIU`9N}9m;lLa#mB+JFFR6V7T zOPFwMvRZPP^fZepRzjI#t+KRS%Ks8>ofI}ojUGr}y|Uh>u_oDLh1!plVwoi+ zF zp$`)bEUR-6vQfidvPT6kaCO6~;g!0f(pXD+n%e`HD~({21T=!ul}gB?qIZup`I2dN z*1Uzq6=7F3oK|f0Xtm*yp<;nTG#ZS-hZWHc1+HF40GdlRiad)tnxbhLzy&@@Q3${# z0N)evIO~Qsxbk-$JW>=+2GlDHhN)1fnyj^XPFMlLG8|- zX=n4PP3)tW*rV(qE@KS|f&q3Ae2L)EVt#@)Lcx0o*qZ^Z^fV`xh@${KK5t6rd4v+_ z0drsuqm+85s4+QG;cCeL*5_@_GiuyZGH(B9dyX!9M&aK6@||aI7&n=9M=K}-W zMnAgUDDtPU>eth0-d4y6Vrj z1t;g3Bdn#}*$E{UolqC9Q)rYqlbrkhdUwMwfj=BD{&?onFmtHE>WngZ;}v4@bgd{d zL@5v19=`50Mz{S8T0tR1jZmcT1<&~V9tJQ9Xbzl}$|xfR91BPZ2MC_&d!7CJ!$W5% z_rqBAdLMhtJLh2M7hiN9oa3cFIl}(*YM)?W!7J=fcg;V(x?pf>!Rq5grob;KI16=0 zAS3C~09Q#}3X@buno#)LGo`zv)W@VYuHGMi{DN!7-{`Spn1LGmNZoAzNp>6a7}plp zF17I_wFdf#@UREk0<^Fcs zw)v%>R2HbJZImE8{qjCEYgF|k;=9l<*(2@wVGQEhy8_|&tb~1(t6&d%dFU;^IKY~+X#*Q@EfIqZS12%KK4=EK-CHcF4a)8hYkt`hVG_1fxp5ao+KK+p}}_tSSXBU zlmA2L^mMp~TK4fo{T9QG&`1bHpojC3Dqa&*tCs33pGfs-(8RDZI680oUnY8dL34}V8}4fT?d zhv+{d{AA?h27z>`k@`Ak?WqkJ3$r8XIHNSxlrkwwzzZ<@++AVB<=J4?U5im88ZGwTUBC;rOynHFT?=CLkO1WynJe3RkU^ zzC5@eJf#x$d%?iv=^WiC;7vW0fsvM!5v8Z)k*irD7YU?{esKTsxPJJgI-dO_`40cL z@k?uX8TIJUH%HGWg&$AR#zj z6$DYD+##>Z1^;j^?GpaLo}(FdePoW+Y0Zgb*Tc;@Oeu{TMKE3|H%kF7ydqekF)9he z(WTMFrXiUrF3v>#E3PDZ@RVSH3RcL5qAm4__67@eL8b@>1fls69wyum}{ffTGrGzF<#Xih_{YGEk8(97DDDB>L z2hqlNbOm($cW*6O@)nLbas)@bxn${^?00v~e{5BL{;J33_dT{MFK^Xjgbp;oum@oH z0R_W)q!*yj1BVmEpM*K1QXyC2fZhkQ&=L`=_#&=HWRp~}4 zEuOk#MoP+z9aCFwYEMaNzlqlR$C?dIpKUvI`H8NsCoUh__E{6Xg)Lg^>znUeTLjnn zeQ>28_YXz4RySRtYE$*CV2^QQGV=-WQZU$KFm8f%L5wjNGC4DyWWoB{vvrw1XL`QR zcj&V{#ie^cyWPhgr@q>-IJG{@z@}1fPug^RX5Z6WCb3aa)95;hW}Ki-f~aD`T0!hD zUtRB@VBjB6ZzlUM;R=p^WR&t7WdvYCLr`a6H48_NTimEGp+xxB0CSNcpL8DOfTCouR$wyffWJzMK}B%qXBy4zzxSVKnNiitB}a3F-9o> znS|;7DVB;p5pL9|(u`F1oJ7o@p~BX0~pgHq&=Qh0ax)ctonQIAM{*m2WdxGp6tC ztv|eGk|H4k=t1CQ4|8xfPXy<+OPZI&#-8>9PJQtXl3`-xOh= zz}(#`j7cf5TnAZ9##!b8-~|!j3S3V9V;*38+2d?4vzc~l4gG1RLIhw8od#xS5=cE>t9yH|dbS|r>sQ)RR zH`$8or{4GVzWra{*M#e>ljq?ON5kqWx_$88?HBHAZN2ZpcF5mXwYt#(V4$@yFC}$? zcH+hr(3m4L&rt@dllC{kX=HaQbdr5{=p>GS z2{6{kEmDa|j@2;#CgZ1IAi*&Bqic0x;c6Ehs^jouAbhwQ@B`YD`uI7$zhW6!1a1#F zD6(KWsFEp(c|hD1;%YXReV6^GSRxWh#Oyba&&4`>R?wS4kwKA~Z-cUIJ<$F)nn6oab;1M$Woaa^Nw#w6;Z4(8oM;?fpJjfuJ#ZRc?O0p=|W0VW*+ z`;wRlLJ^T=BLGOy^+RFAf`#mHV?rqVsW_PZPGZrsr}6LE99(aV3B|F3Ffl8MQQ>0N zV^CsN8NtTOW2t{quS(^tB1|2IpH#|+D!BF_)Pd?;*d_QFqmFZG(-Un;)T}9WIeiCOhE}O98OBtT z)LcHV)Vs7jpRrG?Q|r|RAQiv{^S59QHlX7u*hcJr5*RTdY)QoC=HMSCPO4D=<9=>} zP+A3s`?cWp`f(aHe;9?r(92{hkv7XA&_qv+LT3QSkqIN%PjO(w#RE=Zzzr=|umWvj z<_1-vNX45}u2c|zj_y`+0VmZM>hl;9k>T(pdWhP>_lK=KO;7EYS__hz+ry~HRc%Ez zF0&?4){xw{WO16Sr>)LtXqmez|DNMx`^P)u?3yLFC1yUfpzX-g0%5pDfqyH|#;0i9 z=~3Qkg{RF`x$z6E>q^o9r4ARY##YFm9F!J^^0=v7mVrc{4&NN*{#;89_O#5oSkso9b=$$?1BPqbM<> zAt8HDbMxL_PyX`zx{@a6y3`@!IQ_d2bfU2sj1_BJtNTh~Qj_1wC@J6e+_DYt-clE7 zbZXNKYG@SntPA-3c_x}`Juq$)FB3PvyFzPzxK^s@Ziz;%GCOmf8B^Svr8C`mcC*eb zYfYZJa8Y{uV>eV4-SG0pH76(2DydwlRobc-m)&-c)~M4iBy=gi>CH`xUfok)&B;G< zv4^>~ONf7ozRutqXr1?iaVFLXgev-Z%ao}t_K7`9Np&~R&GExjKOyM%*>mDm0_y}L z>`mbf+n-s?!`n9w9j@=((06hmVK%#Y>3Vfy zwmH`0Ops&uOPP`CnBtmg>2>`*8Trc}=&oDfp#Iky6I-#Wv3^mBK1^*^Gk09FrqvkT zRz>-a*ETGBV_&_~N`;X~Hh@8Jvw+M!T>ulzJ?VN5HZQ<-9|s#ezX~?f1i+>9jtLia z;VKwk*)sz#GcrQ&l*cRO#>kMkxvw-nlPe9^d}OS- zu{Uo@9N4r4Jw>tf`C06rUOn*ld#4m_I=Q^{=!VH2SN(?6bsf>J2$e8QC{)EJ>1Rpv zQ|5JPQYAoIz#|p#U_fTX5KoFQubzN=xf$Phk>RH>Smo*{tdZ2jFWY13xREsh?mqUpP@R=<&w z$hiEet_*^KIU zNq9%FQgDIzS+3@tv6N84+Q}$xB9oelah!m~*fZ=Af6t5qzj_?k6_Y*$PFs>RsKBPzj&GlIoKpIjF|LhJxe z%re0j6YG%xF8~UDSPOQ1xZlxX3Z|Tz**j`tsQu8%$NilgKI6f)2F|k<1n@m-ku@&2+19=YLg-< z){ozkcOzq^6=XCE6IO-CMV|Wx$NAfxQ+LC(6ruQjl{9D4Tpnd+Z-{h?P$Cvfgi|CE z3~N|mXArp30WK5TOA+ghLS^s^b~`+G!E@q!Ed}}nCjNdsBp7#($LLw5YAipv7f?A#6H3Zh*$K79g z@7fsq@so1+-FgK-|8o=f{J@pxgePG9eFXUKx;kjg;>#$n1zDHjy6P%+G>@88@xF_q zifPy8(2*HbV9AYV*%6*4d~}tL982?Sune!ZC*TggZc*sZ;eKT_A0ve$k{D39Bcse! zv>>8+Z5=$JwEEE>f$;+IM+T&Hw44%aoSRJ$JLAfzDdR+&w?1Hj?;H;RFTYm-T-^WB zUU!Wk@AqH;&Nf(NXldmC%QmThR-no*&@o#>uUy9C#O~{7Y$-jc74HJlW z$FJh@2_>Fmd(JKbx%>#Ze>u;O*1$i*?qmA$`dofhM-jT;$&I1l&%HL?dAG5Dg_(CG zUqekc?wn;QfMHx62cEN#YbwYeCT;HY1_j-(kcaAB@pJ~U8aP-u{Z)QFSOW5JMN3Qo z-LL3+^LUVdxoW!_3$DXK5Ac270ybUtcwC4DM?99qaeQT!-7>NYG};p7h&*DoIivOA zrz4$lSjYZoNmE&*IF9|=lqx+f(d)BEnWX;lG+?m}J}Z^uxTq+0PpU!c(6JG!XuL2g zoJ}8XmNA zv)#1$4=w9@tmQa+*43_W@4j%(Pw2Rs+n1MxUdm#Aq6Bk#;>b*w?|%c-4JT?`Tdo4U z>>AtJwFyQ*XuYrQEk6ikdV4K{or5X_j|Pk9PJj)3Q;)+OpR5Uj|BSfBVBF>HAaI*= z#`E~$$Uj*#dfbFI3g#9F%Th_hgC)|S8QBMFCoiswXZMU9kVm`%cz157_dbki&(Kg@ zk|;QxZDdN(yk_7_LA<$=# z5fb-SAoy?0vMyOzf#?z9gy%017>a+aDk-U|Dv`!{u(ELO4F%C=S#n)&QIkuKQ=?54 zLQ%ouL(OWZGS=G$3%+gM;;k>OTQjiSTU&0iN0`#$>Sh!!Jv?n|FO^f3lUH7zr%yF2 zhVC*OCA3hU5~GaMgh%MCjBT+-FP18uQPu0FCee&SqfrIXA)3t2iqh?~^PCl3=_PGC zRe6TWm137B?w(P-ergg4v4ox8h*5xV6ryz|nxlh*ef-1~yC;}$e*$*K@Mcn%$P9KH zP!a61UBi8ZmxjN9=fpQ0J#icUATWgy9~s})_U+)ihfpJW7dHcL8oHI5U)2CJ{3533 z2@(x;VJErqV=Xjh@dT9T$`!Y=>7gkhbz zASF6FrNC?{Ox5X93;8-r*`xR?s8hy8-uYLy0?Q~e38*PPBp6y76IF)Aqnm&xpYcbT z&BSiqD2s<#KB`Fz0pU`YKkkgcHDcNTYG^V1JjjFrexN%5y9e1bJnRr(>0|HYaOdNF zt{RrFro_0hcS5rKdyJ_7G2s)@2oDcH+XOBdfs32mjxty9gX3BPkjK~S=f7Eg-ni}< zjqm=Mu~_iQwMSi8-U+k?@De`!|JD{0#%{aD2oLp>wjdIOIs$l+bytNvob+2Do{l;a zznMLAIBpeoGrHqR;b}t*b!*NO@!_ddFH3>F4l+q6k#!8rKwYqo0cRoj;TM*HuRVe2 zWa3Gl9+~3jRpL8M9bZ%&!5zo zI>ucGjnjAOl8v<~qFu!v%CMsgp$72kP|uM@EO21W+*ozN1@l_8h({Y|if{9NX^k zX?HHlA00SHt>9gR92^u`^JAt095P~&V1G1FU?p32Wh78iWh-9USyi?3l@%*r-Cb3+ z`_+~6X3m_qptqNap4|W1+I4U2tf<)e#=5ny^-msr_Vz=E4jedi=yvEf=)b7p6U;U^ zb4vu=04q>tvU={1hJ*2g#7^+T2`p;TiTKLc!3DzM3yInDR!f%IybIPysIJ0N0>X`b zk)M_G=u8n*ZDc#8@05Y-qY6BGjsZM`n6H( z%C1QnFwDu?_;uy3X?2FYm)6Z1*fP0d>(ldAoXX95a&2HG`CNc%_>Pff%0Zil7ECbIOHn*7^>DX`+We);SBVa1VMB4|nrvUtf66U z!FqJFnYVNYT1_a%9K%L41I5qeux0!T3@ z$Drpf0~{ncoRHbSKZ8WP5g$L%Oe(xHd3{}}T`o|`#Ts37XmOp6J#$hOqX=Q>zJ?Ct zm&yp(=~A9Q)X#*8r8+sO*8pqr<-nVHa6?905==P8*t()6NNDM(AUbL=RI5`>bT%lz9ziX7KN7NgmqFQ0^Y0r7A1+L8g= z7}7+Mjj)YuWGfjrF6C0xfh|uiOo?;ny5o{c>PwPJmK>(utV7O#dqQ?d7Vf_Ek_Sm*NAW+qy!8l5BAThmuL?Z#HemHx>{iuWd`l(d&+ zH|3=!d(1^u2~~?q2fg$M^Pat_8u|(R^V9`^9e9=B)iyH6CcyEtucx`02yv%4H3>OZ z89%*ZO8Hf;!BA7>FL`LSEIoRZ0H5v{Q!+7;%YZY~J;|MexPo5n+nfx>1e}GAFCqK6Z4L8x$ zZ!|oC3HZpQkxcgKCG4WB+a7^#?^W|dSoNM@W*Y$Xs#zev6b^b*2eFi)oLyfBppT4X zd}zX0yMBTx>}Wj3+Wn04T6RBMeQm_3uYcj3;2Ovp2Z2W}|1@g0;O`IS4Df=P#4i4P zhcIWrqj6mzuh+W2|L=wN@+abdzw=^3wix$toM>$1Js9Hzgm-(4b%l%*8qSL`T5x!o z8vTTm8Q@!SF7Pdx^N(K{pP=){LCcvzV?>=tHNf9u?}#&l^BGOR-|Sd4IMhaXo<~2x z`2y4Eu#Sm3WHfpsN`zw&LJz-00N$Joh>mbFu;Bk71HX_AW5q-G{5bJA<)0SMX1lHy zkDsRt^-n@s=J9@Uv6`|l$GT8;}SL^~z86D!ivS8&Bft4*^gw(zb_v_r7Y5}z@vR|Jkw_YHAl&sG`@%(Nb#|Cs z92PCz0?qcr?Yi*jP_a_7zz>C5M+r>DCR3?tXef;dBOs-Br>1tN;}29ZaOX_#ai#XS zISBFa{{pU)09PUAzMjEx{f^oA?dkNeHhC^Ou8EX1TpFFM4BT1rj)b5Fod=jVUAGJ8qG%`~VHDumw5!hWr@(JV$1r zGtBwv`B3jjOgiiUd~S$n5sbrhRt>tn(~RS;Njm^Le> zZfBp>sJFxzqEz}2CYuVCDneCKsS3|ZPqGwGOJ~vh4l28o^ zhNR%E=|mS6p0I2Z6zaM-9wg$_smog5bs~BRCbWmgj?CBJSgy0xx=MuA* z*75D|eNXl=(mHlfWiy@HA$2ARUS|KRlKm7-L+%`-}5!A8CizHz!A`+t{Y7Pq*VV=epnZ;B# z*#1Or{GKXUkp)syp%L;RTBJ%eNmH#03I%@>he?EDeP(B+QHJMoczKz_)Hi~sxINL} z=W+SxYh+Sw^2aCPi)#IIrrd@UbH2wRRqI}e%WX(D7q}gQc~J>@Gs`S0ok|Otaw}vA zt(1acS`FR^&T|H{@GF%<)O?^;Din5E20f?GZ1Q?*a#A(K`SgN5tI_MN%}y1*EY-$H zJiRqZdb2)KYk+KRGGqz96r69qf)>KL*Z#e%qa&jA)K$?`ZC6ETJUl*L>Sv=a_;w|N zf6|d6;uEw2ntn?0X59qsmXc^Jy~h?6W%KAsbQV4vWy>%aGRPDDD%@&tC#X~jZbOWh zoNVHa8Fx?G#c(G00QI_HA@TE*<2_ob`LKO^;S1cmTA`eJPxwOMT`jd~Xp``Thq-s< z%#GB?AVXvghsj6NXU#5yg?Q)L#$hspM;^xuHG%+w_tW_-VgE7-B4$J1NEOPAQl@35Z0Y!%RE1 z9nRV2{HWv4jPVd_+P|oFIKHqsIiIoZ zv8PnINh0$<}Vnb0Wknp2Qc4o@B!HQAAIsH4-%$ zq)#nN1vLpqA9NHBWe!l~f)hl}uuOHrq6ON&Yt+lRW^JEl*!b)+zNfV@H12yMV~ zSILj0EcBbWGI01*@7Yjtdn?hTTYv{|&*)>TybNAHO z?U|dCR5Lqs=u215iHwyQO*i*=7QBi>4j;zBuP*S++}#8Zap*Be23{<#SaGnadtZms z*|D#?>EMbAF}o+jaV$h^T(tl3&i?OD%$jxL`~J?y_b)PvL-;--{`Iq9vw^U~c@TbQ zAL%Kp9!}#W9X8tX2YF}CYLZJ5Z8e2y5vgnIItnB~hYHHb1f#e`gWWFY`zvK}(NcBt zq}1vLyQ3@d{rqg^k3$bu&6re3tse4bW$^9h4gZJvl!4QOfktw$!}WqJ|7r>E-1ZnH z0%Fn-GQqmLiBr=?=F=3%Tr3KcX<}q)`qZMhNpnkLgC!9H_9COQxXW77Wr=3BBGzlu z3QvdYZCWOg-emUdcx79)Ep(;Y92J(*wyD-Ry>Dy7qwG`53Zq0}%J4U{wtaNRMyWYQ z4!p2r_CNQ9qOMt%^fjMXOPTg>^eizGSUY{^g3!r3UN z+n$;+d7C6Ai*#mW-rhkAqf`?$K zlZNx~&D10Cyaj0fEcg5oaN&~Y8tM^{qda(iH^2g#)-#U&dE;@tYdk7YFMKcf7knQJ zH6rlhKEgmm0jVEO{0Fv!zfZCc?-Ztz`eja-VR>NtB}@w?l#=Yg+V8d)XEt?(1>+!* z)EX&`S1R=MzQ$(;?kmg`%M~(FWJS-)JX0zN60}u7FTw|eQmB0Z?3-7)XHY-&Z>T>O zPOB&FK8AY(WvM|ZYx0+cZ}2Aa4Zvh&AA{4jtGO|sg9hB!09h`XvRXhF833x@MjomV zjWUc;YXL4?-SjkpOQZm}LT%oniaHxW25>=r)E7`+EVM;n7$7h}J9TI+{x|(PtZyN# zgwPi_%p0%|hwad?3;Hv8n6;O^goVAOJEgg%KjSCKlYG%LHnDa|o`td~aU|6t0MIsrz2 zg>Hd5V&M#J0^<{SHb*C@n_j>@f0BFtBzX>Px`ywfcf#5nP#*SF!W^FLBF8Nuro~`{cW({V+H?}Zhb{;c#pnQ>A+%knfSSRFE;Swa?mMC4;_Xls$m1RCGx#R%9Zamq zTLq*$zJq^4#o#*^2j3ano(#rB6{tm+Yq_?%>*bVpt2!kyE?Dr1+jYqy(b=?6em4FK zwUzpeYY*(b*_3YROX{;r9PAI{pXl?{TY+~E(`kceskc7j-YvvG34VX&-9ka{r9**t zHS7m;_wcRcI{{3q>F&XA=fCm_!2v@o*Fwg{q;Y&aPEH!Dw?ElC>&Y9dt8aXAR_~MB ztEt)^-`2{?t-hXa-Iy%=z~Es2W*Cau=x(t0{9TW#6GuDZx{T*9`n@iggCSH3F;8YBy}I0n%p7fa9loD-kZEbVbZJXiZ`78zC&hx{41?EI9GLAD8{X;k3^IWVQ zKY;Vdaj|w(UbZs;(a&QLqE66Lk(07{K(@BKwvWQWT$bes4Yg;LTE^foV;he{bczX9 zoJk+m(@C&~_9GYZ1^OLk{;=oP3f&7AoWd@xNmRKHEQ48c2 zdAwzR`Tlry=zf7P%n%8At3_s&jeW)pghVi6_0*M9m72JO#~)L~M@m#7jVl`=UQZe_ zbyf4|$4#p^xRTksnP$O1NZb#c0K}QcRv9_Rfy9u49MND5g1Vu3D(Jq|a6XlFk1cyh6@Ygc<$ErmU z;lYYHXH*YQn*a<200Z#4-vA5%Lsm~n7lIsI6DlM196l^HdCbxIW5FrVS==TmK72i3 z*&f{49hF2tl!{n2ff|1;f>>BZTvAjwe)BruQ>bcqC;g1zMVJq?0Q5xj` z!+9mPfSkZKf*qLv0)2Uw6%rl@gmpp{xIMYLCrzhLs_u40Yw(wWpo8*KXJuz^XQgw} zl*IILfd}bj-hxR9<`~7M5``M3>vsfOPO`l+%zO+Pe^Q9%UyLjmxO*4)x$%8tIsk@kBsDth&iWKu+AmvE@Mb29 zj=7%yiTW%#?UJKmZFTze+9K_!JasfTyKzUmOBJme$q@Xe(A#k*zy|X&EQKjHz?X!j zxKkJ8On0P)=)f`e#SwQ#hWiNC6Wa^QQ~!qYvGDhni2d*`-V0X>Wx@LO%V2AVpmL}w z5bR4PbU-aQw_rrQj_!Yv5XP0jDF@tvFvPkbN34A6aYnlCmUTmk z&ajW2Lu8ghHNz5Nr(h-UJ=jBmv)5p%o=fEcQhIL2GCXCqG!$`Rvi1J>G)l_qH3d(-Xt8w^S5#6&j;6TUOmM-CmyS ziKgXra(!P;R;I-0jyJkX6Qr)zHRbD`-&EM~;O86f`To8-sWw(BmFVUhy*AZyIDz4% zIcH8B=*zY@thw{IbLTz3yFM&BDYnq-s9jKyv7)cD%q9wzg%aA(sC@W)AvvQf0hPdC zpy7S#Bj|z1`$IzlssWzlQf7!|@zVp&pLH^xfS)amKaZBa7^)Qax*uOU^Zq5dN?@!_uCN7k3rX7`B|k;=$zOS0Q?4N`gJ zbF*GJ3SUBvM_-uLJCc8X*2YiopFaKmPd7FmzHwo7;*6u`$Ko9dI}wOB^cxF_SOG>7 zFvF;Wb;*Ip#20MtE0>yte?kw~2s-+=#H(R2lPg3hwHsz324+Crk# z2KGnX(X(&5U7k?jh_*`Eb5~P3BuLdyvi?mP4rcDQ zxZ<9CTU9}tRFYz#cV0~bo-_n+3jUsBrC<%nzKD1*z`F{ken?GbsVUtW+YlM;mnf1-r;SPvaKsESf4?>u}Up$+ci@8IqghbS7n;f7d#k8-R5uI!7qD%DE) zfddC@(_Ja82?uY5dzJil|9$*H(mxnQ4}Z_}!5CdeW>>_J87+V!-r_I{$M#e71cng>LLbGLt zE!!3y6(yC(LUxo~*t7Eaoh`D(UAUWmdd15-CNG}8M52JDh;3Wi$Z1*}QfYTB!DyqJ_wJ?uTSzFq>Q^IJwX^CR$frWWRTVLKF zA$O|E_3qkGjXGRsu&A;VGaMFGWONXnCO^D>-p#R<_S|?Svq9@T8_~G^$%XTuzqv`c zOY8iLwAeLA8VLrWc<5oFRx6i;03X4ek0E|D;x!|)tPyimB(!h?HaRkYXCdBrclqzq zbLkvx(z;v?nJb@IQ+LCx>gaX08lxrGURQ(Hg{gpf{^+ncTAlbmve*>;V5u?3sXIkI z7N7NT`y*Sb5+-$LR4WB=c>dzKpR5SiD#H$EciMtOHY%NF)hVGS-fR9R@cHn+0KPjo z8wA1hfduBkf9d>xE*uD7;DZd{)VIk0a;FV`1fe73)WMJb%dW;0oNISX850t$Q$7&t zwPA+Zc(nQGXP?0joobC`r>3{q?X79}H{^6Z(sy7VF`J=Hn%jM561n*G2oXpRxDz?k z-6Jyrqry@msDwQ1@|eK(&4M*t_@Q0k%+OOJntI?^!ZAvy4$3LaOPHS&9}@9;>0X67 zDp-(wG)15_JJkK9&E)Zkgf~c`;Z!BB(+TOaly{|1J$3w9%S@LQV5^8eH=A4>@gxWj{^~sCu*C$(BPh$0p zFJkq{mX?$3*Dv1w@`8kf1ux%z@TG+b2@78$w8Lm7&`t~M0kE!YCLKjiE(QrDlR%j5 zFxtUau$rQdfdQl!b-~|#Ll-Vwpgz}SME64=h%9&uUVqt1>VZ9}Og7*_oB^E2fT z`M~cqgBszmwt$ltPDTYyOuv_!If&GH{D8YQO*5sjq&-qmocBP)v>T82%ztc6funj> zCi@r9d?!|W98dN{7i#f??ymOs^r_P)xjk{g(S7&LPtRL)=k(egYnNuRpGwKnI7$Y3 zW&#{AKwR-EQz9iN5@7Da3|HwtU5+yid2a%@)kA`<&3x+*Ez8z<>e9Y%*nMi|?E5yf zoBG{ta>vZ#v?`Y-EPM6*X^V2?0e~4Pfg@-3O_e2cs?sAHe_HnFk_<=tt-W4_JZ?&b z$x|AaRN;<3r%NfdHSv%`zYkvqdQAhK74Rn_5@La%!cYx!816(_pg#4CK)`OKwK37H z?Ds=YM<)pl)O|Rfa^rQTI{VO<$5pZH0IrGC-a+>dZsYqi5AY{{?g5s22$6xYuVBvK z6DHz%MPvm#fy{J`__>72xTU^TIa6+ZXHD7W#U0j;@OYIzJ+C1*x7ic5YC+eGm)23= z$P-Ib*av8zSXjFH{^`qK-c_Y{6@1NJSTtbLpPa1ikb`_Hn(%g=Pri}6%DlP0;e7bTjIw&i6v zFD;*R<8#YaoZ4K{RL;JxXmqn*&_DihWp{d=TW8FyVTDpdM2c(nk@?-etySe)o|wPq ziypQxn*6QYGytTO`X})f6IpRd1Cru_qy0@C97aJ@z@DE|J`jvYI&&20_=Pl>4Y zjiEyvJ#6rO5A`4Z?@#zw)nHs4kr8^djD(Z!qckS#(CZQM*X1TnxLl)%3Kd7HVwCHG zQmbZW<#!esq7vM?nZ|t0E9RIDC32_i6?syUL#8&%m0^(~6eG)N&d|l>);SW2b2Ih5 z!NgdDGhl}=Qf&Z7<|r8%>lpCM2n_HrK^QF}v^6s*b#l8qw>{6`^msE;s=HFsrj}>bBU>j;0yQOpBfjLO z=qP=JU{`RYE>dHPj0~3t!>%w2{zKFvpfxWaM41pH3FJdzO6TRnCB?I8!7+SH85w_) z{b#g65Q)prVQZfz*Z9@EaP@7sMakOm`z(x<2(xui-)q2&KmqHBul$w>quHk3O4sTu z-CG-@j54vHCW$!th%fnm@Fm|#%7Y|=cL7u*Y^i2k?9GGhUc6`!FQHP{CHUs^co(}2 zK7nu6Qz=Xc9S-9V7vHd+zIkv79Zn`D5c_~mGRe$x&Q~9VtwGomgjGS9-o>6`Pd$12I2>=3eh%k>SU`tIsPgQ-+ z(E=TU*v$Q$Zw7kKC^Es?rO^Xq^tePW1@+fTyo8Nf{^|0!aegJcjKcFioi{-JZSVQd zKR>_s^Rs6^hqn6hWcvT{_9oz6m3Q9vIavfD;sPcL35F#9tb`pBH0;sRx}gpz1{8^8 zB`mTi1(HC}DkycUw#tqQ0%C|l94rb11jHstsak8Dd1vW#=IPsa-g*1X)oE+~&*%I7 z0|m#q=9%kxuW7G-IQ{+a+~>F4`?=43{t*8s*3+r|n#u9R+`YM~eV3eAf70_mkjMAV z7&A2Ml8md1$J~@LytZOSe&*QWS(oHrJ#xagv;F`7li%YvTyb^sCGYpizNR~ePhXyV zP1kpLkebAG=i1A!PVREBPlR7G`6Z?6J8AkQlZ}hAeQof5{5uKX^D`wqM@rNqWTLA! zFs^3kxN$?n)IKSH`XoL-rBB?+YcIe2+LtcNN%=I~wj|vCX-W>G?Jzh+9)CES$JL&{ zM0lQ*6Vd5;@qhT!Cn;n!LnzJQ7 z|4*NUU)=DmtZ`}KWjVcN)U|xv;mi0gS6|-ss-z`XofLw6L$&G>55um{%MGwPwL`|@5J_{fIi%XfGF`h%Jw(;t1U zt!~*zn-)*XPxxbJ{9Cs#zk9%-sr9!ObZ(sV_=CmQ4F8K!3no5vdtPl@c*SeghqkdE za((66ZSOu{{|<}(E@1<6<|K{gLzQXw1?nM3C!XuNyPQ*y*@$|%9BtU0Sa|>4-@5vq z=W4Fc|I-KgcjWdcnY!@FE%$zV?#+?%xBv8`E7S6Or;i#|&?5}4t9tyEvWZKk4o^rM znU?Uk->%>BK;-WG9vs?#_*buXy|R0G+nX=U89nf>dE?4=zt}jeyzx7!nMI}jZkW90 z!J=Uc-~C?KB&xaBlY&nYE81(ym&r?Rn z$4680`}ORVUXa|oe{R-QS7qh)|LWxV%ijFht5?7LxQA}4zrVQn{`#9n+L*~8L%T%9!}Ep15F)#v^_Cyxt@A6#?iU8`pm_a0D^ znOQQRck!&%ciqX#T<=0X%`4~ zT4mt-sCRw)`l~KY8!)c_n6m3r@7kL`<^DMnX1wx9>8J)4AiHSB`#Y%dEvG zp8JatgR|~hc1LcnYkKum0~1F7*x4NakC)8SN{a{8T1v3*S-0k2y`;`i8xz6}mwjvY z+R52d^R9@y-!WUnC+4+aR{dP)zde3kkJHoHOl2-4k zr0^cLgkSRNzm>(!yDV)$zZuu1{KKH~p*gqbCsea-nh)@GwkA%A_0L|*ryjF-)h}_% z3!Mi$*L5CzA@K^<@598X{>R`M(}NrNn?(Lb1OI+3@X5C-Mgh-z2Svx`gQM~acy|G^TE$}aIX zA9d~+^1zTGGlqnB|LKePtax6^L%rzY&P8#&<9GIi@mS-d7sJjyX}aK9%-4?1i#u__ zdp6(nUiby4re5?G&EI|f)$sUn7oMXU^C4qEp1qy_CJruCmyYXoeoS0`xUcg&VKT?h z?^?GmekEU*`mpm)ZLfCz&#?Qe2_YZykZnOf@|ermT)nh1&{i+?bqrwnR}+lb;sXm< zdeZnGELy}r*SRWOHYocWmLcAG=bb^>GrwuwBJStY?@1e!{q?1YM_!#iHEm$c*B35o zrEk3EBMGaqS?{Yy&{o6RjSkOwKu-aNhQBSDGBUjj`OB0&BjL>N9bNUUuFK=zNFMmD!3V;bgEha4nv!D!l_d(o+<&KW-Ub-HuyX-~Ew{&^xde3)xm zzc6n6pu6~lm0$y z%;X`(_mrgf8$D&jh$*A{#jWc-Z1$`3Dq5eIbnEJa3qJiad^ausE5|cl--}7Og?MUB z;^uGA=4>k;n@A3b>lu4ke{KqP!9yepL0svuTL!1}8gT2#k+%-$l`{C|;RDC!UDYFd z{IFr;vwK{XH}3DpO}`=a<|hs=TzK$_n^SL?KCXP`P4#b7R=!bx)6CD)i*7C$cw5nR zOyUL>++38Nkl1(d*o^Fn#TgmJ6SFhM4({7|ZA$4q)i=!CG=KEy`I~0mP<>BnO5w(N zlb@*>HLB*B$@4ZcDkzQq_L5T8US-cf z{HMtiCQVv(|FB{AubOn%_ht+qKI40L4V{pCh0f9)G&cK+E3(IiIOJ?X%2gfvdVa#Y+uq05Q>!~ec>;Xp*XIr2_cp%HAAfyf(AgSy`Luo0 zr|+Bg)&HCD?%Dl&S!X8(dgfRdzbdZslJ8Qce-*^XukwDSg7{@|_gnT4=Vc>Fck?9= zk?!w<#Ixx}v4`hH)}Athe~iQuz&^NZ<@a#}Z&vsZ0OiAv+;~qaZ)VT>? zn?c1d$e!}`4ToK{;c&q1Hx8TV4Tqg0zV5ao+Hg2%YU89^YQ8h1f8lj&HjVh!ki0?T z2FErW#{cENpIXrxQBE%%bWu623s(I9Sym(e?PWRs^Z&-;KIlKI4xHh{Vp76b+S&Nv zAH$_88kAukC&y2w6+U+!&CYON+$>T|ir%02dE(zP+a4Tzn>h5~5eFSY7d;JNk8cqJ z6>t34MsBx$SLO^KLk~DKesrP+hdD)R8M`rSid#0hX~wwhE0c4EU6*vjeG{^7THWzP zcyRa7;g|A|bI3!ZXEffH{@^1IhH<-BlX7hC6|t1}k9W$%Pe- ze>CI8XF~q_BMoCZ`20%FS%|&qa?!0c1UYwNL9B^B`?&0aBU~>y&az9=zte<)%7%-N zjyr$&>_sNTU33(bPL1?&m*04x>qTbKrWEtu!mt0g-{1M}zk7e@-<@~-zxDo382lf< zFF~274DdZ3&Y%q$4N=zD#L?4B&Yt}YpT98K^6$sHqL;9zvfAQ46bKg%~7q))&6>`7Jo46Nwz4LiG*rD{X zZ!z)ST?Y5meIE}qzEQsVBDv0Ji=}@uWb5nsd@|0v3UI+xE6E|l{Q z(K-2x7s;2Om;WeaM?ZFH?+xz-BJUEF{;NZJsPl5^8IwO5{^%R!YcG=Dbw2(2@JG?k zm_HL+eI}irW5x$-L;U>T`CZzW4hcoJk=0VgDCn>)iuLFV z(*NMB{Ab8F+ix-Xi!pidg!PoYG5PwPoiV#8+j@o-lg9@=;}%%XcVy#_SWlHj{2A*@mhd(cue`4}y&dJf|QR@?vZweoBdVgco`S)@DkB5|G^7*=a^+j^kPs@3EZ|4(}KN)=Rjq9Y%S= z`3JFiLSNd4SDX*M4*9PQD1rF7FX{Cy!wmIC(noT}41GJ-S)LgL{m$+X_i7ijV@B`Z zjl#a)*w`Vi^|Eh#QE$j3ecG_I;+tOAdq&?#?EKvy%h18!IkfHB*5UDx5#Tq-S6?Jo zEMn=O)OUf;r;J+7GIaIzDTZoV(FiZV?z^m#nMavnEbhzJo@*Py}O-%f%9J-e5Lef z<;o`}e=?*kIWJc}G5K>bdF;D>&W9ZZE_-Ku-&D%X3obJ;`P$&u7s%B{#pLUQU%O5A zxBXbl$k4h9ZOixO@(=odUH-&Ha+SSU`ZX8HH9m>SpT0=G`@H;ry7M{$`u?A8bE75yaY-m|Xe98Y)ue(Uza$dgqtb9`E%kjVAOrnf{b^$$S#8Hna|F6)n{n&oKpYb8(b5-oV zgglsVGCYC<>W8`x@evZkXzCb>kIZ6g2Y?6e@XXRh=f4;-J z_-Ez8^JnEBA)j_Z{x6)BKi&Cq+~bx%Kt9YDq8Jus?o3;)^KCQqtt#Z30`@u}Ckk;t zm7jT#nEa`Wp1Md{_|nEd&R z+w4(^&d77s#J+os8w5e1Uwf>trnb^B2gUbKQ=~pT0n@eUE4L3|{!N zyi2|HUmnvxamYFSyVO`u%Y*OzSnhWH;t$!^4h9$O2LKK0T+IM*kAU4E`lipk}NSo(8)QcSKo8Izyu zdt!3c$(a0H-}Ci+&h2DvW9ZM+&Zq zl1u+s`ZX8HrGHHRY)l?Ix61i9IsYeuEz19_T=~T0Yc7&2pP2mFnB3=7>AUtB8jq_@ zxtD*a!_3O!XFD!2`BN9kRWD-lb&~UUqv(U*BmIATZp8EdrE?>0#ec)l>joMQKTP~D zo*Oajzwz9N7dSWK-~LPIM*Q3V`MD9q`mg9O-;cdJAAN^+=HuxHHEq^^?(=`23_c6H zg|~$-#dVDv5jQ*TvAFl*K8f!eUmQO(eqQ{#_`~ckO5**A>k}Fib|w5aaZuvpiKi3) zbV=?d3omKzlF;S5UDkHl-Q}~c>0KvweYWd|UH|pcYc8$0^i;Q7x;@$L!|wUrXLo<3 z`{AVQq^hLjNx#2r#$~_iF|5bR9>2M~@8y4S`KHTvUBTn8D{`-R`2CfWuAFvd z)s?@w^7mIIT=mdZ2YX)9b9T=UdX4TiyVw4!ue$p2bvJG=Lty|?%2+h+dRxtntL=bp(Ml=o!bXT0P1NdE5%k_)acc(7nu!Q%zL>%X#pXW@4X_ZR+dz;_1h z8rXZ_oPqBR{QaOQgI*Z4e^BS(I|tVfJ~H^9hV&nD%aEss{LRpALo=m^WhAh|fp-uBdm>cZyypdZ+k`;#-RE zE#5S;>&VAO?i+b<@or|6=rv(X&TCGJ4hMr$?_Fy?ylCqYsY$X!K{J|8Dd@kN(q` zu48(QNgvaHO!1h~F_Xqj8&frA;h4rTPmcNFm{-O$kNNSK<73W@`Rg&i8JjV7z}V}@ z-Zb{kvGZG!<6aoIW!&y@`^SAS?)11X$Nkf|e;pq;zQ_39lL!}uNJ_l-Y1zJ2`X<9{{&U&eP%=r$pFLdJvv6Rw|d(}X)G+&7_S z!r}=lC#;?D(uCJ0v`lz!!iS~lrTt5bOG`^9l};G9Gt zrGH)eo6_Ikm~i72H>Td0d*iSh$KH6$jrZL6;EnTcTz2E*H$H#krW<$N_|A=gebb1W z9=fTKdK%K&b_QYo_Jcui*_eN(C5>ks9~UH;iP5*X?ioD}lcT?cSB=qaXJ(k0W|kQ-v&|f{RCf%^beC|NIo+()y~5dM zoq1IE3O_K9na9l&x_kJcdD1)`olFZANB;5XzZ^cwOeQ{fEV>5nk3I^IMZXWvMC(~w zP|5_SObBKKTe(*H1gB5n1dj;UEvEi9AvnTb<^)!ohC$_%;CvE;!O<^x{y)SlGK zv&O777n+OA#bUU`{I0pwTxKpe>&*tU(OhA!G@Hy-=2M&{nizhc-Yk*#aU<{<^Z8%` z*Xx{Sy}7~MXl^n$n_JAS=1y}Lyd+4Bo`D6?lW=PE%ixl*R@cNxtTP|C{0VclxdwI# zrm=3*C6Lu!0$JT9kkwt#GZ#LMZe7sxcK9qS9$mucv7$?;yLSn7_pU)I`E=#IHZk2) zo?V@1SLfN)d3FtR^=p`C=9>lP2(!p6Hb-4hdPheK`7ce(^0_H_OhxySDVL@~Y+(YfVG-xqf zqn~hn*w;s>ahC=kL_cLaT)Oh4mWdf=rkQ0%%xp8qEY*FfW!#rqCQdgib@#B!tTt=R zT4_RL#X8u{wsf;C-6#pWk;s;AwxyeG>1JEH*_Lj$rJHT(W?Q-ivZb4C=@!VAZnmYH zZRuuPy4jX)p={|E%9d`SZ0Q!tmTsYJ=@!bCZnmYHZRuuPx`nc(n{DY9%9d`SZ0SZR zMSt7U&9-!RJ?-v#+C5M`?H;I}b`Mlfy9cVL-2>Ir?k-*3UAnrvbai(aQhpMODS<4>;RZqLSo_2RV?M^A0 zfJF7Qd#HNaJybpI9;%*p4^>aQhpMODL)Fvnq3UUOm%8pQb?i7sl4R?WY#pb4Su%r> zc9LyOvW-c$G08S2*~TQ>$h(V5ZyS?rW0Gx5vW-c$G08S2*~TQ>m}DE1Y-5sbOtOth zwlT>zCfUX$+n8hZA`L_NwzV`HYVA|B-@x|8+6v3*A1@0k%u2J$taffSX018f@;ScmTwl+NZsu?2n-5X8FAEkp|ApovbFo<; zeUD!o%vC&}yDZoqodtKAyUab&`;oMmZ$&$}emnY8xYyVFeBBy-Ik+tBt9+<^_>kHs zW|)~~mKia#%^b5-9uDWrtKmcD0&}6c$XskbY(8Qxk?oWyajCh?TyEBz4Q8Xc!dz)K znXAml<@4|fbG5m~e2Q7&W#L*`M|qnFpALq=XUymMrrBlT59Mv1V~a1DFPrO}^LlfG zxzXHYZZ@}=Tg_MeSFiFM^s?|ZUvE?F!tLhk<_>eGqDF}o57^u9neUqi%|qs4v&}qW zex&$@KQY_Q)7*>q(V{;KdeEkcv&}kqd7$3y3QE2>z#M1}#wS-$^2MRFz*kW6#o=b` zuZsL@u{kyRF~3&(y2h+E=Q#a5=Q-b8$mr_|+6{5BS#NoRNa+%n=x>R;xYS%`E;sAV z2D8yzVXicr%vI*&(u%l?tIaj$I{&)f++c1rH<_EwE#_8pr}QKupRqeL5sP}-Z#@~$ z{EX{)^s_ywi7|>^yX=b`PIQkALhnPd@ z_j?f$akx2xSofkWQkr6OWb^~BOUyCmM02t^#jJM9T62!`Sz!4>+L>O&NL*~z)57$k z4G|j|<@RC>zY{h^Ux074iZIDEs`yUjPvX7ept!mH_D#Qo8^ z@LhU}t0_6+!Os5=9*Yix?a`sI!#pEWim;bbB<7n1<_J?`v#UdmUak&Dnzxv@nzxy^ zo0H5t%sb7y%rbe2QKC5Atdy@9C5qK%jae)2(V~iV=1%#9=!-|?6QU^|Gmo1m}V!Cn#qBpnanIkR5X*B#fXY#vZI;IDEc0*70qNvGuhEhb~KY2hwMSF zXeI}WW^$ltCNo+P70qNvGntyMYeh5J(M)zUlO4@uM>E;cOb!&yE;cOm;Mr9nEA%Gnx7C&>-2-Om;Mr9nIuW(M%2%&E!zgOm;Mr9nIuW z(M%2%&E!zgOb!*z!vj%Ko>nar495=ArF z(M)zUlNmkY6Gt=I(M)zUlO4_EP|-{d70qNvGuhEhaWqpL%@jv7#nDW0G*cYS6h||~ z(M%zlKV<)I#LQ)knnE=9=>1tnUn!1eildq0Xr?%tDUN1}qnYAprZ}1@j%JFZnc`@s zIGQPrW{RVk;%KHgnkhu{9`2%OrVveCE1D^eW(v_<%C+idildq0Xr>U&awP4HpHqmY zcqY0bNO3e%9L*F*GsV$NaWqpL%@jv7#nDW0G*cYS6h||~(M)kPQyk3{M>ECIOd*>1 zifD?{%}V)-Xo}Tljae)25lykqR5Vi@%@jv7#nDW0G*cYS6h||~(M)kPuW?_0t=WgU zLkIhz63oPCGuJ(dS05tyOPI@QMjy{-`!JvV3D*UT{rWJ6{S+RFo`zb9>cjY%d>B8A z8D^%LWk$?wGsi5|U9g?IV7oZo)a}TbHBV&>(~Lx# zr&{w=Yo2P&Q>}TbHBV(G{v~NzOj(g?D^hJms;x-16{)r&l{t7vkjflflohGW!9`h- z${d_K+KNc*XQ^qPrKWk7n&$awn&+o! zo}Z?9ews#I_=2;cwQ7{+`DvQxr)i#_rg?sv=J{!w=cj3&pQd?!n&$awn&+o!o}Z?9 zewya_X`1J!X`Y{^d48Ja`DvQxr)i89bVtp>(>y;-^ZYa|)Eqp`^V76YbMQ3JPtz!q zUvP?Z9IKjriPTFl!Ay+a%XLroCG;gCXW(F>&=(JgLn%vr83&5P%@NVPTo?J*Vzb(; zF>B2^PPv^{t1olFJK!#JPxLmfTg=wzYe8S)izdWZ%rG;}EHh$en>l8w^dxHNNz}wT zbBXSY=f$PwGIP0EZ#I~X<_dGA*<`LVzt5Xqeern~d_F*bysbRfn;XoH<|cEqxy9TH zufw+=!347>BgX4o@~@-Jf53G?bSvD>i2XV|BknTyFq*v%&xoz8fL(`Y$Oq4e8D^%L zWk$?wGsi5|z3>eA;~B9Irn^?AyH=*VR;IgFrn^?ATeo!A%5>Mtbl1vsw8^e0u6^mQed(@!>8^e0u6^mQed(@!>8^e0u6^mQed(@!>8^e0u6^mQed(@!>8^eK z(B~s|U*=JM`k_e+92|WY4l#%N*J0*xb42tn`L)Qu7MmK6^`kEn$Cwk%$>tQZ+9@@Q z>_=Tz{&Sq$0{^P{V?XM(sQF{Rpx$gS8_g!>X#MEL#JwW34^m>OSY=k5HD;}B!BVl# zT%!9@V#THAGIP0EZ#I~X<_dGA*<`LV*O}|h4dzC3leyX4Vs14x)9goUARaK^Gv7B4 znupB8W}A7$JYh>eG*7||O4Nt2fD)U*DB=_>F~^t_&B^8zbAhQ9qzpVPY6U5SQN&N- zO6JZyou?(wpls;N*t5+#Q>zvkXfB>`nh(vBFw>f3T9Zs`l4(scDFdhYRhncno)M)< zCgT}Vnq*p&Oly*9O){-XrZvg5CYjbGli2+t$fQN(udGR?HOZtmM+bWI4qA>lo)cwJ z?;e5)W@7Yau6stGfQ8X~IKUie4vzLjGQ=Djy@u;y=5TWat!Ne{Txp8Uk(~RTg>~W> z=Q+{Wlg%mS)abSRI*tEju@ZPEERTK*R+yD$m09gPYs^}6w&int_qo2FXFcbe57GW- z;XU1bVRSKEWG*)A=}oej#fy!M^s*Qk-VIkqrAt$^46dU6&!P=n314SKmlf=Yu7f+H zO>mdF$G^6iZ?R^W#cE+K-0SOozHa3iS(e9*SspiL1*f9NkbE3H5M)sw(Sa6>DA0n5 z8D^%LWk$?wGso03nk>eaqMp%YF}4)79+kz|Qq(h=EXI~%sr=6fQ`dS@lf?*A)RUSl zMwp_W)MPQj6!oMgi&e@R_>lY=E?@^?R=7}hg^PG5m=!LLj)D(IZ-Nm*jWQhdpL*<2URM6%xZ+Q7^@i;;=+ z+{8RRi;;=0x0qYaSNvD6Mt_d{HD7PDz1yR2AbFiJc2>BMel|aVf;xY5Mc|xU;nk$|(KeBIs68!;^c3+=HtB7lKgc`kE&st5@=!k1{ zgc^M-*8|Lf=HTd5Bty)h#ZWamLXG}0+(BOxagC0+Mn@Ru>sQt22>s^w z;M=qz5o)xq_xZY&=im`)bTd3)szyg#qa)O4bf88P1!}aIVP=|Hrk<)t7?X%OrfO)! zH7-JpBT}w$5!bkgYh1)NF5(&&p~flA68X(FF5(&&p~gv~8W*9)=~^`|;u;rmjf+s@ zByTcTnW}LS*SH8ZjtElYMAf*6Yh1)NF5(&&agB?(#zkD?BCc@}Y8C{&?$Yk-(`c1VUHcp+n29`h z$fmA+1`8QuXH(b2f#wKo$!4AWG%RPvnoW%mE6pl%wmH|F=k)Wl8w^r2j#3FS&$U@kNlnTySb%}30~r6=V(RhB@|Rjy;*f80kGE@??%ZnPX4p*poS|Kl~iIJegxp z=Gc=t_GAuUgja6zWDaeJC{O0lhKTZH4zq?cL5@9{V^8MTlR2S0nG?#BIm{YFc`}C@ zD$0{N_GFGdnPX4pP(wdOE>GrALq&NqhZ-u%lR5Tejy;(}&5}f(%&{kP?8%%^p3Dj5 z$(&H0%%S9q@??%ZnPX4pQ1T^_Cvzy1qCA-s%9FYD0&hb-+s(zFVj?Sk>=R*4hMgB? z53?sFIhVCK$y3cVGu_NU|J)$cEM$!P4ykQ?mKdseM>&f9Bz)FJ;`<7k?X!A zm$B~qNJ`8x=0tO{ImJ}pkxSnZf%iw%pO;6Uf)!?^S!Js4$Yqs7RNs+H#FcW6?>^Vp z^LU<{OWehWc=ne|-yt0q^29lpzC&DW*7N*2m%c-6WMw9ozM})KWQR#EeaC6IiWRn8 z`i}3y*O`Uo(sz6acUrQ`+(TQDOWz^B6@3Q2?fdTa^*&#>M&~1c*P0wKPf^-)={t@= zJtxZbbE4ef3||?`r8hw<$|`ZBtcrTdoJ(01^^`f6vMTB+b1r37)cRX4<3lmu)V`x! z#)o2&S!|9pOH~pWAL`dz&D+e|%}M4R=AGtU=G`hA;XUS5^IlWW;&Z7ZlnUyIxX@e_ zUB&fcUq8%Fuw3ehepN4)OD`rawOqYeF1=Ucw*1i{*yu#d4|3%HcJ0o5~@zcq!cB>zyil^jzWr zNBKSTeeYN2CXY5j97;LNqfHQpn*Yju-#4+YXbFw+boXSWnkJexdEN8Dm9<6~`X;zul&aK9*HD_Bs$M>D< z>v{C}d9((iT7x`V1KoEauRL0VPvJ`ZnMZ4&>s71@=Fu8# zhC8F1;4X7dbR*X-=3DH#%%cT34)^+cpRZeK+45)sK7(4>$YVZu5`IkG&!fI`cj`OQ zp}vb5W~QmbvN^@9cFG!Bn|%6Z`I-JgJP8XJJ?@0@(Fb6HnHU|+br+tU6;Q6k9%fH^jRH!S zB&lYanQmr8k0Q@B3t7D>pr;TAnuDV{6M2X^G|Cel%APpf9KotZ0cB5Vip`Pi5-*_a ziDS%(=45ktmw@nHe=cRtkWVgY^1JgC*hf>5iA1=Q=QaJ_ThU~V)wMf)S)?CUMj z(Ohr!wN@7kyslWlT#r&mpCZW)U+=VCyUYX8O62c3vhSM*%|qs4v&}qW9#v_i){A=2 zqJSs+;t7>ZYQ1>U{79wLqr?Jw6J2XXu|Ivp=WvKwWEPtv8Ey8bK8j<^iRNT;im9jY z{h6bQwdMlL7c#5rPdySBn~n4r{XNR+Ps@KY=uc$%DkrrY*Y)NGbECP*+-zZ$v? zr|yq$b$!D6e`ubBg~4NtoeG0(?1Cr^_EVM$*~9-OJVI`T>>ucW$9PIr$i9)2>@lCg zOk{xnYJmT0fd6WM|7w6!4sc4=)T68}v0FyWrLABD#JFo9PnS~QW2_PkB!`pm4e}qz z&K7Y$E2sm>?Wgbvd*=qC!!dY_Rgr=0WBD2EFwZcm8OU=|^5;3JINhw&U3hvZR+}}Z zTGW9&ffDQBAl7hx3bUfUVZ_X(m1A^9Egr;^+_zx?^@`9b&w zJ^r9zH$EJM{Ry#foO--g=hI+%5UFW_EtKda4y z9mm1we4J}Ve=yPfMKBoM$PL}Z>1L&JLpM=7;Ro|PTC7$6=qA>|A=YGwH5o!lcmjzu zp;hy*(qxD=8DdR_PzK&bqH;LInhdcfL#)XVYcj-|46!CdcwS6y)?|n^8DdR_Sd$^v zWQa8x$~ZhT7|N)d9-VjE#6iJN;Js##oMAp-&UBgw%~@uh`Hkfp7Y{+1Kv`uOQhU zMB(A^Qg|d}hj;Kn*bN>FK7s9=Su>2Y(8M!gS}-h3kPhKh=9AKv6$WvwDGv;z&5`68 z^I7vb)1C=`;JC~}KYL~cLj zZ`EQHk=rq-7Nf{5Mv+^LBFfK)L6KXGBDWYtZZV1|KTDCT#VB%%QAGLCwOWiKw-`lk zF^a8Wu{C7%i#Dy;8Zx3GWwA9ZwuZ&lu-FEVhQl*09(b7F)w& zYglXzi>+a?H7vG<#n!Oc8Wvl_Vrw{(5%Oo0xOkpHjAVo?_GCssl6Z`P1;JQ20$+_} z)Tfj?X@^HL(i8WXEoLh_ZALOeBL_xkVuqP%W|>ri(|jbQ zZW4SZD2LBdT1L{}O@+_1>OC?%9SmiDEd5KYe~I-kvHm62zr^~NSpO31Ut;}Btbd91 zFJYwmb8?XWCDy;h`j=S$l2H1Wgwnr+l?qY%m#{J^O8*k;Ut;}BLg`;Z4XS|Bzr^~N zSpO31Ut-NC2M5_zKG~&xvP=6EOQu*d#geI%pIfjvV&*cJnM(QjF)Uz3dMf4QbTF0Z zlZNPv)6GhyA^KvqS!34fuZX@_2YFT>O@&ik|R~E{; zvQXBQQD>invaZb5l~HGPE$hl`U74+8PX~7KT)~ue(`?-|TQ|+tF}vcgrrEk_wr-lO zn`Y~#*}7@AZknx|X6vTex@op!#VdX|`^ft(#`+rrEk_wr-lOn`Y~#*}7@A zZknx|X6vTex@op!#VdX}0b@MvP-Q&nb%;;!JE5b1A(uvFkW2h&~Ai(<97e zBrj^W3>3$CESh$uEMLSj~O0TAXfH z>h9<-R+}|ut@J^EvCdqg{2A?wOU-5Gal{51d<*{;}n27RNIWu2T9xJ!U%9#i0S{^IsiH0bTmGeYHl*h_>q9Mv- z57KwM0@V&b=vMbZx4N?!>5U6!G1B{6IFd2REcyp=j5*PqY)&!nb;>exnmIlAob>mZ z_nR}!2h5pH^PoA)tTP`n7dX$x;2v^V5!?n>@-F-=#)M_?(claCSa2A=794=vIQ@PW zW5N!&JNP|()7QzN%JSe{N!mVFLpw_R#tsl?U=(8%^`mtU@>sR4+ufpwKh1j$`-0oGl-K%iBSK)TA!tGv#+r0|6dlhc?*#AX)UTM23ZC9o3sYcNN?TWH>nd$srLC*9 zb(OZR($-blx=LGDY3nL&U8Sw7v~`uXuFBR`*}5uQS7qy}Y+aSDtFm=fwyw(7RoS{K zTUTZ4s%%}At*f$iRkp6m)>YZMDqB}&>#A&Bm949?byc>m%GOocx++^&W$UVJU6rk? zvUOFquFBR`*}5uQS7qy}Y+W^D&eNQkm&N|NYHSoW+ONj0dYB)56Kc#~&C0-Mu#q`z zHR}VXV3Q?}(IQo2_51J*R#&Q7B~Z#YeckNq{p{GRW?t|CJi_W|HGVh@kI~;%;|Kj! zhk1t8gK9>nXoWY>2XBbe%}Qy7U1GIaV`~0Vja{NvJgP&r`PHlvi1W-7=7;73#0 zD|5_R>=I>HEp{!1vZ$7_`g5pNsam4;3Dl}ot;=eyXK=OXe*}rDC25MERmPm=3 zW7c8?`D2BsRjFF6;4WApYE`NhD@0jQYb$DP#ccflQ{HOTs?==s6tyZf8$BO`T9ulO zw*8@2rDl6oYBrkxjBBk*%|`Q&p;o14qra}TDm5D`wnD8+&Bh9))T-2MtmuGRm70we zqE@A5dsS*Swx9#Hh+37JjV)+`EuvPXW@C$}RjJw7B5GA?HW5KXuS(4(BA*9!wyw_B z)!Di_TUTf6>TF$|t*f(jb+)d~*45d%I$Kv~>*{P>ovo|0b#=C`&eql0x;k4|XY1;0 zU7f9~vvqa0uFlrg*}6JgS7+<$Y+aqLtFv`=wyw_B)!Di_TUTf6=3v)tJoSy3*|Z6B zXcfg==9N4R=860qteXh;m$)bgy*)h_dw&|tWp2(LnVX9l zW~P~CM$Bw8$1Ig@cnRI`k~rPe+ahzZSJc}gbBUK&D?PDStTXj~%3R_l&NEN5(|sQH z4u%mkm*-jYu=fX0dlh(o5*-A$5u>1w z&`qp1Ys^~ZiEd&YoNpcGTL*Svp~HOZ!1Gvi;CYVINQe2>VZL>kZyn}ahxyiFzIB*y z9p+ny`ILtr1oN%KeCseD|41So=39sP*5M&?{zdQ*d43Tr;AG(e@IF&#%Pe55C_cp+ z<^o37jqqv4rwbS*9)i!ZR=I%nkp1v^zS^*W?;A{orx|B1#Jb5aV&*bxU5IrjU;*vM zLhk!zun^5jgXZFNvr=i$T&y;0%v${wnu~RCk@H{V{1@T9caSK5p3C{yL1?mw)eEuA zoMujEJ!cU%iuao{%m>VwPV=BS%d9gWG9RTsTg15iF8Eq-6WoTs7BOzWAMR$1zld?W zuA6=R4(nZu@Xi)^IM@!4@XI2+xdR?^Zta{-x`+|Gct&X$v7<91c2WLWWdAI(e-;s0 zY_xwC**}YjtR(W!BKv1i%s<2q8;PCxeN$^$i-?{0tofX&(^M8Q!q**NFkduZr&r*; z0d!!mu_-?lTThGPTbFuZTC;!`+NvQp- zXH@x1sP?no?Popr+RU}u&wB241gib4cl%k-efcZyE2{mhXOzg_y8Wzo`&rK@Q4+PE z^^6ilwV(BFKkFGK>RRn*J=%(DKkLy}RQp+vwxZh425Z}3Z5ym@gSBn2whh*{!P+*k z2J#^3rE`PzY_OgU*0aHSHdxOF>)BvE8?0x8^=z=74c4>4dNx?k2J6{iJsYfNgY|5% zo(lKak2=BsO<{q=fY-Q!M(LF*V5j@WI2g;Kk0o~{k#0)dj z%rYZpwwYs=$_o6675Gz}ZdOWXJR??{HD;|W!ZTu>Imhz3<~(zW^k?ltTxu>emz(uw zgQ+opBWoApO0&t-F78IwF2wcb26Lmi$=qyiF}K1M#ON~^&u*d>#7OMPK8+Q`=x!J> zbLnf?8AqSHf*5Uw1w1idLI3+Rs5fC(;B9e_*wK15RFUyIFZv&O77HLqF8T9$I&YwpLZE3x_)!Adme z?r1J*^=~D0hr6S>SZ&srwbBR8#X56|@~1qAOU-5Gayzdc&fLHA(a&j-pQXYhq1OTyE-Qzb4isMV;)| zL>xt(?AJsbMV;)|M7yV6R)7jN%#R}?-l;`W7zJL9q?6R z{Y$vl+|L;PRnm7r&0n@-=}H(eb7`5kW9cSX!0xi`tP<>pD;PO%XO*BCz7b7>yUjPv zX0x67@^-X^c!NCghB)14ppyBJp=maca&+6;k9XWRwr<=8w&o=Ae4*phO4~fvP?eO33;BU7DJNR4V{H-|M zthIc$SqFFWx6~{CR?KB~v(p}9ha>vaLz3rCJoYmvkL|R_cG_b*nfaz6k;irtqiiUT z?c~1X#(l-}8|kL|R_cCu@Td*Lzhn0efk$9CFdJMFPIXp;{! z(k)|5{YJ2b(dHZUL21Do;V5>#z7dXQAKDv?HmAVnSa*Me89^>%;&^P_O=~75M#sXQ ztmN$GEvnOSfH}|{%xc(f+AeV@rxWa^?GlHZdLFc!woAVjn^P&VyU}MTthS`atTpHO zujbJf?PlksC~bGsrir`EJ<%+#Tg~L7OIKn3-ml z88NfX9J5rG@_rVUvWHMyU@kNlnTySb%}2~7(w|mKTxu>emz(uwgV|`VFjtyQ<|^}X z`G-A(;%ak^`4qd(b~7WmAL^Xm-OLCk!e@E+Z#S_MpJ#=7H|?HuSZ{7HH=3Kw&E^(! ztGP{nX0M?5y14_s>5}uNOU|1vId3`^Z@T2X>5}uNOU|1vId8h;G`r+9yW}*xDml&UGR502In6FP z&FnQj74Q~2?LTkUnrbcgxV79vYdMQ+wU&F_zwB{qxrcT#3rVx77IKeU$UW{;_P9^k z<342%J?y4nk6Xw+ZXx%$h1^36NzSy8Vx6fzWsm!mJ?>NXxKG*RK4p(v$USZ$TdZx1 zwQX_R-ePTAtZj?6ZLzj3*0#mkwpiO1x92U^w#C}ESlbqB+hT27tZj?6ZLzj3*0#mk zwpiO1+Ve9(i?waBwk_7S#oD%5+ZJp47TVSZZ=vn;P^ZE31`_kKx6pP)@D@7oD>{hN zO+5>K3mrr~J%0-w#9F7HZPvlJsjZ*Fp3EcO<}UZc2=A)%4k+`lx4FwMm``u=Hut(0 zHZtaXn^oTvunGO&#xozoX0zS$4v~66p6EuN=q64#E0rg@iPdI}S*!f#i5LmT4`^^;pPa+QY-DPel0e2vQR5~vqhaO)Eekyq1Her3$+G1 zS*VpZ`88OMH(Gg1Laa2a%xdRTW7e9pE!W8mt-K|n^z&F@Xr;v#bskYGZ_<4RbskYG z`?|$?V%Hipn3})0@;1Z?xP|=;t-)4Cysg12JRfNdUUi)BbBC!jlv>%fE*`K~-!tDg51NO}!)BYQ^`chZE+m-)6M&&Gi#6H4D$hV zrde)2XwEV#%u0ENwneNqYs^~tinc|pGk3}ZL|Hs456~Zp$IRpA3HgNfM?4ANrM3Je z?8%#|@6uX61|!Tt-X$*YLp_apm)7!Qs1^QqX#+_~8>s7P=5$lfhTcU_QO}0nr41Cd zLjEp#ih6=@z;`_0J96%kCA#AQ-|>L&c))k$O(y;7J09>I5BQD;@TcUu;{o6CfbV#~ zcRb)b9`GFx_>KpI2U$Nq7|asG1oJBM1@lFCh?4ws*wyS|_AyhgPL4pG`gofCM7c2(3lZ-;0zxu$Gm3uRl(Hw#Rim~n`*Ef$+2&0EY{&D+e| z%}M4R=AGtU=6qRA>nf_vKg0-G)Y+1U7$J)fn~#`FWD%{axYS%`E;sAV2D8yzVXicr z%vI)7?8`h9KEp1rLyUfN;dAVGJQO}JA2Rw?{_D*R=0l$c}8iRNT;idhysOPU$M zE${)eoH2hJy}wv#R+*aJw|S1%<~dqhFx&DuzWZEX&tq>!8|716;QSZb>P6;av!0c% zHcF}3XuDQ0Z)#)2^$V!CwAvUCoPk=UZ(}?lzTz~m^0cCjQqA8oN5iX>ZTv~u7S%4b z@rJKB!qm>yHp;d*(j3Lk)HY_jGvFA$64DlqrRQp+Jy)7r&D+e|%}M4R=AGtU=6q>R znHLwB>V4WM^P+m6Hp;yCh^bj&n`eb>o)xxvR@mlQVVh@#ZJrgjc~;owSz()Jg>9Y{ zws}_A#_X?#e4b(C&_=NuQZAEh3NW6X)>WOIsH#yg=$DOESY2h4KI zD@;AFIm)}nVzu+EF>B4)me29s=lXgcUOGxW5_K-qQCj<-!bRp{Q%^vSQjf$&>cvsU zIX{Q1%vbzZuPP<=g*4O@d__$W^UVTtgjr-3n;LN)WnE|*9L-AOQEJL?c#Gw?nzxy^ zo0H5t%sb7y%=z**bwt!Vo=52y#6{*}^I`K5bBVk`9TAtB%gp6wz1d(kni|&~rH+VA z<|^|kp7|bi9XU!JDdbxH!cpo7(V>puPwI&HlKHZ^&VRe!++c1rH<_DFeT(fVbwsp> zIgv^Eyk=_m+EHqX_`12n-03LnG7mTw@0stL2hBs~VYAKD6ZWIj6kRp#T;kXe<4IP_413L9iO8WJ{NV?Q+uehp4vl=ncG91_0-PlrKq!>+8HOK zIX*`#d@e3Emzm4Wdb7dQ30Lj-TwH1D`-AQDJEFb>)Xu8o9q?)Top$^zKF=PNcKoa~ z>&*@3Mst(7+1z4og&p>DhyC1PKX=&Ayz}Z`<>wBU)eif)!+!3tpF8a54*R)-QmT~l za|fkVl%G57=MMY1!+!3tpF3DF&gNJ7xq}ts525_rVLx}+&mH!2hyC1PKX=&A9rkmF z{oG+cci7Jz_H&2*++ja=*v}pG@90DSF3Qgx^zWkl++ja=*v}obU6RPp9rkmF{oG+c zci7Jz_H&2*++ja=(2py<{MH3Q&r)f=nJsLWM3KA?6QOGa)(Ev zN8tz24|y{_j=Q8$3+BU!nHz24I*&AIl>A5Fe*P+rowT2aX_Ns{QU=87W~EXRO|jan zF>Cd=L{qGTeYwkRkX;{;eTD*~bXk#|YWS2-(L7*~bXk#|YWSNPEf`av`Vw zLcWa)`Iau^d$^FZSs>rirOj2!eoooXDf>BPKd0>Hl>MAC!znYIGQ%k|oHD~HGn_KR zDKnjt^LM#>rc-7*Wu{YRI%TF)>P+|_)581QfHZd8R{%k zv4`2mGWnHOPUHl2$O-C@6VxFms6$Rrhn%1e zIXfM4b~@zjbjaE1kh9YvXQxBXPKTVG4!<984?VYqe3=(ALxFsm7w)tUeCs6Cxr<*y z*^*~lbmF3}WlNrI$+HzYt5E4>h0ZF3wnFFrkC$`+mBCMqI2!%b8~ zbcUO#h~(RreA|+5Tk>s7zHQ03EjnH8i%@5seFrii%vNcWlMo=DX=XCwnZm{ z>2GCAfo;(_TBNis1-3=!Xh|YlbdHuNTXce!C|e3_OMz`Euq_3)rNFin*p>p@Qeazj zGS%(;mEuxhTMBGTfo&0hBD+E%3+~xDYPwxwx!Uv6xxBtSwSAt8yzU~mFhZ`*`P2-qN;*pe(E;YT-8 ztGlJHQkA;V!^RK%4ukE4KnMwzthXg>5&CP&Jf=s-Y~@98saEelDYHE~9I%?m=`!S0;vG6~V3uc15r&f?W~pieOg+ zyCT>X!LA5)MX)P^T@mbxU{?gYBG?tdt_XHTuq%RH5$uX!R|LBv*cHL92zEuVD}r4y z?22Jm47+036~nF=cEzwOhFvl2ieXm_yJFZC!>$;1#jq=eT`}y6VOI>hV%QbKt{8U3 zu(Nf*ZgY!aR}4E_6KtW5SXL>9T`}y6VOI>hV%QbKt{8U3uq%dL3G7N>R|2~d*p8`D}h}J>`Gu)0=p8}mB6k9b|tVYfn5pgN?=z4yAs%yz^(*#w$fLDTLL><<7>9| zEoYX%t^{@^uq%OG3G7N>R|2~d*p8`D}`Mt>`Gx*3cFI+mBOwRcBQZ@gmQ*p_U*W>_a)@Gt-fXZ zc3kUg8FF0fU$Jk;Kc#O-&bYUMwtCeW{i>0}Q9Z%eLjB6@E~2$Xw6@5x))vv)B3fId=N46~NtSFBjyVsyi)eol?JuJJMYO+2 zb2!x+?JuJJMYMmHu3e9~cj?;IP<6D09|2WITl*gcRYzO zI@&_j(H5$XworAng{q@1R2^-h>Szm9M_Z^m+CtUQ7OFmi@HInyTc!8vN?TlXrERD> z+CtUQ7OIZ6P<6D03qaM;*1qa!3spy3s5;t0)zKEJj zI@&_j(H5$XworAng{q@1+zhIYw)Ry=Tc|qPLeSzlu231E}`yTSzm9M_Z^m z+CtUQ7OIZ6P?eX3s?{r0iRYzN>I@&_j(H5$XwosLq z-Mcl4#8jimP<6D0H-Ym&yFR~LqsUORD}_ryRbJMM^&(S7b|p{gyrOLU*B7IdF$sA|hX)hQOLPO(sRiiJ0Ts#C1}Mb?Y>su%G!RJCQH z-Lo$dUqicRU&4Lv67f~P;%lgC%kEMvUy9{Rv3x0(FU9huSiTg?mtwirEazQj`BE%j zisehOd?}VM#qyYFJdmq8b*} zu&9PbH7u%OQ4Nb~SX9HJ8Wz>CxL0<*;@&Ge-xR9$v{1FDg{nO*RPAY@YEKJQds?X4 z(?Zpr7OM8N(5_+b)u*|ko)8h<1J;1GplVO+xN1)eReM^fwS9z|_bb%19zs3qA=I-T zLe-uYs`j){bCQLsJuOu2X`yOQyZ7pfUB|`LP&3AbnlUcajB%lAPYYFhTBzF7Le-uY zs`j){wWo!uJuOu2X`yOQ3srkssAtoJsy!`K?P;NEPYYFhTBzF7Le-uYs`j){wWo!u zJuOu2X`yOQ3srkssOKhxdTv6f3Qa=Qo))V1v{1FDg{nO*)S62|)t(lr_Owv7r-iCL zEmZAkw}yDt5U(2IRYSaLh*u5qsv%xA#H)sQ)ex^5;#EVuYKT`2@v0$SHM;uxrP{Z6 z)#%Ra2SSTi4e_cWUNyu^>;1?!t!)EZylRM74e_cWUNyw4hIrKwuNvZ2L%eE;R}Jy1 zAzn4atA=>h5U(2IRYSaLh*u5qsv%xA#H)sQ)ex^5;#EVuYKT`2@v0$SHN>lic-0WE z8sb$$ylRM74e_cWUNyw4hIrKwuNvZ2L%eE;R}Jy1Azn4atA=>h5U(2IrAmn!=e5ME zmUz_?uUg_&OT21{S1s|XC0@0}tCo1x60cg~RZF~TiB~Q0swG~v#H*Hg)e^5-;#Et$ zYKd1Z@v22%wZyBIc-0cGTH;kpylRP8E%B-)UbV!lmUz_?uUg_&OT21{S1s|XC0@0} ztCo1x60cg~RZF~TiB~Q0swG~v#H*Hg)e^5-;#Et$YKd1Z@v0?WwZyBIc-0cGTH;kp zylRP8E%B-)UbV!lmUz_?uUg_&OT21{S1s|nPnmqey-$()g;2HKg{ti?yd6|Ub?vL7 zx=g{r77R7G{6YP$$qFo4fh8-j#8yOC%UH4kOIBdX3M^THB`dIGC6?HV=)Z7RV#!J@S&1bpv1BEd zti+O)Sh5nIti+O)_+%xPti+O)Sh5mJYz=d@j3q0vWF?lY#FCX*vJy*HIjVQ>uF^F? zt5Egsg{qD%v|oEy=^ok8e(hbQtAZUu`^|S1zxl4>H{VtK=DSLBw?3)kbHRMDFngtr z6oJLr4{5&yECp3ZTSw;e>H_fA>{oTNBe{mt3Cgj=!;gkI)vnTU)#(-vv;Q=FRi|4=RHs{bfFsY?=#n-KUm~)H zz{B7X@F+L}9s@_gmu&>x*?MKjl1no!Aegy4D(0)YEn0!(#oAx7UKcZ`c4{6`DAJMgep=m#Y z_9MDBurp2j5wsss4&0%A(|$xb(9pE6l@k@y2-=UJ{RrBRp#2EikD&bs+K=ce!df=% zM;z0B1noy0(|!c)M;z0B#4+th(0)WYR%-~N{RrBR=o&*cC(wQb?MKkQR`ZhfBWOQ@ z_9JLNg7zb5KZ5onXg`AXBWOQ@_9JLNg7zb5KcYJ+tt5!{BWOQ@_9JLNg7zb5KZ5on zXg{KRt5!Fndn-fJenj_HhNk_9zV|yLv{^S1v>!qH5wssc`w_GsLHiN3A3^&Ov>!qH z5wssc`w_GsLHiN3A3^&Ov>!qH5wssc`w_GsLHiN3A3^&Ov>!qH5wssc`w_Gs(N)$R zve~pBLHiN3AJJ8oVydewL(_f)?MKjl1no!Aegy4D(0&B%N6>x*?MKjl1no!Aegy4D zT+@C8?MKjl1noz36<4C;ru~R(+K-_9h-=!9xTgJxo{O>fn)V}TKce5HG{*Fs)Hj5t z{RrBR=yO>k4edwJeni)M8fm)TGc@f-biHS2+K=dZ&(O3V(RZZx2~GPEv>(xTq_%I` zkD&bs+K=c-8GT=-C&-=@n)V}B!_JMO{V3XxqWvh^kD~M_iq=Z3vOJ2SqbNFxqN6A} zilU<^I*OvBC_0LwqbNFxqN6A}ilU<^I*OvBC_0LwqbNFxqN6A}ilU<^I*OvBC_0Lw zqbNFxqN6A}ilU<^I*OvBC_0LwqbNFxqN6A}ilU<^I*OvBC_0LwqbNFxqN6A}ilU<^ zI*OvBC_0LwqbNFxqN6A}ilU<^I*OvBC_0LwqbNFxqN6A}ilU<^I*OvBC_0LwqbNFx zqN6A@isGUuE{fu!C@zZPq9`tk;-V-nisGUuE{fu!C@zZPq9`tk;-V-nisGUuE{fu! zC@zZPq9`tk;-V-nisGUuE{fu!C@zZPq9`tk;-V-nisGUuE{fu!C@zZPq9`tk;-V-n zisGUuE{fu!C@zZPq9`tk;-V-nisGUuE{fu!C@zZPq9`tk;-V-nisGUuE{fu!C@zZP zq9`tk;-V-nisGUuE{fu!C@zZPq9`tk;-V<-erfIJ?)}o5;YE5n<9=!FO`$zOp!JTy zd{9rO>&OcILUF$o@hhRttiE50Fie2~mG$$vQk) zrwnsO`{vI&{8@)T>+olt@`)Wcf7U6J*t^W1b;<*F#Qa%@KkM*k9saD7PJgcB=Fd9m z)X@A{C!HFaKkM*k9saDtpLO`N4u96+&pP~BC!NY>>Fc!6{8@)T>!dH+H-FaQ&pP~B zC%xDa^JksLzoGfFPUByeqFS&t{{@nk)otjCk8*{Oc(@nk)otjCk}c(NW(*5k=~JXwz? z>+xhgo~*}{^?0%#PuAnfdOTT=C+qQKJ)W$`ll6GA9#7We$$C6lk0qFS&t{{@nk)otjCk}c(NW(*5k=~JQ>52F+3T=lQBFQ!;>*Q8N-t?JQ>52 zF+3T=lQBFQ!;>*Q8N-t?JQ>52F+3T=lQBFQ!;>*Q8N-t?JQ>52F+3T=lQBFQ!;>*Q z8N-t?JQ>52F+3T=lQBFQ!;>*Q8N-t?JQ>52F+3T=lQBFQ!;>*Q8N-t?JQ>52F+3T= zlQBFQ!;>*Q8N-tec(MUcHsHwyJlTLJ8}MWUp0p}mKXbKax-`;&CmZl&1DxfF~R9WCNaTz>^JlvH?#v;K>F&*?=b-@MHs?Y`~KZc(MUcHsHwyJlTLJ z8}MWUo@~IA4S2EvPd4Dm20Yn-CmZl&1DxfF~R9WCNaTz>^Jl zvH?%V@njrN#_?nvPsZ_N98bpaq*d?wnH$HGak6C`f5!1=9Dl~~r>cS|Z^ZFu9Dl~~ zXB>aV@n;-=#_?wyf5!1=9Dl~~XB>aV@n;-=#_?wyf5!1=9Dl~~XB>aV@n;-=#_?wy zf5!1=9Dl~~XB>aV@n;-=#_?wyf5!1=9Dl~~XB>aV@n;-=#_?wyf5!1=0)Hm(X99mF z@Mi*lCh%theA@OyJ1`o=o7$1fERb$poHE z;K>A@OyJ1`o=o7$1fERb$poHE;K>A@OyJ1`o=o7$1fERb$poHE;K>A@OyJ1`o=o7$ z1fERb$poHE;K>A@OyJ1`o=o7$1fERb$poHE;>jeQOybETo=oD&B%Vy-$t0dsEd+To z$;eFN&m{g#;?E@hOybWZ{!HS}B>qg|&m{g#;?E@hOybWZ{!HS}B>qg|&m{g#;?E@h zOybWZ{!HS}B>qg|&m{g#;?E@hOybWZ{!HS}B>q(8GASsDKa=<~i9eJ0Gl@Tw_%n$= zRpU(BOybWZ{!HS}B>qg|&qn;&h(8#Gj4$vk`wb;?G9>*@!0_@nj>OY{Zj| zc(M^sHsZ-fJlTjR8}Vc#o@~UEjd-#VPd4JoMm*VwCmZo(Bc5!;lZ|+?5l=Sa$woZc zh$kEIWFwwz#FLG9vJp=<;>kul*@!0_@nj>OY{Zj|c(M^sHsZ-fJlTjR8}Vc#o@~UE zjd-#VPd3SuPq|INci^qrXDW#E*6h0`-9a0cg7dO%+Mmy>3&2}7XRk?j(1y2z_kcBEEx1D8BsWPB1HyQ= zTi6ITfho|VH6LsS1CF=QZ<_r~cC+650N9#+Ui)pd->&Bwn{@ANxEkD;-LL&k;AYL# zZPLB-Pla2h%_iMD+y3_KuyCKA`fPHZ$@U2kg3o1pwf}AK`RqaMe@9PbH|c)a_P@ve z3wlzu$@zhI2*hHyb;uM^g2`P z)eBYEMrgmhH0c{K!};I>@K$h;?P4esBOB1o!f;Ven}iOH!QS ze*G5NB*oeOGd7BJ4{rDp(L4km29JP8!4dEnI10XOqf7VThU4II@B}ykPJ*x42$Zf3 zPl2apRSI3F&~*x3r_gl@U8m4>N;y-tCD3(B-*x{&`=;xZzUwwLU8m4>O1aebP1h-O zokG_sbe%%iDP`I=y=uBn>6>|vqlI;Fg=dL-yNrSHVFaxS_~={vC>YTtC7Lf0vM zC$?Yvrt6fx6MI8wx=x|%6uM5K>lC_9IR|t%okHCy)Sc3|VZAzH>Q3p~u!BNVcM5f< zP7Q+En=r%-nab*E5w3U#MYcM5f<^qKOMo6={Bp{YBi&lE#bcS_%HD=w%z zg}PIyJB7Mas5_i?1-s5rEl8|P2DMd+h%C$PU+h= zLsNH3-?kZ=x>Kk-g}PJv?6V`L?iA`yq3#swPND7;>Q15V6zWc)?iA`y=~J>>?=^L& z^gWxQsXL|b*$hqHDSgjoXzEVsdp1K;cS@h9hNkWm>Q15V6zWc)?iA`yq3)EvVbh4x zH*AKc?v%b^Gcb44-su_d2J=E=?ZVz>PsM|x`9_sc`w}-kt)a{{e4|RK} z+e6(R>h@5#hq^t~?V)ZDb$h7WL){+g_E5Knx;@nGp>7X#d#Kw(-5%=pP`8J=J=E=? zZVz>PsM|x`9_sc`w}-kt)a{{e4|QAR(9`mUeQJBC+e6(Ry7thuhps(z?V)QAU3=)- zL)RX<_RzJ5u03?^p=%Fad+6Fj*B-j|(6xuIJ#_7%YY$y}=-NZq9=i6>wTG@fbnT&Q z4_#Z8QbiVBd+6Fj*B-j|(6xuIJ#_7%YY$y}=-NZq9=i6>wTG@fbnT&Q4_$lc+C$eK zy7thuhps(z?V)QAU3=)-L)RX<_RzJ5u03?^p=%Fad+6Fj*B-j|(6xuIJ#_7%YY$y} z=-NZq9=i6>wTG@fbnT&Q4_$lc+C$eKy7thuhps(z?V)QAU3=)-L)RX<_RzJ5u03?^ zp=%Fad+6Fj*B-j|(6xuIJ#_7%YY$y}=-NZq9=i6>wTG^KbnT;SA6@(C+DF$uy0+@E zsse?seRS=kYad$7*FL)T(Y24ReRS=kYadZ696x=-Nlu zRuA_L9k)+ytBQMCXu9^%wU4fSKDB++?W1lVb^EB>N8LW^_EEQwx_#8`qi!E{`>5MT z-9GB}QMZq}ebnuvZXb2~sM|-~KI-;Sw~xAg)a|2gA9eev+eh6#>b5GqiZAN+QMZq} zebnuvZXb2~sM|-~KI-;Sw~xAg)a|2gA9eev+eh6#>h@8$kGg%-?W1lVb^EB>N8LW^ z_EEQwx_#8`qi!E{`>5MT-9GB}QMZq}ebnuvZXb2~sM|-~KI-;Sw~xAg)a|2gA9eev z+eh6#>h@8$kGg%-?W1lVb^EB>N8LW^_EEQwx_#8`qi!E{`>5MT-9GB}QMZq}ebnuv zZXb2~sM{(aYwV$JtAK3#_NncoZXb2~sJq#@Ku_K^OXD%&H1MKqq4sBJo_Vu0Zg?4Z zrS8O=rExoQE%;GTb-r|DmexdScCG_&(Oi*c>D@3NEX;mT`$b@JR;v+7?}nw|Jk5D) zmfr201>mh()u&l{H@qFZ2dn{W!4=sey;`TWjGCo)J=Y|?8`?ayX6fC~qctB?&1D_2 zxhT!jyY+5!QJSUqJmCXiYxYs?x6yvP)&gpl-VIlS8?$;QM|wBhoPAulg)_JEu5J32 zzgc>35bnz+g!{Amga`DLT(eZ46dnYh)7oOqQoZ5xno-a!)vJDiz+PPnmV*^wCAbW%0;|FMY*e_*!4=?2@Bw{u z(yaWTaiaWS*sggU&B_lQ!qu9m)U5mROAS@`K@ei-_`r?LU-l6mDdH6S!IP z-`v=&6 z23`ljm$FSdeu&5(29JP8!4dEnI10XOqfyzw(ALFjRyHs^VIx!7z;F_L#YU;J!7IX3 z?AyGQfNT(u4Fa-3pilfl9k*-{kPQN|fz>Nl6?U>gKsE^UiErmvHVDWD0ofqXr~frN zV%Z=d8wC3F|Dg6Q8wC3F*Q#V>gMe%h=+po6I%3%%AR7ew^#8KWrIMU z{$CJUHc&-e(6T{5HVDWD0olMRv)j8Y8w6y7fNT(u4Fa-3KsE@-27#^t;yTl^K|nSL z$OZw~ARrqAx(0~oRm%ne*&rYr1Z0DNY!HwQRKs1_ARrqAWP^Zg5ReT5T@}Ris%3*f zR|STa4FX*i7+N+6$OZw~AkbBT9kFZ>kPQM|71+LI1FICTF+es5$OeI~3hcOLgFsgW zhL#NiT@@HwHV9nH1_9Y1a4j1Iu4RKjR|^9|%LW12ARrqAWP^Zg5ReT5vOz#L2*?Hj z*&rYr1Z0DNY!K*bK~dJ#!UmybgMe%h=xRY@jBF5)4Fa-3KsE?;wV<)2tA#HLEgJ;7 zPPjv8*&rYr1Z0DNY!HwQ0@K!x%)FM3^-VWXa)_}F3J&)fatr<3hT9aS< z?ON-vMLIHE4Qlmu?c05Hi&Qh|wkWcCmm+Jp9^3#v1a1U3ft$fC;8su-J@l^a;Fp{- z?LVgH4q6n!PYIuJZWiw0)o!o{>;?P4esBOB1fMZG6$L~4*0hEDuNLmVTDbpekyp*~ z32;)F#(QbJm&SW(WwW2_xOp#)_tJPTt!!pT%zJ5NGeh%U8t@XG~P>VOisEP zyqCdy8N8Rldl|f!!Fw6Jm%)1(yqCdy8N8Rldl|f!!Fw6Jm%)1(yqCdy8N8Rldl|f! z!Fw6Jm%)1(yqCdy8N8Rldl|f!!Fw6Jm%)1(yqCdy8N8Rldl|f!!Fw6Jm%)1(yqCdy z8N8Rldl|f!!Fw5HfHQ7J8Nl!`cmzBOj)2F&QP9R}25)EZb_Q=}@OB1oXYlp|&cpi6 zXc`Mql(=FddB=!;kce7en4xROuDU{-^%%|oZrg%t(@P=`K_Ga z%K2@a-^TfEoZrUzZJgi6`E8uv#`*1>-_H5%oZrs*?VR7v`R$zF&iNgj-@*AEoZrEj z9h}+0nH`+Dnlo2(=4#Gd&6%q?b2VqK=FBymxrQ^>aON7$T*H}bICBkWKFFC5a^{1a z`5;shiDiI*U{HH`dUX{>*#A8eXXOfb@a84zSha|ALw1GyC<}W zuanKcaMxkOI&4^n4eRu5?_M1@8`kOBUPH5Cot}kMzu2%28`fjPdTdya4ePOCJvOYz zhV|I69vjxv*LwO|Pha|NUoGqRJ<$4EPhaclYdw9fr>_n4wSm4i(ANg~+CX0$=xYOg zZJ@6W@ZA944e;FnUp+-9KX1T>4cM>&8#Z9W2Ka8k27TWkzPir<&F2rvh8u*l!8!VF z=ONj!UU-x42p-Zn`I%64TZG?`njX?xLxwMEO|6GC!e0}PYW=H+WY4%z)y##b^gZ)K zT3N{Ob^WrhXZx&uS!fsqo2(aEXy}1HX!pDi$wI?WxDg9CV&O)4X{C;sg&VPOBNlGN z!i`wC5erpCP!?{)!i`wC5eqkB;YKXnh=m)ma3dD#$tu~l5eqlUhw23jH)7#N`OuD- zg&VPOBNlGL!cADX2@5x2;U+BHgoT^1a1$18!op2hxCsk4Vc{k$R2>-ka1$18!op2h zxCsk4Vc{k$+=PXjuy7L=Zof!p&H?84EXK;btt{jD?%Aa5ENaHitZ>-+@7k@@6dDjD?%Aa5ENe!NM(A zxCINhVBr=l+=7K$uy6|&Zo$GWShxiXw_xEGEZl;HTd;5o7H+}9Em*h(3%6jQX7R`> z{n`(jh58Kvv?y=E!Yx?16$`gw;Z`i%iiKOTa4QyW#lo#vxD^YxV&PUS+=_);v2ZIE zZpFf_Shy7n_0+FM;8rZ$iiMi9BYX6FK4=zh#lo%la4QyW#lme^xD5-pVc|9`+=hkQ zuy7j|Zo|TDShx)fw_)KnEZl~L+pusO7H-4BZCI#hlx5*IEZl~L+pusO7H(r4Zo|TD zShx)fw_)LSEZmNT+p%yv7H-GF?O3=S3%6t8b}ZbEh1;=kI~H!o!tGeN9SgT(;dU(C zj)mK?a61-m$HMJcxE%|(W8roz+>V9YvG5UDxWs)#78=gc?+%a1!XFB6(o=+w$dc3U zBWho-s(r&KsERGxSH%{gDz*q!u|?Qy?^64Qp>PN7@1Xr1w7-M)chLS0+ShZ{YEw_R zg4X^H+5bbKwZDV*chLS0+TTI@J7|9=?eC=howUD`_IJ|$PTJo|`#WiWC-(28{hhSG zllFJg{!ZH8N&7o#e;4iVqWxX8zl-*F(Y|Wc%0Ihke;4iVqWxX8zl-*F(f%&l-$nbo zXnz;&Kk5|dTdYT&mEbBc0ycmNFbRfWD>&?YQt$eP?v);OzUizGKFj{M*#AEJFFHGP ze8kx)9Ce-&jyYcuo^tAiuY#{To83oMIY&0AI)~wt;Mc&fgF}wKadY=Oi}d?kfn%$_ zt^`+sdV*O;8o&gY1od5!j<Y^kW#?(FRPbe4zFPQAXO{3;_P@pch;xIE zjBDlpFU!uj@Kx}2&CvU@>{Oew)9^{~Yv9*~k2zn^jK0U5htSdwu8@e-kOuc+o z_$>S1V*f=w1^<{llMs$NzHp5Fajj?jnEJg__$v6i)1Z5UsNVayb3a%I)`Kzd3tHFr zarOH-;nQmQarL`c_$>IM?0H;$-6;ds5$98kT~pU(Gg{##9tY0bJFbb;fy!KO|2l`;M*(0SJhTvLj zU-zws>%k4+L*Pbm6Sx`N0@^w=PwKwaa67mM>;`+lUa$}B2M54G;n%2&^)=V3Vtq}X zzRCSMN50OHuXE%ndG%`dDS6fK2JwALRdNjH=$EypWd^f~o2;VF6SDSb{EzHaZ5_td_;XBY+Vw_e;jupW$o4PYEhfJv|s zY%+V~b3+gG!Dh2iJ~s@7yWzDPUc2G78(zENwHsc$;k6rHyWzDPUb_|dA+=zWN5s0t4@%i@!G9AL59X_H@tSk zYqvf%?1=H&4X@qs>V#J(ygK3439n9gb;7F?UY+pjgjXlLI^op`uTFS%!mATro$%^} zS0}tW;nfMRPIz^~s}o+G@alwDC%ii0)d{aocy+?76JDM0>V%hmGZ(K;cy+?73tnCD z>Vj7nyt?4k1+Ol6b-}9(US06&f>#&3y5Q9XuP%6X!K({iUGVCHR~Njx;ME1ME_ijp zs|#LT@alqB7reUQ)djCEcy+<63tnCD>Vj7ny!Pm~nA7eavAa?@8?-ySJz}&`_{r?E zLc0UqMyWy_+{$>^2HGh_U zRb^ zdoSF3;ob}PUby$dy%+AiaPNhCFWh_K-V66$xc9=n7w)}q?}d9W+_rbjn z?tO6YgL@y``{3RO_ddAy!MzXeeQ@uCdmr5U;NA!KKDhV6y$|kvaPNbAAKd%k-bdW~ z;NA!KKDhV6y$|kvaPNbAAKd%k-Us)7xc9@oAMX8d?}vLo-236)5BGk!_rtv(?)`A@ zhkHNV`{CXX_kOtd!@VEw{c!Jxdq3R!;ocATez^C;y&vxVaPNn^p2t$G`{CXX_kOtd z!@VEw{c!Jxdq3R!;ocATez^C;eE{wQa36sC0Ne-QJ^=RtxDUX60PX{DAAtJ++y~%3 z0QUj755Ro@?gMZifcpU42jD&c_W`&Mz z%V~xMXnB4B?gMZifcpU42jD&c_d&Q1!hI0#gK!^&`ykv0;XVlWLAVdXeGu-0a36&G zAlwJxJ_z?gxDSf^m^%pfL2-XW`}R%vAlwJxJ_z?gxDUd85blF;AB6iL+y~)42=_s_ z55j#A?t{dA5blF;AB6iL+y~)42=~33mGM(|uV!U@O*jp_Qq^7e${Q<%v%xvK2Hq=g zyea&op8DA1y&_q$jAG0cFcb&o%UPloWx5Iz~w2wA7&=93|OGNci5O8e%MA$&4~ zPloWx5Iz~gCqwvT2%ijTKE`u8-+VHpc^BUhzNl{xhUAk1;i&vGB%c%t?R$eEd@_Vj zhVaRdW?6hq$IT~0nq^^VJ{i(13q$kC5Iz~gCqwvTNMlBJ;*%kKGK5ct@W~K98Nw$+ z8Z)oxO!LVQJ{fY&C&Tz;7@rK|lVN-^j8BH~$uK?{#wYrgN8@A|pA6%ZVSF--PloZy zFg_W^C&Tz;7@rJFBX8=xR^4M*8hOnf#t*~zVHiIQEsYae~> zqpyARwNHJ$pz}v`FSbv98xvY?*{4kMGj|_0?8AnA*sxE2cv8pBhJDzuPkyj{vtb`L z?8Aor*svcP_G80-Y}k(t`>|m^Htd%Tuj;!tvtd8I@2B_u^uC|o_tU$c`c+?gN(?j) z?5Fqr^uC|o_tX0UdOtw#2k89(y&s_W1N44?-Vfk`1N43X4;;XT1K4l?8xCN@0c<#c z4F|B{03JAi4F|B{05%-JhG%4h)?bzlhI3S{<{8;=LU@zrPd=lTbzChQM!_a~RV^EO zpbs{4egKBTgS32*mJibML0UdY%Li%sAT1xHWj$A|cJwSJXe}R<&4$+ULD_6*Ex)9e z%Y{}u_$A$q{z`ZwXtjf1QZM~Ns~!B3{5C4IN|7(gV{f=Gsb9TI{Tf>B;FoldsTOpP zX=t^BU!r#KOVkd2N%xp`Bmr9O;FqW!{F1CyFS6FqY6rh0YYnY-@Jq7R&}s)C!rDVv zdkAX}VeKLL?P07vjJ1cc_Au5S#@fSJdl+jE zW9?zAJ&d)7vGy?59>&_kSbG?24`c0NtUZjihq3lB)*i;%!&rM5YY$`XVXQrjwMVe_ z2-Y6K+9Ozd1Z$6A?Gda!g0)Am_6XJLlpSbGF( zk6`T)tUZFYN3iw?)*ivyBUpO`YmZ{>QLH_RwMVh`DApdu+M`%|6l;%S?NO{finT|v z_9)gK#oD7-dlYMrV(n3^J&LtQvGyp|9>vl9|*o zg0=egU!!gWYe%ql1ZzjIb_8ojuyzD%N3eDTYe%ql1ZzjIb_8ojuyzD%N3eDTYe%ql z1ZzjIb_8ojuyzD%N3eDTYe%s57}g%c+GALI3~P^J?J=x9hPB7A_88V4!`fq5dkkxj zVeK)jJ%+W%u=W_%9>dyWSbGd>k74aGtUZRc$FTMo)*i#!V_16(YmZ^=DAtZ*?I_lc zV(lo_j$-X7){e^BpSYvgIf|X5*g1-wqu4o$ouk+}ik+j_If|X5*g1-wqu4o$ouk+} zik+j_If|X5*g1-wFYCJKP4{J87abK&1FzJK{g-9`eZtw`9DOprESrBS{G^`Zd0Cc! zS-4O6_GMiQ86E_m1HTQvpl`rlRuoPP$MiY=vaW*Ei>`tUXMxv&*Mqac8^9aEMP`Y7 zB1_~G!zkEfmWZ992l`;MStWLcp>Pa#W3U^8-I%WW9@TMUHwHUZ6BN5K*p0z%40dC% z8-v{#?8bDZ_lC|ic4NBI8xb12G1!g4ZVYx~up84g-cff<*La4;ZcNvBhQ@A8*Lbo7 zc4M#`gWZ^7_fs7=c4M#`Q|xTt*p0z%40hwN8;9LE?8ad?4!d#Kjl)jA>Zt|&o}}1~ z!)_dQX>%i;5+29S}jo>0AdVBd$DGu=ENT-(ZGxyx5VZ-SHleZo zf?l4h}VQhyR~fbnjl^i#A||hO=z_5)p3j0ghsoe z#cM*N-O%DSLA)l2*97s>Iy#EZ1o4_6UK1MacEsW}LA)l2*M#myf2JcAuLzapsl`=IG=k~mHh z$4TNiNgOqcQ?ZyNj+4Z3k~mHh$4TNiNgOAM<0NsMB#x8BagsPr630p6I7u8QiQ_AZ zSGoI&;$=8T&lJC+cs(z?N$bqNqHC&Gg=3my|BCqP9Pu@@`@vVlS7(Z^p$Gb4v%Ob* z4MX8cdO1liC+X!Ry_}?%lk{>@5qU#rT3;vW>m+@hq_30ob&|eL($`7(_IaIYeVwGQ zlk|0pzE08CDf&7^U#IBn6n&kduT%7OioQlA&RqOVi*b&9@D(U-mv z(;R@)>dVk(9h}zHsiDm}IIVu45ZbJR)B1Mel+b1!oYuF&hW6|HX<0HMw0v?}-vIwi zXtNGZ>l^aUc{Xe(wI+yETx%~^A8P4gc{R^GB z&d;Xyr#T;VXH4y1{;B<$)7sp> zo!Y$C0;z)(x#U>S`x|Dy!KQwuX^#4yoyY+C3p7J2{-4}CR^LQbW2|0+`_jz zY>T&gnfA81ZC)@p-P)92arcr>s7*Dk&1=cKGl<2TtCCF}L9DfCu4vpQ4ohx(`-EFK z;Wi_9+r3pKx0K8+m|HZrv~+&q+o$B(5Cs}JXGE?sb5H3l1q*H|n0H&=JA4qxfJRYm z!wGLUmFvy^ndi0T#q!!)V~J!KYi-U;H~zcMl|%ou*Z(jGc>0b+EX=!iO{_JMj;Hc0 zR(Gb`y>wo=*PIU8f9WNk!{Vyk2a>*ikF_QnI|5nP5Yrfxv2AG$qfA<+w0kjoA)an&47|AF-jtVV_0p|g zyWae%Jg+^kEtT#F5_xUOWSI9rhu5z0C+D}cWz=d*`>eb*DGj#{vse8$q!SwJBAM6F z(Vn-4cP6~HOb}a}>r^c_c`dQP0_e53z5Cr7X-#rgo3}36HaG8Hjpuj}Yisl3IzQ8z z&ZJuvkCwKZ^VD~{7q^iq+gE#SUPF*P=kbnACfOR718>f2@>VB_LXd24PqsFuTf??o zpuAXXUMkiard!tL!V)B#%rkTI?vUfuahnOP-3!%||c#{T#?Zn!VQQn$Z+qoFN9d8>5B9L4yr?tzoO)2wnBCVEM((QST=^#k2kx2?k zN2@tlj?#e1d7~{EdbhNuP3|^2+GAeO#`u@PIf`vL&J5I8USl#DSVSce4ePKyb+i2K z$yG3HZ%ym9w)WPJczZ{y#zSk`xQJ|fticPs_MB^MoToe5T9R#w$>J6p%Egw}N^YLw z%(yqMO|8jTy8`m|7@vc#tg}=y$e0;_USpqN#HLqk926H66x@{86s*mpMAMG6crD4i zHAzdc8akF9z4n;Kty$JC2d>F$Q}{JZ+VTqRz4C+CGNmSs{HBgrQ&Qe9)k_PNsROY5}TGTBQEUvsGFOy2QBsJ`&h9*8HQ{_nsd9l@sM$E=xquym);~HR1 z$v>Bzb$UAd_Y>edGUK~G9o}&~cvr^!|G;O^6t_R|0p%=o(oV)%tEs(OsL#<7nogcG z$B8?i(Ep1xLAX$Vw@mGo>R5x$&C^+Hol3nkaAHo2CJN^{OPmg;S^sKt*6Cl1gr24j zC-{F{N9NFWyZZW+ldr!u{LQ7M%sX0|tG?5kZk&$=Yt%}+-kIlAskJt3t+IZj zw*BrFZq{qHI;U0bX}LnqEmTj1I{t?Y+tjmpRS(4K?76%{%eClTt@3ofdb?Y_eqzeb zoYgt&wH%__yA$umjusd_4K7J&0)XWqXv4uYw;X=!e; z&w1?JNcdx`-pTFUt9kNuo7#_QYnP8>8huHPivy#%npJLy}yK`#MBAipK zZEQE{71Ki=ds?bPZJD0UQ#PWTY-dsJ;N9n=q!J=(GndzMk+jHk(CZq#cCOEa`muJ6t(|?IY0l;* zz1{-Pa|$%O%zOWS-`1Ap!`#TSF}P0qmM={ex%{lc96GB_f95aqW6oFh$z?s~^kJMW zKj(Pcu{f4n`#Ha_)-h{Cg;Vg>yT^Ek-f0?Xr4RG3wPu{`6X(1Z?7i*!vokGQwJHk6 z(X^FQl*QV{YKs4B$s2ja{B>R})a8JJjO&K1>U_F=RY!&uls8%{J^$lGXlL z>soM2f0pqq_ciOiW}W2<4|V1~GtVhIml4kOZJ$D>vD~MT#m)Tw=kvq4jF5|f^_BY^ zwO(xe*pkN z^>jW1S?*|;{g&g5!@2yQ8&mI$qP==P&ga?NCrP7PQTYwElGA9em0Y&gaz)~0k+Jb@ z{k(IWwCPo|DfhnIzdFRK9bR^(>0Jwq=$*MdXNoe58)(a-{mxNiOmq3c^lN$A6k)zt ztbd)$%Ej_TE*d3R_Rct;&-drz+N2hfL_4RDKhEQG#LXIZJg5cTbR_4E|0h1j z?0WNDjy0d;@}pBhbcNn_^<>&t(&PZ{geh=Ej5d@$Szi%Sjg74*lQqS8nW=PFcH9wpz4oTwAYy z?!7kdb2giA16h#!cNr1NY5iROSgdQlJ9LKm!p4`4^YhH^)lu`t`Eh*yn#x+Wh}-{H zYcu<7yyZr2<5XYg;%ZkS=d$zv-79BPl8tuz#In1LKfV(%OKb$3xAy$Kz@L7H>BC}{ zi-hHcb61Ri`uzW^9u}&d|NlPd|LyyrcgO9&?+$9o)VRt0-*kHZ&Pm_eUy%C-|KEx= z%>TrH?rZv{`~rRde7$?2^O!T+xk1VJM(022Db{Ja82qH3wY*4AVo#TV=jx{I*ZN*x zH^uJ7O0tjZsoP@bKkG)S)S2h}@A}^U63yqH>D;PY+}oVLbUv+TgfDgaoV&PHEpy-F zzSsE&=N|VmJyU$SdxiTx_xweVznEP=z&;1K` zmV2Fhy*t~z!M)L);~aHA;eOJ+$@!e~dG}`b7H5e&*ZHZl)XjIw-2&(D+(IRWWp0sf z@cNzSbg_F@ACon@Vf{b!6nU|8pIhRVy7S!m?gIB#_fzg|?qBK|;ZHj&^aQX~pN~4- zPLG}-{*3b__jcz^_p{Dh?j7!(&d=P1&ZF)k_b&Ht=NE37^DFlr=WpD_&M)21IcJ=| zbwBSeahJN~ZiUn3Ow*<2<<7^Pk2>#jo^ihCyx@Gt`L1Sjzw8`x4mx1Hw|s=sn8olBkfIG=GotEaQ;o%cFgdBSTgQ+*Y^E`Cr_2x5Hhnr=?$UPP%KHQ|^QATCL}^ zUTfSuq%~SLX}ysxPNTckdCmEe^J6_>-K3Q(w!2?&A9nvrD>CeGcRIh(dIeu}zvMpZ z{6w?k-_TRQDfcmZvfO>bp10OB!e4iOrzduQpr>B{gWKt7eRf?4Y8^(mOHU8BIRB<+ z+Z;XF_JC4etJ~|exqW(mX22cP?EfLnH2+^U?|Pqpg|b_K)$Rdjjppwjbid(#(|y+c zmiwIhZ9M`0ye`z&I_sT>oDJ@G-0!;Ib6;@3@BX#>qWc5q@7*72M(ZK>uzN%^2S?mv z?x^Nbjk)8R#d1Qwt551z(Ua~eXOpwh+3aj_Uv+=v{#d`fz2?5|zTy7F`Mvv7=SBBT z=RdkXbARsiI$w8xF{7i!)3=ueGww(?>086*8F%IWKkc4|SnG_%xqnPwqHpHYEf?O^ z(lqT}J6TO1AEJSd&_)#%Y1vwe0$4$d&>fQ%K~eEfwjND-m##B76RL~ zvllG5G!^$+;~imRkbH1j%7}PVM9d3C#q;0OtgnWXE%y7D7oQ&FSSMSWE(-JwbldcH z4oqv;JEzqZ7OLaIB6VC?q>c-V)Nx^vIxZ}dsf9(QGdj-sp|Dsc7Z%If!V){b#7-@- zQ%gjsuw?%9FecZv*uFJdYVDQU>!tR3sjM%YXK$QWNW6+~Ey?}=j$3p8zjNVb`Ypjr zC-gg;em_Virrp)inx0lyRHWvLiuKl_VzpURTy#mYO+OaI+LH-;XHj8c@wC8ejZM$! z*Sq!@$BGI|rv-_0yZz(t1$W=A_nFI!%;iPq@*;D2k-5CcTwY`@FEW=GEhw3`MDLv5 z(e4F_B(@b4EShmgj^6Y;8d~*x!let(M`7kdogRyu+0z&02GJr0(e%6c*NnTS-g*~r zoq5;Wr(at3j#kRvK1`pA#ijS0e|h@ioH>i9+FG1zYw_D}x?u6=F8$p3^K)$!&zrs^ z7Vl`!(I_mwb9y=doL-)@%!Z8OH=|;z)e2gDZ$+x3r770h5eBi2_UTo*w^Y63Ev56O zS9A2z>ObhRsBppbd(WR)RCq_ul6ghbYjO-~ruwR(uZwD0^`psqYu?r4eNC;g)ye7i z<+`}5D8m+&+++Pt<)SDZgOeI+N(T=}*$X2hmCiP6cW@$)CojK6)>^kmLZ{j_N# zcX~4C)8yMHOsgwipkY#ctAc;{3=G}cQ@S|ui}5|dU*u|!Z(Y%df`{w2i{Zi&ghq*$^kG3}QW+dC`) zl$6*zEDMxa7APr^oTseqz}kyCh-}BZY+jR#?3$dBYt9>a$(pw#yY~Fi>FYRg=DN3? zebJ(1&>p+AC6-C+$Fy`NmDGisKCrS`U0b-?pQ-Dbhn;DQ?p|`Q^Wpf~*1)+z`A~Hb z^vg|)t|X?}g`Uo~bIAL{mk@#nlW=mf&Qv=M1M1m%s6tvq8Vo|zT)C_1@?)ZoPw`=mO-^+h~P3<+oHIM3V-$!n^`oKq0S08x)sjCmEwWTADx?ZCB1u04J2@2~ymk6!%IkA3X=k2QR(@8iQC|B-EZGxM%syZXAy>+YZZ zp#C<_)(R$?Q};v7sQaOFQTBPwsXOjmo&A;O8QF||o1_1{<`W%s64?WK`t(Q6mh78) z^7NE5pjp&;T1)0Hw9V3Xown<>&DM5>Tcc~#3uMvk>_eKD_n(|EWS`QLuC{j67c_tA zZ#8e}%UU1$Z?rn}-)P3tMqS;$^Xz(EQ=WUrbK>`HZT8L)T@8=wZedLK5P#UhO!f1Y zQD%_GcKV;S>HXq=O7Hl(EP0Puyr6fSRNG0d&;55=o%`47qf4wl zEmp6|!h2+4kt{5dg;&VJS+cNFwN8)1?qBulWqS1*{&mLvayF~iXE?udW@OK5z4WtM zE&Z%kNk6MK($8vz^s`zY{jBDm{Z^}@pV6A=XS5>v8K*!!7iM46e9PA~+wv!xYxxt+ zwET&zJfm5buW63uYg+gAUz|^AyG`3)YWuXd&uF_{+h?`iq3up>3$-oMc9*uhwUueR zN84g;pVRhvZA-K*)mE;pLR+P_W!kE=RcpIfTaC6_ZTD$gu5Cs3$IeRGxk_6^TQvLk z&i&fzwAE{iX=~8&xVD70q_#$FP1;i0JaO=~HERp>?@(KdIHvXgjCekvtyTMN>Z@JK z>Cm=X+Zt^TYFn#qowoJbHfVcD+eW=-leW#eJKCZVyH(pZ-BWGPzU5BK{+;`NZ6DAW zy-M4Mv|Xd^!`eQg?OJUg(`?o`*|S>l{H)eHKdaTw&uXpnvs&r=tkyX{t5wd=YIXCo zTHE}rRyIGYbMsrDD(@fIWG>`N(%_7x`pV~HR+oWx?wk_JWYTKr5yS6XL z&WE-Am9|H;O3MyyJGJf7_QmYqyI<1ws5TpUkLmx9Yx|0}C$woKx=+dnU(@z=ZBJ?2 zt*ujAm$p4>zgt_6wq9+0+WNH(XdBeFSLY0A8`k!;Y~QDCzc#By`HV8rL2cjAW^2Vf ztIgI*c~0B6wLP!xJKDah?R(l@(Dr?8f359BZB~==huUmSV_VVK)-$%%jBPDrTYK2n zF}78VUv}QFr%&FmXFA^R9@lol`MBnIe_XSWKdyDl-_ok(Z)wf)x0DJ0PM>V1n0n_u zZ|iV6M{JC~kp0`7pY-Zib$5P=UOB80`IfTdFO?mCsf_d?>E0?od{A1yN?Kp0d+rOe zqdM~+lqKgWua+u1rkx}I_AkncCCaD88hLhxYGo=<*@{*+qxCs`4!ruVcYQOvTq_JL z*SptGy*sYCr1xtk>HTWOR!gy!t8CpW)!5aO=P7NTHeXw_=J^KNLbYj`@vJiAS!Kqv z>hT}c%YRY!vaIz}WyZfzX0#crZz?k?|H!uEI^(;_b??(z)jDffIqmbxTGz`9)%rf^ z!t5*hM0-V_X7(K7Z`9^*#KLBV|623H?KvS^QQiGH23-~&7glv-?;pHY@gFNEZ^3aWBrf%topD%t3EKrdZu#7722-WHZS|v zmUr~ZzlixXvA)!C72^--tNRP|sXb3#xjnl>xpIec;0}4}dgZh#<)ZJ3^HzN-^ypJz zk9yjunhWEqxbTuRZq>~;NZ)nR_e0Y6r={-->H2fhb-6U1FFoHOJ>MlgFLWQVwJNiB zYIN0T41QO3G${hMir?on(&lKSeM)xO%IeoiizU)wsdT5O!nOLqevN>W*(ddVmRWnD zKINxro00vUK3#sNPnX~6)8%*ibore=U4Exem*44=WvM<{mg5dK2=uf zQ$=ekYBR?3b!>sQTeCy@R2kBz%8)))hV-d2q)(M0Jn~un{|;?;YFnsnk+!?EnWxJ1 z|9iA8*7iAVpVziT+fr@i+A6eFYBP^k>HpQ*?)`7=-FbLjRoyS}vy-NCQ<}~rrIcDh zX+&EFi%a4|`ti}1PMcAt^?9}%(Yw-YUv6Qt~%33UCEtawtOIeGh zti@8+Vkv8}l(ksOS}b5K7VypH@y)KtEKI|i?-#Qc7ZpqT=Sunovl15Df#ZkfB`mi4 z#t)VJ_wBr~BC`@YB%q)1;r(F{42B^v6o$bFd$o=v6+6Kw*cnCx4-F$O!-&gRoz1My zW>#l2tFxKa+05!}W_32RI-6OY&8*I5R%bJ-vzgV|%<61rbvCm)o1+AtZ~u|)N#R_- zUu=h}4r#p9=OB^uowtb|HS7Xe!@K2ga%CAYpMm%oD<34yhh|gS-KIN+aAj`YBa)~RSbmctSqmE34SxVN`S4XVk zDOPLyT}5B5OMgL|yt0M;*-N?JL!(?pn=GP97Ad#WXpu{4kGaa>TCrA%^-HwJc-rGA z+T&2#<6NoO*Loy7$jeJ;jCaFc9%Aaw&)fk9fPJy0uCLVHTTIo3K>liK%$_BGG-N4Yath}KJu>!A)2;^*Yf zPP~gnX)AwWler~f4oz53sfn#z%{H&)J7^u3-`)8t=l+u`|I3yC`Qepah1DpmT47m< zhV8XZyenRD#YSPR5!NCW`)byC8B6}G^ghpWSBbIO_f_f3u3YQNYPA#E##L{*;)PnjP-+4oAS(;YbMm8k6BDI2w+DW8pZM0>{G%Fije! z!wfhPe@=pvVJ4gcv-~~>PKC4Ke7L}U3#9A{L;Mzcf-9wJ5#C*$`Kf*t>%Zv1cvK(D z^2|G#$DCIElfmM=Y&RP?gv{aM7YSL02a@zW@uUbj$Xh zomFpV)!Wq-+gbH?R=u57Z)erpS@m{Sy`5EWXVu$T^>$XhomFpV)!SM1c2>QeRc~k2 z+gbH?R=u57Z)erpS@m{Sy`5EWXVu$T<#txKjfH)ih5Z8y`vHl3oxH6lZ*P#u;G@2- zZr09RD@`7V6RuaPkA%`GeS&@djzm(jIS! zVHJ&0E|2;v=ic(9mz+OMzU+vjljZtsxqgsbpDNcsV+Pk3KXnMbw-ds^7(!rX6E=m} zYk`@;1CMi1@vRY~UW?vlk|~vrKGKkgo4nxFcyc|ST#qN$FOcE!WH=$i z8&B58>zf;5we((OXh&;Pmr2V;AwB469`H0r=vnJUhQ^bj@nmScHH8kBwlma(E6K++ zm<}@xtT<8LoD}q!m}WYMd0w;pSBSZ%n0tyj5pz#5_awdj<>5*(C(=Jf%!|c*ubB1d zWghk{CyBYIn0t!3C+&HN-no%tUnp;9=!rg2zw1d*h;dYiQK+MYdP*_WyM_8wp*}0r zr9!=4>Z%J|wZK)&Ty-peen#e0S3TmYgI#rzt8Q@B z0#}6w)22~t(=>T_c`^m0WghyHALrT+41Fdb&l1GAh9xv_`b*h6lV%Z)vf3b;TG z@p`?vKS)Z&vq32Li|0P^9HtC<$ca7V#2#{D4`pzu_`Vs-ptl%$i=np|z9UBl%8`M^ z92rZ;IUHrG{4 zT(!_uKXR28GrH_yGQGjGmEmldzq%1uHsQ#-ejTa>?L{j$by%Mg*Zk2n>ODTS_+&n# zPzU%vGp=YpKsY7o{n3Ni^3FxBn50~PP3wjZrRYjAEz0Crhbs1MB@6M}%%iN<^32~dk2$Y!evWl}KItFwnT^|#^%=v) zjbuUIW8?nrs=w1LUnK9^&Y&MZsXxmy$a%2y5Eu%>;F8Qu?A#=FZX7!|j+DNs{NE&{ zZ^kmb!TCm50yjay&S{Gh?k(`6%zX0jfi=2DT4ifw@+d5a$6y6K4o|?7@Dw}^&%m?r z9Q+KPhZo@I@G_pSf>)phR$KFZ4b;M`@;Z2AdAfQ%T^&|^iYpnDzp$cK6&@Hot}<5#f2&$}ps#3R7Ph{Ht#4uLTiE&*w!Vd}Z%G!zHR+%D>wikV2j7Qf z`W7C7hv6siNZP7~*s6xus)pFAhS;ix*s6xus)pFAhS;ix*s6xus)pFAhS;ix*s6xu zs)pFAhS;ix*s2Ejo*LkLYJl&l0lvq_Xy#)y^D&xf%@g$`oCF1{wR_QO?M}j174`4} zT5dTBe~E5H_nvLM>s$(~?x@d+k-g5VWR_5_nXLD+X;GD|WQN2lWGRQ$AeEQ_)RYNe^O zRL|K$*4xPI@1v}Dp^4Xd-q4fsbF%(OQPxAf;#D;cD=_)D(28hPp`xD@yuilTbFzk< zgkGIZ@!HTo6W5LqQdloANKjl4BDU~ucI{ff)VuplXUTzxkU+tJ?%P5-~}a6|KD5!VW+0BPt%qEh7z#CmQ^)gfg0Gd z1VT?~6|FH%-|^KLHQZRpU5$R+7kj6$t|PIv5?jZr?F3J1x|+-kpIwPDOSR>^>FRP< z@8jx|@jUdg9)jm%+&RXbr(?%1+BU=cVmhN#pKm89OK0IgGY&N4K(k(fTkxP651R3y z84sGp+FQH84%(R?*3SH}cIJn*GvBVA`F8EhcWP(8Q#vm9%dW6g4`S&lW!v1U2eEXSHXsAsZD`*M}`Qb058PKcC_OVL$u#;VfW|1+XTjNUUixryK3o77!nfff_zuj4i*a=x zTmqNEWiTHuhXrs2EQBlJDp=$>u7<^M4Q=pU_#S*8uH%K>s4lrg9q}fklyB9J`6IXu zehjy}{|>kl?t;7F9=I3ogZo|cfEI%XotN21>>+pfEYqS~HXfv+S zW?ZAqxJH|Cjh2ViS{_zwd03sSqcbr?R?F*dT08gleINKTOoV;mE3hBz50l^k_$nL-2f@McH8=zgg~Q-* zI0C*7N5VH?G8_d*!!d9y90yb2csKzrfD6g*x8WlA4$Os%VIEupm%?SR05`56(^u-} zT#i>O;58gttDO4LWc^_f42B^v6o$cAUhijNSJ(}-+mPQZ`OT8wEZNPH-7MM7lHDxX z&63?L+0ByOEE^Jblnnbx&Zm9r*}r=Bub%y@XaDNizk2qsp8cz5|LWP9C9KpER%!_= zwS<+L!OqNJXJ(Mqda_ziR_n=64Ue*hM_I$8tl?4C@F;6|lr=oc8Xjd0kFthGS;M2O z;ZfG`C~J6>H9X219%T)WvW88yS|YpxHLzOG-5RKsPeISF;H%70^Ey>6w-Z#r&2Wp~ z9w#}CB&U(&G?JV~lG8|X8c9wgjXRje9ZciqXxto)o1<}8(YUK<+%+`r8X9*Ejk}h{ z)p`g#3KEqkQF#)TCsBD4l_ybo5|t-Wc@mW;QF#)TCsBD4l_ybo5|t-Wc@mW;QF#)T zCsBD4l_ybo5|t-Wc@mW;QF#)TCsBD4l_ybo5|zh`y?KlK@p1Q~X;;y-t7zI)wCoxh z_AMIrEmD^!bq%Dhfz&mSx&~6$KP(()uN zPtx)vEl<+&BrQ*yHjuVP($+}Y8cACtX=@~HjijxSv^BDi!$@2siEAWrjU=v-#5Iz* zMiSRZ;u>ko!L;RI+Hx>$nWHUpv}KOA%+Z!P+A>F5=4eZM^;*$;9$W&K!euZYE{6qh z1uTRs;VMwiB!PJnn5P{>>q`OM<*inNWHQ2EdJ62-Hi`elZcD#rkVXerO*s&5jve=Qu zjx2U$u_KEeS?tJSM;1G>*pbDKEOunEBa0nb?8stA7CW-ok;RTIc4V<5iyc|)$YMtp zJF?i3#f~g?WU(WQ9a-$iVn-G`mS9Ji7<2@`WF5a`9lvB9zhoV@ti+a;*s_vevJPWj z%>0M*xq5rfgA3e$p*;CETm;{Nxo|PegG=C2xD4j2^IQ%KKWXBhH1SWG_$N*LlP3O27)iAr z6-aqBT|J;traxb=M4Sy(qS+0RJ9{aMW;{PuM?621YG;V3v7j)61zxuzRp z-$?AM!M+;otHHh+?5n}P8tkjVz8dUXiG3@vZzcAv#J-i-w-WnSV&6*aTZw%uv2P{z zt;D`8_GPgzi+y2_#?U7G1Z3+{${;9j^7 z?sv@tS}-1TUS|L1hu~rO2|QvH%unG_SPqZD3V0lzfG6Q8cp9F8XW=>c89Wa!z|Uc& za`*-O5?+LtpbCBkVfD+G!&<%Y3e>=AHGwry3w3;!SK+njyNomgs0@3$u>4)299U}1 zs>iH)%;KTo^ltEZc4c=M2VY?M_kb_*Y`+BKA=E+k^xIyrHyynXd>JOfzVH>;5B7&i zZ~%N24upf?VE7sw0*At3a5x+RUxy>%8!#D;f}`OWI2MkBDR4ZT0MpIJnyJm?6qxP% zX<)@#%xb`_D$J_FtSZcEz^s=ss{ylWF{>7{8Zax1Sy{}=VpbNjvY3^{tSn|_F)NE% zSV12#2aQv)_NU{eD&t;3djY^leVdTgo3 zmU?Wd$Ci3*smGQX*fI@U#$(G!Y^leVdTgo3mU?Wd$Ci3*smGRjY#D+rL$GBCwyedL zwb-&2Th?OBT5MU1Eo-r5Ew)r)OBJ?MVM`UZRAEaMwp3wD6}D7iOBJ?MVM`UZG+;{u zwlrW%*w-|Sc@1m{V|Ig`Iv86Tu%!W88nC4STdJ_73R|kMr3zcBu%!xHs<5RBTN<#X z0b3fdr50Oiv85JUYOy7YEm>^IVoMfVve=TvmMpepu_cQwS!~H-OBP$Q*pkJTEVg8^ zC5tUtY*~jb>#$`VwyeXJb=a~FTh?LAI&5jgmPTx8#1<>;(qe0%7V3O|6<&j2+YV=s zj30wC%Ho3BdvYC6O4kLVKnRlW8gDzV0yWd%`4fwlFcjGypqi;*}Rg?E7`n~ty8jf zO14hP)+yOKC0nOt>y&JrlC4v+bxO8Q$=0c-<S;Okv>Y!ajAz(O=^m_fM=RYh zB6}yLS*JAXlxCgMtW%nGO0!OB)+x<8CAih-P`!vjC)}$=?jfyT&!%^1lgN>seZ_E; z7;hxpGjO2s4AbTB3^)Y&b^` z>wmzx;^-~~%~GJngVo&4xV`E8oEdN;oay^naJErs3Gd}sW|F?5C1q`#8<}+ZN%U$e zwaCuRJX5+u>A{X8N|$HO=yYzUd7ajEUfB88ZH`r)3rCxo7bCVg4(U=jrgRC%9GKtb zhvBna+p_N~wB3ar!Na~cVONgz(tV3`hyA<5?%iSU?)9F2y{BLA=~-F-p9N>j?VDMH zTGqhG6k4p@c?ahKFx2N^FdRn0=ybMN=BdlBQkMnxH1a0exQRAyqK%tq<0jg;i8gMcjhix;z@=~* z%;&>g4hv}Ju)w$CV58n%{(t)*dWjcRJ3Wov2KT3WW2maU~#YiZS5TD6u|t)*3K zY1LXj=-5bF<~#?Bpcg_Q^04PJvl48|J{Na2lL${O&j5TW|)Pna+~Cv*hk9 z+}(t`n{am%?ry@}O}M)WcQ@hgCfu#Y-D=#e#@%Y%t;XGI+^xplYTT{H-D=#e#@#S- zWFNe&#>;BFtj5b~ysXB{YP_t*%WAybM6+(9SvS$Fn`qW1nze~$ZK7G5Xx1j0wTWhJ zqFI}0)+U;@iDqr0S(|9qCYrU0W^JNbn`qW1nze~$-9WQ$pjkK2tQ%<74K(Wpnso!s zYBvOBunJy*8oIBS9)Ri$uZTWanlZ}HIO3(o5#MYa@y+zZBiib#we*M4N?|93HF_1^ zj{Ut!?4#dZTj=g=`|fnZ)A~$y*AEfKO6;!B#GDVh#454+I(FAb-%tO>AbKXHXI`Uc z?xtt%DtL8?@$jy>8E%1xj0V{tq)I(AztJ=En__>@Z^&d4c{Rdpmh;Snzd&z@rLB^0 z3+bZF#b!s}nanlTYaZQlN#>5^vdp67a+Y_2KKUzH$c6U7zS8yAnh|}S-F2_$_tN0z zLLX^1^jYRZ&oLwVyG9Khp(pg3E`n%1Ezefu1rN16X#@hF1QSwXS zzbNdNgk2@t4a5J!^8JP7`wMor zVRsu}u#GR+#usek3%2nE+xUWQe8D!pU>jesjW5{77i{ATw($kq_=0VG!8X2N8(*-E zFW8nj9FBmm!;$a}m<&h3(QphL3&+6}I37-bZ^0RGCY&Q(7dX#1HtF&>KIwOSw%^K? z)nx5W{#qMzEvCFs*P{ehRto*+=k6<*xZKAZP?s~ z&28A+hIQ>&*N%1VSl5nq?O4~2b?sOe#!3B_|MFY@%Wq@9*FW}2|7&x_{<~&ug>c`_ zeA*dg|7?y`VQxp2kt5YcOlVp9aMni{Ut+YSaUH9I$5EV<)$!}@ejWSauU5)VI?)~) zB9g8&PVc0*F_0B>NoiRB!i<4I$%stnWMpyxEtd4WCffD$GkriohEjg26MMLZY#@_ol!Qocq}Yi zSawb4^3K5Bw);ul z&+7hqkBL2==xX-{6#p1h2#J+Ap00WHHaT@i+XUSk#y5w zI?RAsQ1Hbjie+LkmWg7SD3%Jb{1;uYgP5j>X}*}|ifOf&28n5+m?ny8qL{uZrv1e< zTufn&|1Ik^+l~R;NjfG;$0X^PBps8aBP{kdiBC95IwncSq|73|qg_rjkE$~+SI2zJ zd4=YdBVEa^N@ zI!9$jNX3?;c*jdc7{xnYDmq5-j+cs|dIlFr$<9XdjFy^d4bzI)wW2iDEekPKKFq3e58R95@xuhVx;O z@r75%lzdf6#!AWlQZiOb_Lqv|q+*UdIYXYzks7sZBP7?tMv~Ae(^sDK<<$;Vu0wf_ zLzV4NWji$H(-P;K;D@l(bvMH;;tZ+nBei{`wvW{Ik=n6RJ63APO6^#w9V@kc#Mwt` z`$%mcsqG`RyGZR}^6faOJydFkN$sIhJ4|YKmf8cP_CTpUP->@2?fz1`ztql@TI*QB zwXFSha6J@eoQL@u14v@%Wf?2AW2Lr_)b^3uK1MbyV$ZJ5>?PI-VyzVGAhA}8b&yyG zi*+Bd?l0E;#JZOV%SLx)5S1d3}OAS&&!$5$6Q$Id^6l4yzP(6{p1nupKfgBwpSUgujQaH zjw{TGDU84@SJU`t)Z}tcxB|lHNjp<}n!V)P!SZc?Pc+064e><#(HNsKXzM$By0d5T z&Qb2HbmyM#{DM1syEDuXs7xLptKsf2SN5ZLKW?;UlXSO8_xrSSEA8CMPgnI zBTNv}1Tjqz(@HT-D8@8FOcTUZA*KmpnxHN`%xr|-_%u?Twu{(a7u!Q(TPC(6)oFW+ zZGzY)h;4#e_SeO7R+Q-qu~dkqLM%U`1$Lzcb}iPrca62wS^g_LV}+P2iq9DQ@d`}d z6_dXu<}e%KVKF}?=3k2W4l&>AIUg5ug_tYETp`w(aSp+E+%?M`%iM8?JMM7DCGNP! z9gn$c1`S+kPWUvK4l|6dK2ds4g2D*U;l;G|E2gcVwDl{dt)H~@leXbvdAXRjlf-nr zm>w3>ZDM*{Os7d(KWXbHZT*zNWMwc`8T6Eb@5K@HXA9v;={(Zi^WA-`yRUKgUGCNn zK)XDwbT?ppi5&Q|*JLS%k~Q{4+7%BIYG>>?dOWXdcW4&l6^^eDchRFh{4{)#aYP+#PeJ zZF}=W%8NNtE=S6Xl2H%WN#owpqK`^i?Rgls=;Ex(KwvN$@S^R0m? zotJl6PTI%d&cE@cO+1t4(^j?8O!^z`OkU}`>7U~{{PyScPmcG~CfB^3{xLN}!1tEI zmD@{5n$xe8acz6y-}DcxNBI7pG1u{>ZcsSCTR3m;-OSUB7Osp@{2>j(N;jo%c7*9$ zyI=pDnq8N^7Sp&~x_&2)Kc#P_uX>_)whdLf#OI%4tm!-9n(*Y>dE-m#QwTTa!M1mA z{ar4+=h}_>DhhW#pp`C@Zcf|M`$K;Dd`Eh9dQbXfYQ%H8z?_UsdUAS})p{~%HeG9$ zg%^nn>1iqES0T^;9G=+kA(ubO!QZEUP5+`4LdatJXD?xebmhZ)copM$-`#H))79+P z--mGG`Taskhi}`yLRf2z4auaprjHmy_K7d|Wy3}3Br%_mE=!L|znDHQhbE*`(u<`t=hN}&cd+;q zU+GImCWo-@hamd}`3moEZ6#lSjq>%XCtVxmYekeV`GpCudD>Wlh3I%l@?_hnjrS_P z_-9^ny(PWP`(M&&z7-_k$aGG6RL6Dkswd=SUHXPT!i?t`B+8>xKSy;qL9drx#g= zBa{9xJVAJ+gCe(2ko$e{DCmp9>G|od>DSW3(;3c3ieX{;U1Q%f>6sW1^S*fR=E&-n zj+`vS8-L4(ym!Y2CDN!|ej#lQ&TY#7jepE(S3awiKa>7aUtoNtvt!x5rtGE`e-U?j zYI+@sS?%9jU45~qndkgudZRmI8HH<8qsY9!WOR6Zxi92ny%b!Af$#ggkmN4F@H3?F zlJr4&c2|0Z@%)*zCbhN@jbD7F_v%3oA--7nK|Dd`?o6#6QT!!nw)O&Fx79q-u)Y|O zQ@TjcQzrd^)luRr9T8>tM!yU!{<24UN;*>Be<8hIIm~kPY-tQS=ZbWi=Xkkro$sq- zI@X5L3$KDald=XjtME&UU)#3N=E4*j1>zIr>T6=ZxVVn^-v~39CGpCc7u& zwUAFp_SQnaPjY~^^sgodX1ZFD`Jha<0-{bb4|IfBj6OSNbLAc>eyLb*d-r#8QV`7#yF!SA5!D@i}+&RKuk{JW1gh zc8Sl>Jw8K8e1_8a3_apA^o!4s#Anz^U3Z-OgWp-9KDdXc{h}6|p6Z8t`Mftjx{LUy zO2;%FQU#yv6tT^6RA`x*EnmaN2z~jM-}E`GVcbUz=PaMYCN34~-{%M|YL|}FcXZ1< z<|xmsaCFN&o_RuPKIzyw^OR#$=4r>ynP(iMjI?|~j)bw6qt$rVDxuKNp#_K6*f;iV zbkVmlOxcXk!_id_$7lG~p>%u2678kG@<3xDLdg}%Y?oMO-D8=R#4_s<%Pfgywv%7tfmU<2 zzGAX6vCe^YnQKVKYJHq#R%L!otuy#>gEA#$JIK9E*{sgbkjarn7X4qG3U-`dv@ZP| z>-%dAf0qWgl3n@~&G}9`gf00CPG{Bo|H-T92^<>!4*JCVcf-4LOZw%)r}&MRv^~$` zqu<0u|98Bie^&h7;m36R*KwvzgT;88ZXHMi{hluU3twWIlm`p&PC6!9xoxal$K6|< z_mAIpitqb*4_fKNSGt6^Kqs?Mjas9(dKJ=d1)K~U^YieRKK=OOR~%9J6yBp>wH?p! zBfBfbY;wno-TPC)lXEW{`_EoQt9Nbq-?*yq9#i4`d-E$kd@0v81&<=lcl^lP{XnW) zNWfUR`1|xG`Ik%2<&t`{&{EHrs`cX!X*Lm;o66U2h$C7SS4v)v{KMbLe!n9IMzYF%w zT~|oeCh31C{X+O2UIi&FeD>`h^0VmEt&Z0|SGZ1j9M^G&dp?Zuqu=7ye~RyiggDZB z;^!qkzvu3^(jyDk{xkV4{2TAN(LL`6f8IGf{~cty-FUnB;%OM=&Tnkuy}jVy-zc-K z7-@7~@WrAJ61}yDLMf-m7w^BGClLG&F~mAUsFB5V`>o(dULURuK9KjA3(kMsN`BU{ z`GxX%J6yH(EB&$S+k&6t%zNaa;7NK);i~l8YBf1WQ~HciW5Hi+{je5Q$iMUb`o4K{ z;r?aCyWZ)@zxZol@fQ5>TM7F&j`hm0UdOU7$FonnuuSK%YZtO2Ux~W@8+833WAE(Z zkU2VP{9|eAtF1_P4ZS>@Mt)6eMbNMh32`qWj-zFRg-oJ_EQuDfG+M|`Eacv7RM<@- z(dRSK=Y6fL&`o>z(Nb`Xbaa)D6QnFy(azC|c8gZD3mZDyzrk{LV>!>@rJU*L#Co1B zv|u^Qqvh-oEoV>9aFKArwv1(3M=lorJV!4pAzb2@OWD#c(Uz98q+8q4KGBv|L|gii z#T&#fg-=T*{xhjMeHC_A)41ts8H+gCVsizze{kg8v+|~DPo}+8@YD%LI*ERY!{n@o4eh(f_ zDIL6{&%w_rjUHRq=&>1{sFeF`;j#6M-cGmZ?UYAvr*rgndPi?(L@dRDu@nc#QXCll zoFtae@aV$~jJZEJ=KGG(S4pC;QW0~uSM*X!qLyFV6sfcA+5IYc<4KK_PJ`>&e$y3~A%^k?b*tk&>!KCSh$ zbo8ga|KqMp?~b+aQ`yxqsX6tm=Za8&{8wH@3x7r7p7hLcE@;h<3#DimUMk-8Q};B* zHiXr@f|GsQs0Lf5^op8)dtsR`f6dWU^eX*Y{8CE0|hH^me0WoltnABW7I|^Q5%hj z+GtqR_CupiD%70%Y*BL>5OvaEjJuz<44SEH)J!8|?(~hCX=Kc!zA=w_#ysi~^JsX? zqaHDjhQ~bW9`mSs%%h5^rA9<8rN*SrG&I(kN|R7$Dv$c9JZh$HQ708@xc#CY>K|)M zy`mm6^IAQrOVmKY;w;uX7wSn#v@$zJJ=7^$nH{4xDv8=?ShO!gqfY7*b<%*SlLklo zvZL~w5jE3=_75siUZ3*CKT~_)V+Bw5um9wxglvV~n$&sKA;Vr!i{nl{L1TsAlUN(p z7pZ=kg#W!S_FPH4Dv_SuqHOhyvenI9oqY-xuyeG4Tef19MQQ64Enr!cxz5o7mPN_y z94%m3w0)&f{*owvJ)-=DHj`bYHOODrX#2WEIoKh}L7ylGy`mhHM>*&f<)A#uK}9U% z-qHG$#d7T#%e8Z~K4r0VLmS6e)kcH$=@hL`SuE+!(fX7{yHgs=JBj6863e@5v^!no zQrMN@D`dSS?hjEO_k<|)-gWE=(LIwKd-UNWwGS|xHNVR3`KDg1kg^4Oa{wx91O`aSV2DfyCb-IK7(*kr!j zOesB=$F(4Hjs3@N&D_m1TwzSXi)K-7au%x4VenMwb6K85!fzR!||aK4a)Ig_nJ z+!tA%2?sM)s;P07`Id+w0*r#GlHN*{9p5a za^@)SGp%)1qK)Sm@3WG@-cRMfmSisECze=?>o|6{Q)Ykf*ID(dMBJ0S{~&k)iPbf{ z-)IC%i9WZ3yx+vrF3}sg*!#`cP?Fq|SSQ?CR|BPEFX0^W4>^3jUBGUW#}Cq2Psrt8 z7_G2|hg<6T_qO^~IG@Pd4d;{iyy1MZ6|tP9>DhR`K6x&le_&Ot@cRu`$qMHit&|nc zOZchbd=p<4pCX>L7(d literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-Black.woff b/presentation/template/lato/LatoLatin-Black.woff new file mode 100755 index 0000000000000000000000000000000000000000..d1e2579bf85af73ba31298fb53eb81c76335a4af GIT binary patch literal 70460 zcmb?@1yp3qmL(2_yE}!uySuwnxVyW%yBF?G;_mKHI8}wayUXz2`@iS?p5JSFO;4_U z_T6X4i6k-?MBE#B6E}G=F(61S0Erm z!VuMU1#x9nAs`?&?@xdFv-7VqM$a&;yI0^%9{tYQ8PE--$IDpPwin@{ia`N2zpfMC*AP=8*U8906R6)O6y zf%-=vnpu08etK0vKvF0`Kruj6wTCU{CI-epK+(OQHEe$bj0neu`KS5mJ$~jypYavp z1@g|^#@YR|4=xZ8XeAI3q>QniMW>aCqb(3n{O4Hgsy|;p$os-0xV4>;!KePL1x@&j zvQes2EgJ)Odmvyi*w5!8{3AfIfEjEJY)n2qn$O_{0RdqQ<&Y1u+uJ!g0|CPVK3^*$ z5YU%lQQ;Icdq^F&OPfa%fne^Xz9L^2}KCxOEBdZU=T4>WW|0$ zVuM5vhzu}e1^OgpBv7bOqHuL^QIf-tj^TjS_GpC1xF?r7DF8_nr%wV86O8W zY8KoTTFje8-Z$Xqu!}pR05>8@eJMPvtu={R_GQ(5iSo~wpWhEBduG(-Z(fRX`!RU9 z(-J49=ew3f7Qua?wdA35G4WOq#yt{;$i7 z5EfP&E)n5QW9TwSj%0QMVc%HhW!Ck}GtK=&a<@FZ0m-cJSPbqU9ixfCQgtEax#9St zMsJ)u7Qz?qm`%cJGs2dDci4^0QukIW77q8q$-Af)7ynJu8J_`uXI^O;P21IBx-FxT;r>V`dIRIWgpB0mUV5&f zu;I=&@^;B!*H3Hd24c{w{3{pM0&RF3&N@}Dkwmo|hOQQ=&v_ z<>HKEOsje~jn2tirom zbEzlTKbSI*LMkpqzaheDZJ9wYH5=UdbJ03x-0@<}TOVo7I~?gz;Qv zaZcRi+QcaN5YP`q0qw*>0vzVhh5|Ia(~bMgtqE)?tR_?(~6O#ydtu=p(1Y;zKBN@T19q&i9dQDqdnf;uxg^n+9rj z=EChW43BvD20BcGTXgy&Yv1TkE9>*QV;2R1>l0~!r^ltRR z_Hr0wyCYA6$_G4cTExSnBdWsm5nsY;z^3|}2|{Qryf!#mSFe8H>0Ye9$=O&K9;gIx4^-9bCQyaTh%erRvnT*A9!bV9NP%IY)Q z)c2tS&^B5E&Nh7jK{Aafryw1DkopKKFnnMyz2f@(kC?bXx&HEfg7#3j5S+JnSdX~4 zz3{zilZxENErUlf3~bD& zSrzpbwv%QeMr%iH_I8^cnUqM}`C-`DgHPZ#pBa#Znnw%w+>FOi>y07ncXqZ%dukHV zE{Jf}Wp}Y?kw^1C|ESvbT$?cPC_2w8ep^PbfWlXZ?k_42QL-wc1}fdLwfXV>1*E35 z@HJ_XGtz?l0`L%XK_V@MGUgpLrawXB8`9g8co`-5Y;U9-q+%-bxOXx zShxuFIr&3C#5WXeu_4L~kSe=o+GeM{ft37t%xZ+&P+}xoR@!F~MvFnYpTu(?b4kd^;g_QJH*9=K#4n zmIqK_4eeK}UlPCiPQAwtNJjH#lBjdZA^B!xND=7=#zbH08evu4aa33Qi%AP4@KA=R zAY*6zH)eV-Brm-fU%L@}5dxOqw(j&fvcYndx18)Af1#}N!P|Kuek%;`dwaa1pq@pb ze@3y05YfVT^~B|C4vu>09e}^Af$csEwDXF%qS;zle=ht9OsJunPp4WYjdrXQ(ysEC z9A|-A>Gemo&(LKaM=hnVib?p8q-47=NYglQfL8|He-c^B!Tym-8)AAl~1g)QJGfYyi# z_@w-8!2gsG(HgKM=mX(H42Fzz0-=mcX8txHZG)EuaH8cLJFfg_TQ7RDx{#QV*;v73Mu~~ z%gWP~la>)vU~y;Aky@*!c#ltu?rTZa;KG-hbZYoWsN>_|-3oU{RTRS`X2T;5xVNLh z_U;j_8ht!w%?_ERGo+;xtR<3c7k8w}HjS<@m&0BzSR=gW&$VQ8$cO3sv-5YYK^@g()C9@^)IYLq12scIdmbu$=-cF~jY?OE;SPK_5>D@hHj*rpl{ z>ESh~s$xJOzrhh0t8?UYx^7QcrJ84rA&=bfPEjd`XNENWhLej^jqUJa;cCZoIi3!y zf910h_4}l1<&_!syY)bB^&@k@YK7N;wasu3`w?&0y3^$9n#8S}{%{WQvp9nlb?x`2 z;tFOYKL1s1{poeFVdOaWa(5?!^+{64TtdSbimoK6vtb%BhA4zX%}K?$;|!KzjlNUX z-W|KEd!{a40XzP~uBi$8EwolZYKE8Uukr`3CWUvYcN^C1LrW7|cClU)D0q9#yy z`sd_f9Kt=@zXRvIT>nD2g#_&tV1R;!5bjlAfQ5x5>6KuBj)p)8WYovyi-tt$6&4v3 zVfZ2gfe=KQl?zc4v`PraGv(4@IJon^rtuLv4zS)RHUb(B0bfysAyMN83x*2frKvVSQN3x*tGiSKhV=V zrZ+m>bJ$~&MU-h{9LKByh-d82D1@kT0&`Ld%kT^Kuo$jFFj*>PI_b)|tDBs+sTcY6 zR_YbrDv1E+f&jss4LC|3lPLt@?>mg#)W(YDDz22Jd~MRYjHHgha9<2)Jr~e%BdkF{ z8o&!Tkc4$34CO`~aEWMwAJl?;`kG;a)?H=#)ykN#JNd^vy7$;{TEI1{W*FwN0IUmP zDA%Zs$|I>E1oxKlwh=BS0$KPIpcMF&D9*rwX$IkjCuGJubpU`HY7()>Kof@41(zOx zOC$YC5VLmx=tP>Zs_V?IlNofx{G&+h{*<~U$v}Ej=NnCT;1IfowSktkfkx3X`t37d z^`zsrJxLc~)(X9=Tc-Bsp#iL>GsxYLv>|TwdcG=pb-nrB*J>v7rW7@j@&oelqsBGC zO1{QS`N}kl6v0ZDM(k*HN_RB56Y^WG1;*uk;I(X;HD=+njQsoC8_I^c^{kltNii=| zlB`wp8S6$fJnSteSgXyrY-G>X=xo`QqZ#Z4Q?fN?l(US8`zk^HQ{IwgLJ$}vjqu+7 z`AG?3)1rJ%61XYWaE59zeb#=RAgC%a25mU3-v|5FF@4umGr4U1e_)rE`7jasJ7*wxFMidtt(ABL%Nl}(LW zVwLRPevBk(HsmGJnA(KV4gG0Kt&Z@q-UF*8{d%~HxhiIi{A;fQIHkUO`>GM9N-P)T zQRmO9gr~o&sKYbWO@9!lX!b}f$rIy{)GTOpzNh3TKc>Z}x>mQ za`=;9F+%9}EcfuIpabHfVe@ROX_>qg3mraqTlDZ-l-dVz!!Oz0Z(pzJ3LMHC<%D*W z=32k9(0z%K7TQVNCBCBKN{gH(&3BR7*%d)Z^D{%Q}wT`l0J|K20A7~qD zuwm7JMz-T>o|}swuG6{;em)L}9q^4N2y68d3*AYL0Hmug#Nj8WI&S{*uyh)eRMEd7 zu+PN?ew(-Az_}G}*|PkK3GJA(Xa66X+&2WP79W#xFJ`yDrsz5nzqyijoJzT_rkvJO zubQaWPt+KveH;6$q5T7`<7C3z4{gnEGV+SOz_D>XW~pP&lU?gV?But37f!WX;hpWD z=Bm%TMAth>#|*)z8il_yJHE;-AMrB{dt~MwlyVJEIYp#iB~q&wt}+hO7=y1%#4{xQ zzcm2SH-L6d!e26R_f9NeqWuNqsW1`lm9^=~^s~w6)mW&ObS&l|s14a*Kfz!-vVH{Q zt;$hHBh6LyxeH@PH8X$%Puw3Xl5x!czQ%)-fou@O)`$f$F4&+RqtPCf&>n;CXtiXQ z`S^1U5^Cn6SfLHKS)leRQ(q4oVcxuQx_socOtZOkr{TeeQ5QA|#qU!PV_3lLQ)no` z8ixvH3e4w{H=BF^Tym^28a5Tdcq0A9kp@qUz28`ucn441xR!zKo99PKPcDINC(IEb~<7gLsE9_0O=(%mOzJDy&F8q$horj(Arp@I#pE2|L^v;36+; z!8#HYbI(HJ!rDTw>WR5)se5PR+e#th?r$6LUp*=v$v-V8?GJ8(0##rxGJ&&G8up)15~iHjW^6NnP4% zJQq5V+;^+;+48Wev7Sna>yK4CW_^3aRSAGoD-abdaH-`7s+Q@a zQE7xgSBWW@ETY*gy3WCW4d~Fgx!<%UKER&^E-LdWAUXJa6B+7YS}~l#9|CMQeP{8C z0`c?655YZy_%?xOF>XQM`hXY^VL^iW5E)QmK?nN&b`>OTEN3D|02~+ixkGSi1(E*6 z^lJU#VNXZJ4zi*JbdmZ4W1eQ1A^j$~+$ zpIcUwsy|KsWuKyV@gK9gbZ-M8C=K{TuOk4&m?`#;eTqoyOP)t=ci>JDw0mf;v8Gcb zJv6tmJ1X^V;B~MMAe`2B+DkTf$WEAb(7R*xHh_1~y91x4yZqV>U31>$`S+Y#UF znQc1RgLwlx_N4)lCaJmTXBEo;3AR@wS3kGU| z{M04%S{>7MtzXuuU)HK$275FJBXIp!qChzW_6*d`V?PAN2l5f*pCy0=0_`JYz=Q=B z?qguUjRqp=qhP@1fg1KF@8j8ipkyH6f&0-10zjkzneiVY1hu6hElI2FGG3)MUik#v zCk9)yFS5bn7JFR_*TcE8B5}1Dtch7^Lh4{M zToyZB3;%{wXGQWtNAwS@jdi=$*Jhtuk-z+_v>NOF51@>8|ABB-?mA0ywX;EazN;kp z*Ig9;r~jrDn;|VcNSt#TJ8Uz)?fMH`Gw1ng8N<_7TwaSnh+lLePdHlAMkz@g$HTLj zh)bjYDVc1I{sbphOIEbD+;CI81Fi8dlz&2qsU{@ail{(GBsnVF5lNAbcwAJZEt~=a zX^;4SW(Hzpm!n^l4tM3sSP{)@jW(j!pMGIF_4q`=wCDn7I2WYi0pT&ONOn+}6QT=z z!L;C?Cf1T*s0*TxS$H=z@swy$TR00w!ang29g)l^38w^EJP~cIIW@7y6eJsyzsW-* zSR{3^!4xD16A>M(zsc2l#(yHqT2ro>hFm)}iFRTvb~Ubu{6xT zmq>@iAm2ptCSFgZe4N)FVGI(V&a~Vd$KQ;_U^3=}OdI2|X#Xw;ZjAp4k%l01SHvm! zf>l8l?r>Acxl_VSy#Lyahr=@#hFqN$WOM$TL_9+i@dBUI6>L_z^A#5pSX;7_7w73kg{Cm{$x48yG%3Z?3Oj zcV!(yGY2JQw~NT?`eO}O6k)j|4a6BwDMImv0EL*Yg9EYdD+vhP*9PKzr=tOQoPZsu zQw|XB*xuM3012e)ZZAB}DWLEFBgHlWj0jILCB7+%{1af>j{4H@)?@i}l!1)mWzv!Q zQ;Zr;uuCiYF=$H~2LFy^fvYI}S)TwU!Oy$69xpVkQk1OY9+t^B3lyXa6yyfUaAK?a z|3YXAxg6#4SqtQH$0+1?5lPR3l0Mr-e2nKsRG|(-3^ka;XalW=nCh@Qkp?=9tf#0N z?3(NJ=PADxrvkEY{=V3fxt#wo;ga^01ds!BfxlcE=<%ISg!w!H=ppa-db@E~(m-Dv z_4VLSCjxvp|880XW*}ay0d^3R%H7r6>)c)I~2}BK}ZvtFJj!AK|3(Eu0rPJD&4*Il@nGjd zPd|e?%B?Se@%-x`k4D?%@|Zc>{~uRWdfi}6AAL1~^gVw~_`fIxroqubjc(Ghx2lj~ z0=VIGJiwm`4bEhJ-@l_O;&fH82D$z!CXKydRTID%@OSG!2=`wpQa=i>dBxyA(FE8E z6MVC?KkXG@2wwa2KU47+YYPzV%-&R?6(uNbXai{?Ysz5S5I`|vGiraT&PpPTwxfYG zo%L7MEUty{*!DK^(4WHX0;6zE^{FSTPS!@p<01KogW z;{t|&wW0N;fvqY1X~6+Q5Zc!NZ7POpM(s-_UQq(mj?|Y%vZf5A6$KQ-HYfL`GOZ{< zXlDV2zI@U@oN61;*+SOCIcyE)P@k&?KtDLO&L30-=!d4hHW1~jVmR-Z2t!lTFfjSh zoQCh>L^5A|kemc_dVF2WuEkmH7^-C5UH&&Xy~r^!`BqgGmEuxYPp7stG~TYEi9vm0 zXi{BOm6Fm_U$3UNG(N7SsYy+3W%9qxdyBo(`SI1#lm>Zf_6xJa!Q*=a7nDiv`tJ>y zYHIW2mRg#!)Rh({tkqQ|DT|Hk?rvq>M*ZVuy2w9OtQ-WoNFxt_w^n+_V1|acYM7gy zL+k(;)V>1Juw_XZw7`yERJ7{#w8R%X(|nZJUWx_^Vh%@iDV2XwW=5E7>)zv*t~zC< zUKuw2>xYEqW9tTZUSTe$cuRHk9FyIf3@?ELr!eph^rOal@nhYD%F{?wyE~g-tb?}& z!SPi#`#5PXO4Fb{%kwZ?e{|-8n^wN5JoIf#JE-8Il#1k2AP)&a^wd^n8Z!zPMa8|H zJU?t<9`z`fJ4cbUVF(|K$xrp ztffmNx7tV!!MK6~^bs*(L;dshF)`uA{I4vjnAuY@zK`e3_y1Qotub?5X6`u2_IMIIx!?Djr}aCe+s&pe{;#Q^4i9^Fg!6xzG2G(qy%Rj{ z8Ibfhn$FNoqyyBsY2V#o_14sXk9S;e8Y(&r3J09l0q^&l6!9n7_p3*O#)z0;Fh#-3;a1 zOFEBzJUvzNAQN<(&r`u(wz==W_+s7(kkbZ5Heb3A65r+4H&wIDNe?1PZn@N^QIz+T zZ&~zc;^m`SOxjzO>4M#&2DKgQMw4d>IIZx9q{)R_gUwB<{1z4!01=4ga`*whKx}+Gr8@!xvQ4v83$`>9a_4055(apqu$B+o!pA%h*itumRK@f~bM?}13DcSt zrajC@zg2+oECc6V2*kG(L}<$U|6^Be6IHs8QsLK+s~&SBWb{jyFr3Rjr)Hj6neK7a zxu$wf33u)1>)t5TdXz2mELh`gYrPDtne`99P1l+US@{z4Ath7^ zgE(~rx5<9Qy-x2xH+@w01U+p$M#b}Y)4%!c!(V>*@joB7s*P&!t4rOVEdMA zn^Aqz0nO`aNG`3&FF3a=SB8u2Gldysnj(cMw( z-r0&+b$`WTC|?;;>3&t;06x7bc!t;W(ep)3Ed<~eYrY|>kp)WXGr42RY`wBD;7vkU z5GsG&irJEs=aC#tI(JVDC;xqAh^i}NBxlM%K7Sedt@$v3o%hlddR=5o7B$64d8vu= zlhw*7t$wO_wWc1Z_gN7}xqjXOvBJ_>9oBMp*_`uEyDhAd1w|GxwrRi+ax>rS%z#rA zATtMT_p)J zMH+l1S-M!StqU9o!2fVP-L>O*QX+DyQL_P=fs4jfZ2gu@YB&Z>jA|YFP26f1BbMS- z!v?JImA{>xv3Uo72&3};l0~SyosGpeJj%!8y)6pcx@8E(51kjr@subDGxo%+@Cx5^ z(KfB3WnN0fvYI$;G;v*H;Qh4blZY#kQnvxKxG+0) z4EQh+lQP<-CDmA}Hdr3oV(a(l4}0%dc;|lS>*F}unv-g-%wf-3A$o4hyS8Gj;vdsa z7&l7^bIykA&kT0Iu@q6n7J`v}*ItxFw{DFy)W9;=TKA=l>8vJDUu=&<)kM$2PLQd^ zRDQhv&RodaE#NuUfXP&Vw)G)6Xp)DXlFwSqU1;se2#;p*B`Usps_I+; zSChpDB$ca<1YGF{YDC-BJ)&DZe?o2JwwkYdk=>^<&hGAt7M)sLc7x2&f;F|-=t!34 zZ0HBcqZ+}+@s767l0Jo1{3v$tR^P@Q-fhE?0f9Qg{xPXeS5Bq6!yUH{ZzgrSgD6Y& zd;~tF*LYm?$Hh=j#Cift2-4daMH`b~H)Y(T%guL}-*uCAT^`<5aY{Y4obTm@^fCvy zB(CQyg%>#=g2n9b-AU2K#x$fxM?k5GveIK3Qo~A^sfl&TGPk14BeLN<5yiwe%M=#| z<@5>aFn_f(B|HG3e5B zE$&8t?TgQ--rMitsrM55vr~(m50EmxmzRgv_ooi;Z_jia8|x1*BNe;i))#4|c@hy9 z=fQb*5XynBkQZcY+EIQd{5%-r#Z;>{&@Pf5w{3O{^3SUr4@u7nJ6?N5Q|iZ%L%3J# zXI38b_!C$idDY9_ej!)b7xWE3@3Nnkyx;fTUe};vgL0b?Zi}bO8((Ko&UcE}n0rH@HFv&>Y;(HSA1nx%}3(&HxHp|u#+ z8GUV8b$TSmktb(fGjxW`5S|O=TKnR{_S%7At8L?sC*R^6ac+DX)3=_3J0@aw(9oIQ z0Z~gBr~6o~iuJuD?3EVHE*8UHidE+i#vDEkDf;RePP?!7fhoPhb34SYp+$w&ke4i#!Fl#x&S);Dj53J78`w;5;lXBIh^O$hsgC z9@~Q{!35uUfTcJxycAJrEiU`H*a++)O4%$1-^i}wER{epTVbS#U+dTzVMN_3hRx?Q@>o@C>~U0%Q^-^s0}M%HDY5`q{~Rgy^I5A5m1PSuQ?Xs(jJdOlHSGQ(i0eBFe>s1xm=ZH34(Jf zE2&O!M)v?4;aRkx(9FD7}J@GM|SL>DKiU^ZH23L}x>nVys2A=+Am$MYSv{gU#@D)qMl!srH`i;;mx4TEj&=Y1}EMZr5e-7 z*!%e%%MU5>WRHIZ%{uBMukEg!ZH?52R2(VTj!E%DB-i3>B2dU8<~REbDGj zf^Mn2T;E?+1i3w_zzbchYl@`5tF9mKaGPruIP4b8)N8uBL(VRm4828dZ6qL`V|6@J zvo4o0h2Dg4%!I>bbqG=v7#u)9OaQj&sXB>5oUe-`rPTcez>f#X1ZZG}TeXn%t+z z?_hL0BK$>6uek51Zq#dX@=92jx>Q6z-aC=VHyY&3${ewe*9^Zj{gT}O=zR8npkw)6 z1|6x;CcXUaVZzSSQ*b7CrbpRxxSB_|5*fW>`A*79BdlxrL0^qwOyhZJmc3eagSnux z>f_sDwQuM2n%(|<)luxphx&-qVpKRltQ0`fbjZ zxE^gS|IK1T<(<)3ZA0F2q3J7X{!{l|o1{n_3ueI+pYDcCceCe~s z8HQMwhGtjP^^{)by=|^<*W&ALf78>A2Z`;kw#R%w$+9$oF0leSgaY|$g_5?zH6E3s z@6&g}qjxcb46Dh}{5oc@3C71MhNzre(lVqZxyVi~p})oAvJV*}XsjrT7NCzx(SGPr z8v{YFV#OR2pYP4r;0A2-&B2Mb>%oo$Aw41m5*S@hD$Eg97c@0SLKNmJKP@OsYf&7) zqI!{u106>sn(x6bk85gEn_(KI%k#@Sfkisk`QxKIE+9p5fDAF4TL6}RTyB_K@KzTm zXi592c8c*}HzYf$l zek)T0s8wHLSD=-vQcKNP(C*v$YtCTa>4evqy>jY>nH5%CEwg@RHrRPqvhFr29PhiE zrk!lZxPIU2LJlp-Rn)ofELE%x+Skg9E3@stoq-)$k_)MGJ9whu9IIMasn_M#I2GyU zYkV7ES!meMnDJu%Rw?nVQsg+Jy3lM%e#Y8|x1p~)V^LK~`CIYAlB$${jgsXF6{&za zrL1$x4~b>+7-tjYLh2;UZy8|6O$qJT2~29ky6Q2H%2uwM(TYir$|m=_O^O*TdE>af zR)u_5%PA(|HA+G*DN40sCYsXfl!EP25wogNSv5-7$5f)ncd?6=KNV`Nn7@UI95>z0 zTVb7QON;r%y<1sf%n7USuumA67{Aump5cYee)K$;q72ssxiDLV z@%y3le9-qk_H^%=43P97_H^IQZzI$`DSxb7q2;r29xE^6Ek=sYjeBHY+8w=o>w3wF zt!Y;Katcge!8`nZMSr)Y{8+r-k@4)XL7=-gA3{Ir#vP#i0k_4W+V|Dq74H}=W#Sm` zBb#sfWW;UKjgOSUZKuT3*Y=dnuM&R6QBgC;(2iSU**Gfr>fw9OwVTA35w`)#AjOxm zhX>^Yf;;=wmXp`JbwUBB8NCZQ5Ef8SR!~qMFVMC7<)<;d5!3i- z`K^6}-6Ab6oRAZq-Ji5e%Wb6r)4Xsl=jDY?@+8?_$H!GDRSk0f(_8_IYmA}R#>RN% z4@y&w=q&SC6ap6onMXXRWvY1@(_+3{I73I)sD%wa^VqB1x-r?xjnk4b20u+5ixV=0 zoJ}K_8&Hawl{<3^DR{*VJYy|SI3pLGRJ3Olt8xkzc*XNQV?XZ{h@97?lCu(5&Mtm+ zNrhg1qSP@f(c&V1a&5hH!MDu2QNYU%J3fX*tzuU2pB8Z70+p<0nsUa6o~4?XF(cv6 zjxlWPW?AGc&zY8-<05BWdj1iOm6^vp&r=t$tmwy9R5r81t6+qca$bFGH3l1vTo}Vk z?=?DHAK@)`u@fC_l9lGkPILFJgq?fym^ED`MqU0vAV|{O?`*yJ0~)i8ghql|f2zk2 z?ARP;_A@u4`^@uVI|-}(1GwH_U0x;e{F+=|pN<}37OyZ0n&>q~1i#@y-Z|qg%sC*| z?BvD92HE35CV0k>G(LkJyTHw#U>7Zt1D@@0c|B~Z9Q@UC1-gC+YWaZNdA^+7rFwR~ z-Fk+Z|NipsXUH7Mb_?c?x#0o_9hfOh zB(xxnSTxQ`D@#TOO__#f#3uRunXP}M&k*4q#7GG-1lTk9|9*KZF*c^NiYWQ)uE z>BS~hDtywAG5BT%0Ye@pVUSC+S_G1dwAjPbSyXfAr?5454>@rz&~*1oEOW>mktQx~ zZ7%J!?w}3zgBK$tKcSOJ}DM;v9(6FUf=8p#!3{2x+6C;yz)6 zCb48{Bwhn3?MO8MdL0u&9U}&wvG+?<;Vla`ZgqBE)6D99s5jFbUef?!Q$-uoh=Khw zwM=qO)6_+aoC7Gz+@67~S(k=>xdy3PO`|kU$z0AMTPLlv{b<|FmPLd0IjS2ZYVSDN zb@Cg%5b8<$8CKt3qkWydIPZPxwCuc7*xG*1n&2B9IE-7ax{F&fojLE;iifSt^-%IV zI-X*LEepD@O|wbvZ&zhQLuEt7qpvKEeA14VY-8mZl5)KAj+S&|oRfPfAd$K%4#pNJ6__x8d8d27JeyJsyXhdHUJ zVh;HokOu35O2N@1K#?K}k^2WmMn(pL7X=e{xglyFDh@)4iHN{bbZH0-iCqvSD~OVO zS2cjZK~ENh8nn{`VUB);bT^yM?s_quUT@iW!Xt#$lcN$0?RyqtBp2 z84R3KMln)3Ffo}du|Bzw2dzv5m2S>mg*;Sip#;8e!2~k5A?eL}-{Tlb9u#{n8m#?C z4E}9NTt8N?00eV1QnWGZj)WnTa{4$+Nkf$U>J+fo#Bqfr(c<#kaTyXaUl>W$b`a@C)=+*cOkF9=7fc-<-4-4$Upqz~xq z*Tp{-)%lASt$+;-aR1Da!1?H2K}|fZR?e1^V>XLRI?sasj?+wKZM3pfhGk3HQl&i? zz@)HPbVbLKrp77}p}yOv@qYuw(}b#8OhnV`*Te!)eMw zr|e;qd^66?mYJ{P*#oujN3{=}wm7KruUGb=mpuzg(O_K$SC zrmJt&(I!r5ZHmO(w0ACBPg@`;0P0qaX7p5k$ql4X#$>8TYBsg+5oM-J5r7}Z7C zg^Q|{3&K{5*;fntfjJ7v&z9exEjpg9!XV7aSu=|I)(Q>QO1H4{->{2=u**TCRoSc6 z3YIk3i+0%uh^->PvCF<;7yZUA=<{S2xgKm7E&W{6)t z26|Qr`G7D;kl;T1RI5EX&5NO?dViG@icJhcztgC5$XugNQi6hzfl4&N_%+a`^+k$$ zNY0aBmT6#PvuA&-k@=SWz0udsQm|atE&kuwXa+;M-fZEa|6fHxLW3|=64o2 z)c#^;vM?V8B-e<97vm_Ke#B40pO<=%Yl=nYe#wFCD?gkCg-1ECZJr3w-<_2jM>o-tSCz@W=Azx99q`;* zn@gLfI8*SmWIBOtCOrcfbF)+@$_$s<>bRMU1yF!xU!7l{0R4co$W;HSA#1cZOH-3E zPlOaM0O@Hl93?`J%o3Ex$x^D-A((iwG+>g+7cYkRIO*vn z$iyA>Iz%^>+9sjcZtECIFz+7U7A#{Nbw;?g*{9tSc3Z!eNPD%0sC~rQ6S#JejhMq? z;D^#dUwWJjMi$CQk3<_69n)=*$)$cXE)gBwgEL#@93rnwF)m3FtAix?rsw2T!f4cL zOD{DYn{wo^+V0Ol+uQO~FC0b1s7XgOO*2#eb>dn!WmluSIFV=Kh6>BbqTD!Z?By3$3LN-lrVE93Qr=wN7S1gsy+Smh_tv(r$u*YO= ztQj0bqpnXf@nAqQp}I1vM5#DmyiZY<9Thx6=FWv@PB3(*rns9tCP@BG1c`l!G9%tW z^&0a<9YSg>ze&+^lC)hz>UzI`Kp(a)hyXuk@@hv~N@wog7cA$9Ks^wiTaohuN7@hj zRed9VaW}CIDvoZz57WE8i{iBPcot2SQ{Bn@t*4BlAO2810okaWf~sI_DoSDf=q|H9 z!WMyHi4lEn?xdux73fV>CWDj(>YX)&tn*s1mN=yB&VIQGW27K)U6AwFm(;xQ7au2T z_e>;B1Kz1BZj^zq zu%@d5@T4p(n;5}MfiH3j#Pb$u!a*eW9;hnsE7h$Dyi}GXm)51q=OJ`OuUsPn`s6)K z;Q>`dEbO;zXtO**EXGMG4$YQa#;3i61;e%qNUYvCtJ{4g`r4sH1k{Eu2Zzh-vI~-E zJfqROOx>J-UYruL?U|cOI(X%_{Gu}Z1#Ha8CP1RfBsj}v^_=U=;r;%^DGFx`n(73( z?lD!n+PNSj222(2w4fH13h?6R*D)E|b##!6bp?}(mKPaW7zXqTQNMqv-_`HW>+3Oe1^kF`4=zrL7LiP5>B}~Y+cBZqDe|~B?@C5x$jNaFK{2gyn$H^e4253Xo z8LePQ@dinKuD8@0vs4~6jid>PU)5(4%YOz)1|qkzyWDLJ$kQx}ldqS}3GW>f(!AGF|bL!&*0vh1<||w*$U@`De~FMJOaLA1|J0P zgz5ZQATW2Qn2z8fh$FCJ=?rto{Y_rO+VHBY0Egrrp>y_>fYtC`9-HybOtcB<4nx=c zxb`z)k4b-4n43bnL!xK7bNfuf#AJM`a^!ZI1_y=wE_poj#Z zBqaz}QPF=8T005# zX_tlHfyC+b}%MINEOTS$;Eh(3(mv5OB&FFidotZh&N(WHYN^VkM&N`@!Fzexgv0 z+a`9OvgX)So0&4QWNGaX9D|~k#9PF!Xfm!pNC&x|=PGZ%v?Hj@hdQ5QwZ{oN zx(a4Lepw>gEFwIrR-n;~{XPmr8Jy;0cVB1Oy9`Y-gCa*n5ZeRia8R;PGI zkl}SuJQcDQ_{GGlW%;z#UHjt+IH{*UOAQ2V6aJd=S;0{&g}(F$(Gh~&>P7}@bGeKO zU%TaNm-K`p0gzl@FIr9H3o$v4@2FZ42)+rMrZvDfVk2-tA!3lVjj|})F$13&g91b) zP9UY#1NLo0KD+3{so857oUpalWg`>o2nP8MJEAW!VPhAk$;dI!{(0Ke%||mwHxGPb z2gQw6hv&nEu=~N6(AOq*T6>3sMum);b$qv=IBqK2&C)`#^H-Imgpl`~IHMjMz$RD# z?Dne>BAZw5#Z;)}W*C_fLTkkLdT43twu;c6UkUM=*0Rm&cc?|`YmGeB64dI{&{n@+ zx;xDlsxRpSk$d<(3=&oK0UgSdeJmb2zue*U63gOAZPBYe!R^mmBQ&leaE+DAF51ji zyAOb{fPdmzs<9Qv+t)#dBOUx|XwWPCc(?!14*oF6^R{90Vd8k3Et=uabvE~mf84}; zo1bWCGu!VJ`EY)yQl5~05lf@v53#O5_+J1wK*+z+z6fb2bBw4*Ls}*F%FSXaszT1z zXZCr;#QTUEru*ZMpW|xSN>82y6r?yC(WbYbqc>5H;kt0W#M*Pj3fM9Vy z`w%mKz+b>yw4Z42YbPJ39%FSMt3CP+eFFc+JouYP!%iKv{zy{eA`IEh+I#=h2=Za` zoy%HwxIUK0cwFBghu_me`cX_^4}GowO{O?3p9}4w1L~azelUs=GefPx?j{E{%pdR} zcF9_TH?M#Dlk^9_Uoh)UpgTSG-YxT--O5@=TJ?xlZ`Yxjc_oYQ?@`@3ANmis zju^B9eNK(z4s)_vWmY7VuXtqoq9<3Cs$?IV)GYtpP2n~U|KV<;AMHO)KMF<>&B%Qb z)A|o_&-C9zOoIBA#NqIC@HZq!iKLJlt!DOTu+x3;GyLnN3j0qJ&ET`0456Jn5h*Zg zCzWvi{I!20dQ`&me~15ZI4mFFFPJ7L9Wny`g6c*t1b#Q2K0(C8_Zs+N(0LE(StSwA zcHB%bDkq{p=|6?LEYb}_y0U>Q#Mh868hJv-kL?+INU@Rlx^U(BHMw&OB&5YC&NgS& zW~x9dk-XxKJxv1Pt7=1{rg%yn`B11GPe59F_`#bU0FaIm@StZ^!m-Rv*nt~l;06Yt z`s<9KMpvE3T&1{j?OHXO4*@hcrpf9xy&sKko-f zJB^_YI|O!327pZn;Anz4Lh20PD~kYZ4bsc|fxb*q^lC|=-EA+F(5vBx%YaZA)$#fs3Q z-hCK(1<1fY@Pab)$NV4zw>oe2gNy zr_aZ%PI#y;*V3E0@%1I^F~c*SX--ep=xv%ufkh~UT+F_I-hLcUd8bu#_!am=~d z)a&YBHh$zQW$ z#ev55!B%Z=JODjE9+RmLpe`lgF&RY{c-WM(AsF@z#GZ|d^o8R~PM<#V@t%sRy&vCs znm$E*wPt>HYrcWbCVpGH?$qSjPj9HDQy`^Cnwr=&k)ZOJRH4~lyPhr_MgIZm=F$J; zEy3-FMk!XWLT$)|=DZ-Zb;G{3XUtEH(_*e9qbN$`Kv2&ma25BnQ&trdt9?wP*( z7Qc0Lx>R0Zi3nLUCphA}@4dV>#0SG49_PYya0!PK4=2J#=nKOGH}G;F>OV)n(|-;m z!wE1@%WPtySq4;a8jQwI?wNE$-;dtqWo65~q(F=1qd1(nMkY2u^q6@!OIQjC`vcM< zkPpx&1*!!tSHv~aMf5xLcX2{KUl>P!1K$?`tusIVjd)4CMEz}izM~h`|BYG_Cysw3 zt^ij~ZjpPnTCcosIrmJOu|Lkz=AKYX{H%rZ?*6!{4p)bMLbBtENUxEsrcd=>0S>2E{Epg@ zEV8RF@?{#c95@L_|7F5KZb>)LW3op(GDc^ChmzFtBqk<-{8I;6eU?EPkUFE_3+ews zv8aC(@$|K$$wJ~(|17GE8&GE}`aE>s2Bk|%UIG;3M@<7)$WxRN#{53yDM+k*e%#r} zeTwnAh>*le4t+r&ym(}@6YIt=tJ35J3p(BXzn}2sZ4>UC9^CD8i4^vlhS9$2MJ>+Y z_HQ1qs|-{Hax4a?5S*k`7PrQi;qVYsN46BsKG@N}Ol8Y8W}C&gz%aad!u&_g3I-Vl+p)n^HNe1qIDUhyOcC>k2od^UM5dH8 z)x}loVv8^-B;(*jgXCCX43`FFN`l(ZF(?%@YAYU8d3+@kQepGQvf0s#EvAIXWWo!0 z#0Ew@M@^2N*e|x1dd74m5t3!&%A34ab%u0Q=IjOYbG*IdT8xH{8OuuUJvCI`iz^n~ zk&*Y%oN>n%mhwbuIrt4%la{6S`%;2q%U-cI6s66b{^ZhGDy>R0HBf06$z4^MnN=?N z(OtnMJ>`^gY^TPk!GbqdmNitZKRe&-R3~6Pn-0g#YVHS|WE??9XXK7bFW56?%-$)1lEufnJtK;|s>C>p{vF^4YMa4Wx3aTwc4caI z=G(cIHJhGYwC0`LTO>xeCdZ(Hl|ozbLOp+u(&5@e;~@$H713?YjCTqp*&|e|lva0< zJ9ngCy>PO>*lE>TrJb2G=FanVJ$73|`E4(*U2$#%sT9i;8ik{Ae)S#qYK&UVT+}W# z+um3=@8vzMjoAJdL6` z=~Wp8R#U*8E(87xc@kA>MblVc%l6*flEn}7w9Ii4|7}k-)h%mlomZ((Qdw2h;j8wX zCZpdjui5(QnnkbgYjxX+Bo3T=LLRug@!ZqP%st6g%v%uhb{zBOjlr8a26H}UVZuv% zb{&r|?Tp3bhaUp}PU1bAL0hq)t#w9`3UNxBt{r1IEnEM>nnf>euXo#@J@>*3h$j!^ zshoQf&b3RKIY(fSFTljdkqp5xk#D#8i_zfdCg8jr4h;dNg2yMku8}2aq;6)Le`HW+ z2-btv*{iFeZp}WwwV{0FqtiNf<;vRYFXc&+^=?_3LS~dCT4ub|cD6_?QeQGQZJAO$ z(gI`J(%y0t`N>rJ&o3YR`+XzJ*PUD3d1B3ofVXu`_Ns|GZ?ck?#N#PV9{p5tN!HA6 zb+(Wh8?vDs6x7=|4jRfCV- zBda$(w{+?wD=T@)8aZ*BwJKnm-1X#!#cG3^v773h?{1%VerIdRiZk=D=YTxGF@WKr zVi+EVkC<-Cn5m&9Dsd~JEDKm4733o%-_@prf9jGZu}LKp3#$$PGMzY?LuQZm|`3pr+m$sG^J zm$>*iaIG}bb%*4Me-Fyj!s(9HVyq~}2>x$DW*BotOBvPLM3x%0HJCLh)y>*~KE^E^ zA~_?Py<^{$Kz#h2hLq&Aa<4utY5!|CZkRydo6+MKt2^AK+|STD%gtJ1h&CaSW6Kyr z#gI6$*>4=8brmeD3~zis>?hx#)}f_88){wn=Egcl?F-&Ew(Yh~H~m&sg}1{&zcs9W zk&kEQ=TG0))<2uLy}m8O+ONHlLNReM|6VZeR zSJuSG-<^_dD4tNrz4jAR%U~TQc7KkI{X>K!`;k<%_9(ZWHanC}?ei)$41KomcKx0E zx!3WNRM|wDi^k@$6+~8!>>TR$1nwm`ch9 zXQ|9`kBOCU!8;O@xDJhGNxTM;MRNHYU}5W>-g4X6EMDCGN^xQB42C0WZ=!f4PZ$>` zq3y;Kv>E8Qf4J@>R7f-(<+m zP^&X?4W@jT8q7&?=9`Rp&Xg2qp3#)=Ou2SjOc}W%Loi*XN)H-B`|m?OUwwCYiCOu? zSiS>;^0BxX;|C+;hB^Vq-$$TM+|UONx27fux-WqIKjCv>rKF@l8ifDK@DPzue0V1C0G% z$8g2=OMCrI{?xdm$lk{$HcTm06Z=DK3^#JXk8wgp68(3na$HJwT~@`lpIANP{{Z{T z#A(KMwS)RwNdNfnM&Ns?uR?amzsTC%gj=z@TWfy(REk4RFFLC_0 zuJe)oeG_$$>dRl)QK;ST!eeOW4gF>04l}cmJdB%c+cDKv3IUbH;?^V%>mYxqT|X%p zAAi4GCeVA+$Xs?jr|-i4tL7K#!1dhyg08=g!pbHa~&|ID;O#Zir~-_`TkWtJ05)18Z}1y}Q_p9t>sUdyGh%^M)? zz^&-AH@ddr8w|0~dA#LKmW3NN2<9pgM6wl*n+L9Ne+}pOg?JB#b)Je;cAe1|(><}1 zHDkb!+D1;@ZZ?XQVo`!n96zDpVDpIi4QceAXb%;hvVmPig5Yrg$UuL;#lw&1CkbzN zxiXsORT8SOtGaH*U?7uz?-GaQH?A7;+xCm*l_6G*!-;syQ_c|o^gwK(hwFmaBE@V2 z)^Cs;8}!EtDwUH2wX&1l8MiT8p#)k^vZL{iSuTWc@X}IfaW-mOm)UN>i}1{gH(LpQ zY^bbkXs8rh0zgqVj*Ze`JixtuO`0EncyBT(Dx}g;gug zEDko;*qq7c981fDvV}*-Zk$3CHWU`u)D-Kpt@8f6twtfqlVznUENW4*)=oL*tMzeW zg*&Bj)o2e%$<=CQJejD@n^ae|d0Mf%uG?2RPOGfRReH0W;*4Dr8ds0@WaC^ZXpeI4 z2Pj)7)*Rgk?io691^yWG?GIp_F|Z!d;#*;y(TUr2=fG^dxAi&1(b}*sb{%XInA`}C z4XtbQX5dGuM&wRhV|)JrVphW_SYtWWd+xdC&M|9{Fn$5AaX)4A%g}6aXvB9CvfZxF zskGb5ygHq?%x165(Njs+exQ@jS(`A)fZDrY7ZFU($vx+_ezJfHFoQ5Gwn9||1 z%0OIX6|l;)Y?j$%;MYb(Jk;WdDs6~`tKDoAgZPTdJDU&xd5}s%xo%jx2kEyM-Z{j; zY5FcKJCpBo-LQOpOAHx%V>Zjbq6S$?6tj)Mz!_LK;!7H{<_Cw=6oW3Se^XiAxZ&sq z?zzc;#r8FSTg-@i3vWY1)0poSZC+R`^7|aO-i2wpBWT9Rjv1~Nckj{b(&l2;dur@m^GYHU=ZGZ{d=O~Qj~Wg6kfMkLL@W{` zi;)hF1PY>h$xAyL8g{(2Wa-Ph8X9)JymaQ|$us9nnL_DCY=3p-s@Hea)$MqF)yh}5 zkLY{m&Lc+-9z1g7PG)>b8F-x9M6KZPp*DCq94oV%hqK{$C>bs^oY>(wngIsK4x9)F zKFcVWxm>u&5uCF^NOYG~Ar`jGmWVU5ysCNkl~y5EHqCH}Gj+99_Lt_k{K_J@v)@lq5+W@!z=q@Qy3-_SJ{M`Mm1TervMck&>Rn z3Hc=A8stOGj_rf{(yY~@RM#Dut6Qp^GOkh5a z89k%)H3F+nlaXESwPfpsj*8KpqbnTVDMzLTr;n@Gkq&9HR3UYx>1;Z+A)~mnxM9PD z9GS_ZSs+uYv?`I>AWluwr5Ie5z13w)JAE=smJahuAH}@>!aO?gOGI#tTG;)AC_R(F%9YHnyR^8s;ao-*> zXO%bDoR?vD6lcmlo@3mLh$p>Qt>VYc+ z&CNq&J{Qk)U|$!4Vi0pK1U^Djm@z8TiNaVDoMdKtlB!>B=pQ zNi6-p@ruBWOk?d0Rse3lkaNpx$=k9J}bnvzv2!eM1JK^gAvXy?-7< zzv&n&Izz+{X+GB+smrlCWcV%`7_^9x4e*a)8<_Jyuz_1_hG_HPJvYQW&a>t*jqd)R zvlRkmx(3w$Z>tfM1M&;E~ zQ`rtrj8P%*$2xx(i-o9_5wr%;2j`}FkRS12E_yg++)L%rbLg+=Ie;*_;`T~)i3sn{QI;rzOb5~3BKcqE!VbOfB20dOL1I3b(OMh}1V^1A5f z`()a<1BqfjUz~VQa|1+$0T9Pa-NhjU_tKAMit`g}4aSGuamJ5}Z;F>GU<|=c4 ze-6WvuO~aZ#|M6|OogA^zFu#3uOD*=2L2n$TFb0o;GA@P5_~Wz9r97koFk-a>C47+ z!82T8+#!^c{w)|sKMowmRKYVmN#aJ7lCGs6Hz+`nSf51GG83T!KZ#}Z+Y+yxAQz)2NMJ>evLs;vLAFwOb(8+132SnTl+t3-(k!I5~khDy5nRjLj= zK*Cz+(!vr$Nh){_H#2N!IOiv4LAv3bbUB-o?lY3J6cV}#{I2h!Oa`8!i%Ao?&rl%k zf90z+(!3O+{43iO?$ulIX^qLG6{dE4`k@*uVtkd+V zNdl$A={1aE>SDx0{S=nIx=38On(n}iHQK}8s{pt zm(()#Fnx~#ds0jHDIMnXTg7e<_eJ_YO6gBJwokv{iO9K3J+M3pb)|^(l5^?j1PYZ# z{P}YNrN*q}*U^7X6z~WjOqRwI_;)f`kAOK#5+jF)6vW8ZxjrWc(Sh|V_}1a*C_ajWuQt%D^(KnYR#`saZ zB=o~k@kR;v4E-rECdQ5BiQ?l#{INWAUqAxOk0L}zPYe=*Eu;96{^-Zg;*~08LO#P* zUV=)cjOSbFZ-4^ug-IQJBsG6bl8Dddto=;QCkkNfFB;S?=I|sTNS4Kud}W4NoNb>| z#{F|#l8_gt&zn?ll!6)fw?XPC@eTK>(8)h9tC>h2&7rm7pH=#2%|)ZKtR(@LSfzd5 zQZy>lTIzRkXQreVPp-BpwMq?qQ)7p35KRSlfK>5KjJCrm>>yD%qY6w>9Q$o-C#@O8IXZxy1h4>(d%905J54O~odNu42H3WiG4ZC$=^eU+8)pRU_@iN?wqwOM|DR_U}_J8H9| zR2Q+CCt-Zw&^u!SGIrGis@u`DvN4%iot0^6m7Q6cW6IJ_+S4r#hb7(4^=G%_rKaY! zWM?%6Q&WRYS!S2ZY;!sh{a z>3nr=XKjvFn^WtIpuY&({SoZ%P%Dxlk7s0kAL%9ZZ^&HcHH$=<9-;!f!TqNbq$x%v za)c>j=m@bt6e^PA5WN}D{{H~&KOXOn@Wb@Dp?8GmcPfWz|9WwOhnPkGl#*>e`INHA z!?*rJru;I#_O}Iv!R>xFuxU02Zh_ad+VRflw=k4=O6~PB@BRz$D^v`bROkn?Ou_lXi8jR0ghqPCyXn9Sh4V z=R5nmyC#kw@0gfH9foqluHiYL&gJ7hA|9Lu6p@if&y`{$nnmFAALyh4Kxe0!%>q7( zIUR-G{x9;THF*kW>}hS;Go#ScG%c_H3vc1$xl41~clQS7ybKbL9t8<6&k0Q4)eb=* zIO)m-^W*B49BS{`H_`2$xUZ-E(2}}1dQYzFWMZ6g-u_=t+W!6HQ>Q-u{q{+}-apS6 zm&mU3!dUPkjM<>ETf>WesHg0Dpu-&&8TrFE)J1h>Wrm}vEGId8Wy{1;Vf>NOY83BR zbf|&f>wa&k)S?rsGHbINM>$>H8Sj-8P#^X`*f62Cj9A_u%+F=&Egtwc^${h&_Xx;f z9Iof)gUGNdU=(th)hxX7ZN^G%q&~`W%>eu)sXA4fqt7n4)Xu0hB?yzb^v{&i=CAJX zNi(b}xhd$-@Lmz=9U3ZwTxShzeQ8spL$Fk3O-afcx31Yee)h&ukJ3*qDof!fDMWAN zZ@P4Nt=O6>gSxO_;Ct|Ue2)v>O@v{r8C~c=4!tewX@%tX5`{_QDY02gGBuja605Dm zqv4+Ee`VZL6DB-0jwrbLt)D-&qdzy{al6C z(Y*`HC)_zB*HO|?>E&xLDdH@}jTN4zN?*0tCe4sfxsDlUDjbfo$KTdmKex5Oo1MDz zzO34OUtwKNLA64ouwMJ;PzIsy(jS1kKn=>NRbpc;B8MEO;m=eE69fi>hHna{DO9dP zo2$$zM_F9|Em0>Z;{|3%wwBbo^38@ox+>LIY0I9!V2*2GfYS?Uze4`NF>xMBM{Asq zaIC~55buC({tU(+Q8T!jcm(Un_uwAL3$)6>kk%+3D(l@tMS*nT@45ekzlU_8&Y3xn zP)wfWBSae3K|i?M3UmT%zu#t@+}@p(0OI*#yF{F(kn72P zZD-FMFUyOQ$)$WrUGLIjb9N%m#VjS~frC6Tq<#j*H!ouh(kK1}>6(Fl?Pj>n-unIKd(F${8$D9?RDXR_oA_L@VN*lvfqFRwesWgx;(AfSo z;)^ebdNhG>IHLJ;yCBG{3JGC+q)YE)u&TkB}F#1JW>Yp1?dl0jA-0 zg0#sw7=IGuPa+(j=e(QT!TkW;Rb)j|5`gCIpd-qq4e z(vO18JUNcBykhggD_3~(pYLR1!o&1gunm95XTFugzlX0}L1p^h{<-h%==!9{Y2&3J zyLY3%RYn9isNlF!+i5gm^Rb z-NR%~-$mk0CO2y?_=)?+!SCjBr(8V}`mTxoJ=rsG0DZ@W(`vG(@7q}~y~Oy^HqKni zOXXla9%3hLjhmmGGWE$Vjg4ELoI2&n&5cBJ@9B;8^&3z3_MF~OU%%lrvNN!f0HizC z?~BcaEgsLvLbJJWq{q`zXeLIvn)6Mj{AQP{3B5MK-{;X!5G2%dG+#i&8`4`5V7vyj zDT2orlAucIDo#(L66HzTYp0c^rj|{s-JT>*q>|E$T}om>&l@j2GfHLE%Ho>mef`g$ z*RA{cpI^^!j+1Gvs!`9p{05fOLq7q2hV^I=pRfmzWfTL2M4U`OGa-<#`c~;GNn>i+ zw|@OTriQc zW5#v|DjWGQz}@Wa+SuYA*V*YTsC`Uk&eAzMJIA?OHcjv{dX@$GE@t^2?+1vP^?AEgJa|%rWRCfhOq8Gl#ItF}R+p>Qm`3-C&3>D< zw4&NtEQ}#sr^^>Mds(06p%@De*hh4x7#CuO64*wAo>uR1uw#;PF_!X{NO7>h6lh zH8%U4hQX`^4!%n>jr%N&QPFG#Co00fp?RN?`|R)O?_Z(6pY{m4i{+7NC#d+rbnE&MxGO7^(QbXU3}!iUK-PMrO9oF3isp8vSWTe^t8J+qt4<)pP60CO-J-+Izo0-XhkR#A2a#mNDp1 zF8&bsFHC>y@q@DqoTFCU^_v+ppWD@%r1O}{g0AK{rMXLHPpWqC1yTW%lUFnFJrCV| zmCmW;jAhr-qf^`Xk*)!^jdid+D0H!FVDPFle90^Mvp^9y#sBMtlkZ&ar6%> zR{rr=XL{X?4F_9S{NZQ^p%=tYuWP7X`*8P^M^;xh7tD^6OB9k#3kt>+8N@Qlvs0fx zu@zC-dgA%1Q^N0`o4WR+`^S&J|D&~SN4Lyv%$RWElW4gGoI>mk!#A?Z0d|TJx79NH zdND3a0}*Y2l!4S|2DE&>%9Az<{HLycka;A|qBk2q2*}4Jrl<_`k6>c&zVS|3dZ|li z7t@!oZvosg#DGYfp;6m4!avjgmdmTdBCJJ1wbt7ICKkakcax=}x5UvLVr-d_lqoa)-i| z_JNGOW7kXclS$l{nKk9>*Du40gpJV~?B3MSu(>A~?AhGVu&FzES&aN>p$HR~tl=1yE+Wz5Y`sWNhnrhK%Losa75jQ9 zy_!E@4=9-tJD|jaAdjykDh$l}v;j@gRp|jR=b&S(H?zZj7L8dtK3?^pH-DH5T^a}?RDuwLe!Gn(R-mK2_LkHkzrR+}jbJ`(he9#SiPtAs7 zbTyhgF?r1qnS@NlVdTklZ17>k-iwOZa<`*n1O*^q)-6k!w*TDp-M=fIBhac;MrT>> zgiWd7qCk-TPr`?v-G(g9n$&Tpoe^V$%|V@%pbo% zDA!x{n>LI?w`mErLNk7|Z>LzLSBc{im(O3^wEK+}C(Q6G#6wAlE1DyD%3S7}}ENW02+h?Oa3s{kyQ`N!>^*>rGO18=U@^@^<1 zJ2yosk}Kn}{`NrGT+}}~JgiH2VOGgS7Zow`3?l={^d!;R(^*zbDD53xJy}Vl)4V`F z`rzE+@{KR95u#7Z`qlnsfm$Wf8f?mfj9iyZDbdA~IkKaxXYMxDJBy&guhFcDM6(YTSPnS9qt3B`_e2>wlQ1(a3~}P>*1IL7{asv}%TCSrOy4&CZ_pVpWI< z-o5N6UlCad%o?wERNm4jR*FV z$lqZcgK*&VflbcyF@L<#x4uEvNXdWjZG)HSx0u)e(8~eg^b1caQWF!jiU$Ni2cU?x zC&rxk_+$7FnQb@GqkSDtXJ-!h6}nxI!>n6V>+xO5==7PH?`8HQ_^@k4z>GupfYeOl zU0di9ih(y^#?cH;bRfM_)PQ`Fc;ICENrI<}FDxrgpXEtQOn$9uuiToFz|B07#no6{ zs_j){5d3)h>!?sgPJC_V?y8ej+f{arfXX48zXh+X@nn1(D4R$xmYJL>AesJ)E?q4E zJ0SG!8n+WzJwAFV*p{rZD(H_9?`Z>9sEHBx*+yT&st4EIXG=|N-S_&UMX&B{Y1#Yg zB9yL7U$7N7r>8d+TCIgm>FLeIHsXU9=&#RpcAf*O7hV9Wa~&P$=&xV6^Tj#o>2qGZ z^U#I4>FIMXFn(z=Y&#A2akL+7MID81E{3g#CV_CaLuvY60xE(y2?HQKzZ<*;IG=s? z8S$w$SGQfv=SvedfYsOBI2MO=3ZNWL9BYJj4A6Q%KHwmP^umk01Rw7;znh)c$5H9Q z1ODb5^~ko$E{VLN_<`iHTTb=PdTd3ht8r=`{nx-OH&6v!Pxk7{G~hvhcUPBh^!QqT zz>=VweSDU$c-~#(o42l9m`{Hsmf(3DY|lJq&p{edp<-~-<5wsnLPKUXf#uOYhN=Cb zMFrYGOV0PBcAcL*?f9B5^LGC@nQL-IPJ>sSRIq&3*m;Gr5W|!h@liN!TYcs92A`zu zr$vu0$aQrcm=cuBEFVc^yZkfeT62gG)){i_a%Qa# z%Gd;Xkum!}eC$inOu~pK(^QjMK=b4cC7%;@o{73~0mwUi2kg>|K^%@moDJQv;1|Ppwz;vrwHlZgKVQ zg*CNXo?W!${QAoF8u~SPo1gxi{PDx3J-!yd)|l5s^TdYaEbp{qvwBW%Y^d4r#H>A^ z_tIs$G$;=`P*X*Ght_zJt$4*DO9^Y8UDVP_&4+X3D!o6BW#3>v=I^NK0Y~|2h*P?RoLpBf9)WUBw1>Aefug*qxO#x+YgK(N-i7+9Y~Y zqAtstmZgc48B{6pabme%K?o2R=G-cC(P*`_Dz|JxfmZB+Zb~Rrs%2(fiawdUGeM%2 zsLc|INR|L7*xv+ft9h`k8T&xagwNQA-0WlQ!z%{UNbX5+QXxq@M}Ma?a3!GTGO*89 z7a6~rDN@~WM~ZYDc#lRKZGdip^j>A|^|y!D%5P6LS{%I1j4mb9aM! z5V)KEE%4qA2gkE0{%YgwgFO8jp99Tc>HtF`ZSl}`Z}O8q6DS(GOEmN|~vHJx00^yLP@Gmj?6Qbc$+!mZ8R3f#X$qs-;_~roYxBzU%fS2!; z6JOSY1$4^dj~4$Hl+@FU2r%=bnP-TBWnm!n(GD5#&{}kCTc|$)L%* zl39pDX3w`Xsw*7^C)K86uZ3rl2aBsrzL`@dI?N?L3(q0XEw8oV&o}v=JeDk1@Ltf^ zREau^PNY!9ozpus0{EWZEs`tv7c^G*jTwHUj60`8-~9o7aAq;>2kUQ{xInXqIFmZY2m(V<1|Bk`5E?=h}9PPpekd{ zAU_GKv-=Zr%%}8=p!ieJOrOTTKh9|;FH--2zn8PW$45yc#W_wo`YwZy@~bVSI*?>n zBcW34h!|fkijxSICp(nyfOX5k>UWeGB1rRDNb{>Gnyhrti?iZAi)f<1YCA~Mm0GIv z>F@0+h^Bryz3v^QBYC+%5+{-`7G)^kL2b1Js3{8C9T(dw6py0ltNqK!-9QbLpD;0E z%fR1xO73$U0lI4outNuQ!J+Hi85N3H6jBjPtJmUs9l zU9OJ$YwencCs{{N==C~%{U_qYi9Ij>`rw=*&&YYDJ*Vzmm(#Ougw`CWFy^=I=ndp7 z`puR&0iRu0;auiUA>YJtYE$%Vo3AI0_=3;yb6O&EL+#NwWGahDazN=YN@a!&h1!{B zkw`3Q&i>zq->Tu4GMUjqET~%36%2N*sq%N$6=~E(bz}WuWNclLT2oZl3EmJIa%{F7 zgHUeC*6Fe>^3ZDtCqS@wN9)M#lY?q^f!SQ(RtG0h@@-8`3?(GMStn|ip< zbHpf;wML4gAVXs$5xsyGk{{m#EzKBNnz)_qj9uq4Cog&P_EG*U%g9wNX)={es>3<2*XYya-+7bqj3Km?fSKi!I4jtW^11Li$zw^? zvv#-HI?|H~o>-^Kt#Qh@YlT%T2KXV2dT09K$(dr=8j&(NUgjuuU7J7s2n6H^h=Tx* z@nIZCeZ)I~^6le+F|;KT&LG7J%G5{wpU_wTTB~#zq+p)W6_KuzA+;0C^E3m)oxf@6wsXSJz5JVj`#iqF6*-pq}o3cufDVu1-~W zWWOu-$$f{v@m(fOX$VK@3?QXH;fOS#ffz$ zJo-8k;?0P2HnGlyM_f1(b&BSTp-02X(#Ts;m^OqlAT?(2nK*d5&fHmnPVzgz)AR_S zpueFXJ$jVfKs^RSk-nEt&_9916BNLYaDp_9kj7jXn-}A~GrUtAbMe9F^_hLcE?SVc z(;LC6Ok0d)h;!%8W!k!9ty>Tuj31-Rv<+Q~SaxE3ht4x&=)%QJ#+M;I-j3HwMd%C} zjx3CFvC)mIB~vwC5W5^fw@dmzqDO&_Y~TE2!IaVZDWZY1uN+z2()7 z)p4td#}uCGtmi;?R+URmAD?_|b}n5^Ν%2WK4ZWpd2mKlgAy2;XyY54zOhsvRN( zrwIC=PP~`py8an0Qh#Jj=gVOqr$m%xjw~=63)*r#jkyN3zm-?j-gIO|UHy(%maced zOZ7=mqZ}OsGP?OoOL1Fva7=;0Sk&(Kw-*_Sqw1VlC+1B#yRErl`-O#n`ULz&=jiWa z+NS{WQqQhQ)WzT?Vl@Kc(onACb(=^~35bfE`Yff)-H@Bx;Fc+~>U^G(bcxVbmXlLv z6H3xczbqY}udUm5VbP)s+v>FW<4b$GtJXX=b?Rels=7Zk1nM$8je%4+iSuOC1q>8d zpH*VA)dWqZV2#aGlBK6ploey9=Xc*bzo=;bz1{iK$5bd?_snbCH>0p{#=f?B_rR#2 zV&FSo1@{FkPZp<=*(Ht65#ifUq3$QJFz}p zrApH#Cu`GGs&u`WI45%2Kfm_0$YuDN``S&5Q_amAyK-{6Ha3skGSTOoxMifbJS`dB z{*zf^OHQ_xfF7~#>Pl$}Xm8$x3T_G)%w`H^vjw4E&8E+Sw<#Ty$0tSW3|{n*rlIqO zJvfbzes<`@fIdrz#yvfL{L|z5|3&?Vod{Uii2>Skbdej0sk{|XYrf);`M-p#R@qb?w#DnIcCn^i6uBQ?MqHP@d_;SHEBnx2+I_~G8@@4 zEo_+tT;?m%z?Lb4Wgg(3$7MF*GJoT!SvvR_KWv9e`ayCbrDyUDx#5_EDh6Jq0-f;= zUvM*|WypoL_Mr)fe3WqLZmP_w!3l@7e`vG4f)WlhJJvPV&lr*IbfxaN*I%8To>`j3 zBpi~@TtBsf-U#Yxd}frM&gQKD|Ea6i|8rd?Km0#b_spA_!@$76Md~8O-zQb%>!NB54nGZv+XQSEgHAEcrTofb_3MFkFM5dGJ=(%Q;~LG zF&qKCWDytVUj&e6On|c{VpZF16H9Gkg*_)#kUyc^Qnmee+rWiWUSGUHEX!U{G;v*{ zp?6s?AWm(EB}>whnUY;)xFq*axo1E6@t+^HwJq(eFbM*Sc04-o2%LdwzHjf(p&zz6 z0eM-baCdHO2Tu2gf*<>?O~`%v&p&?mVSD@X&PtOYxM=62bB@rzrN8{XJ$ygoCA1DT z{C%;*T+bMFGvshrGe+MD8RKHc(7lY8&^-&>*mo`dg6k~#f|xfh-pb{cM9ljZZ{ey- z^xOq%3GwwUpWj(=^BY!g>HNVFgB--~(59O_&aY@1dj^N6+ki2Urv7y1$BwB1J_& zq^XEVZ%c1$L6j;Yy+lAjdI>FrA|fC~5Rf8OML`6D^xk`oiVz?`r~!eH0Fnd}$bVq> ztnQw@_nxzN_nv#6`+uH!e)G;dU%pKF=6n0heeTtrsnzd#4-N*g0Q3$IoW8&CSSaKs;QD6kJuQ zW9H%aQQ;a~ZUHPSORtXjK@V~^Do7Bu`axFHHCe7^ryCSccKEkWdS6SZc(f{?g^RTy zJNJX!*rshiO#6o9_ov;pWR5avCZ_8UJ4FMeWtu(&l|RU^W^2YCvVQ4Xl`86gLOoD+ z=(+Q-1SJGXtxQTS+0bg2nyS3Eb{>bJReHdgzji*mWm2BY0>?5HmQ>^{K~!Q6JRIOd zU%?iP>YsMq(#UVcv`>1!Cvr`Nk>1zR2Ji-h%Po{tLsx6KUb0r*m5*vG7i@RG86I*v ziO%#KsL4-lWJj^>Sr`Ui z_Gg_K5G(TFWSFtn=xD`b9mH10&#^~y*gLXZEa!SocLEj?y{#o=la@btaUg~V*AA2_?!M4yDA_#I{poq?*PzxJgt!Xr-6YO=AE%6 zS&V}%P{r25GbW+a$X7TC3qRFUJ9kc_*g`UCW=L7MDhqO>=vRj8(+W3FEB}z$v?_rV z%``HEIi-=#@3!s`CBiO|OGE>nwXLofh;Hv|uMl-ZcoNGmku^@E#AxdUXq1`S393`z z7GjXa0((@m^066JBX-4-EEd!@Tp{Zon+{|1%#W=S`^$Aep*@ttOL}a1^Bbo-yf4i7 z$|nba+QP%Re)?4wuA_zMFF2urQVHnUJ~ch#R>ydhZHPks!V1b<0Y>Z_fB8^s=VYXiLZkT0Va&T`b_viRZ)6q5RuB>)=R6-|Aq7&&cdKj z9F#gS6g~Njy+=M_u%hGy@wq5)zJdHvSh}gFTpn0^U_Jp0zNUP>uMsGhH*ah8pIu`5 z7I^Gs$W4*U{HM+-7nVCG zsWKoTMVZ^lgAzRWgkbL8=t@Hdzp(X?*2kMlP)IK35d#7}sLDVrR0gzS|MrmdGg0OGn#nLOJM3f=_u z;oyDrGZLbid8|9stCj6X{7ep-Kl&m;j6P!eWYcy*;QRt5YSXrx>+z++HnIe9;)uez zhdY;9BhiEY`m~Ru4en~1YKxD`L1oq9HDZQPRG}@An$Xc& zp)zILOpLxn1_m&EvbRnzx!=iAo;{`!{%Dm$hnOo`4-8;MJ$2FaCs85`vyWDdb|?3U zy&-ubx__-jY-5vcg3WD`Wt{EfzPbKQ&=_0ndZ3R>>*e8c%BBk8I(a@Y(B|9SHhY&iai1I5-G#Fu%*H06U)Y(0La^s4_n~Nr|oPFLu z8>WtbV-v3ZBuVM$R%7tv)uv-=xR>FkwJNFiOC?|5*U-Qv4&Q2Cl^+-ZG98`QdMLeV zCAR&`8SA+LpM$yPkNwCc-LR0-deWohwZny>uG~XzB$?6V1#O4+(7V zjcK!fyt-z0XEAA*>&>Z01rw3%x+jJ^u(w`w-IRojA$+hmOBX#Il_Qd|5})7NeO}@c zot{ZKuXxM1kz5du<|kP#O68Z0@g6tG@>{X~p-1Fnuh$ihms!KTUh!&o<9PzEjmbaq zsS2y?FH(H$Gol$lu)hmCh=*haaq~olwtKoyfFRqv$PQw@#A8)Xv?t?G9((AW{-}>k zIw8WNeD7BC--=@+?7`PDR?6Wq@3nkRyQ9iysAl{s+{V7_wE8|nFr)MYapS7D9CBIN zPnpIXd{r;r`gQ5?;spn`rK8ul`L5MPK8COypQ|PL9|gB?JkZCWL4%g)xtl*ku)emY z<9t?@Rx@OJuTBemhxK;9lLWl_`MXPM6}nuWI-zIo$7$(CXS}pad5N`C8t-2O;)4|_u*@YIK3-{D^A$i(i|PVh*f!5F3a^IdZ~aB`cX4@ zjlJ6LRzQT!iIzu(kq9y#EAw_uX3lH!sUJhSqw>Yk&3w)KZ!U_p7g-ITEhf_y4_|_Q zXb~fre7akaSLw38@WOoF|7$n>*TtBR=!_q8p!-Tl4*V3jdMMcW2$WTBQsRg z0-qFYNh@5?won}r4U8E?$BlI=A|Jq}jgH{kN&};J3>6sh3WoM9aCt&TABQqn|8{V> zi6H#dNk^rS5%P%^^ggitqYd`-90t3f`k8I3-qdCxR%SYDL@}*En~l-O+u0!{Lhqls z2)wUiu~{$dgg3o9%b>oxF7`S(lBZ9|CUqN5UZznWT^8qU;|TDoQ?sR#@CY|w1q(im zYDjYL5wtP7DK*gQxw3t$T&SoDefNp8bw)uW$#L6+!QAM+bXEN7 z_1?e_O5>Lo*d0pBN-z9)xa;BrFI#r`R)>=vHq@yqrz;*^W>pZ6G<+gtF?}K4dTnyz zoe81I-!*SXuVN)@a~w|CrYKM9nH3Cu!MfKsfVHF-@d_fdkd=noTVIzw;iOSCrGq4a z6(eBX4=Jq(ca^PVXn-kv;IUV(v6h;5ja;<%)S4y2-N>H87ts3OH(*5&x2VN@FCN<3?1u{Ek&74jjz@7 zV12AVm6trkD6BBmD0iRCZ&X`uxqzQBXKz0tQOXebfV8@gvsH(^#VxJzW?HkI!Yor4 zqP8KSPypR=)nyVnq1@S`fIh<6X63`KJ$X|hM8fCtjx^>Rs4E$I)?_TRmXgi+rQG)( z{dCV5h1>5CC_&q&K1oDqiMMm>XmP+5H*^<*3CS2yVqX7+sk0)XjZuLFENUWGkw#yv zEtyB942t^_9Kk$DQ`YX1%+NKl2(ht8Oorilm2?h8^h-ti*@}*)ezY{d*((qZ;Snpm zfKF(wjZ3DOu9safn4DR8Wx7=VRCa|y96p}3xk3GyJoI$@OtHyTFNe}%r)U0ST9(QyZ5E~Mh^I4W+)b}WJ9N6y z$->TcNX}M<{sAUvAfoO97g+h30M3mNWx90uUJzRnThZ~zaXX`jZ&v(`Lgy;GwoUbM z18Vu7j0uv3XQXHJqpS{?jGY)kqpg#oV?gWGMbyxum;#<6F6zoaUU*F;vS$3K>?61X zYA2;441;a6U~kePAB<-rQWkgHeq2S2P=QWK^{qbH9M&##n>m8m}e&7k)iv4_n>Zqn38 zgw?wAWEy&nqRP7wbtg9u*JC6*z4J$3f+lN-oSZg2s<=y>Ei*m`w5RzL`dsR;&YcXE z{_Vaja*^{mg?>XsX-CSjJ0#uOP{iutiB^@`kW7=ntDwn~N}s@rxt<${iFo6I-u>*) z0;fhkVwOhN`<@s+ZhO~-D4S1xV;s}~Q$z`NP&Q4N$fYMu#*&I-kT;h*(iH-vW4M~@ zF;JzHOg<4AYmQr)0DyFKA8uQ17Udi$x0%`8m-!-yLgO zk<4H$1vg~hMto9Aldm__kXYmCXq>nFIzxxBz}jbk(^F{ChEK~Xh%`(oPQiK-h!(i$1zM6T4j*k6E7DsWY~% zf64irTjm`Tnr$&w7FIImvcMj2U8^dyOPxGqO}@rN3axk$Q@R+?LQ2T(U-b4&d}Hd7 zXnkEQH1+)ffg+j;3!xzkMX9^oQWg>`C8nkG$-lW%3bS;b6}8tP$>p^4zjvnVO-aE*KPdiph z;Y*@a5@N@|rdLA6;7&=K&Y4kF*lvDlfjl<}=Qf#(t_&-lwzI&HsU+2>xr%i1Ap}A0 zsk01bRph5gmQ`+zDV~Byfp7fVYZtw`v^`!E1u(Mc4ayeR8cZNw9d<`}#vmJi-uiW2 zXOtzaw8bHPOD5+QoU=dn{ZRekCk^JD0;grtn+*F$fiitJVc6f`Eqypc?Y}v;{zjxpReGO0{@->l*ecWFAZtIL=e$vqVV1KrA_6$F1C~6{WD`h_VjN!Wvs}8e!!fx) zsqe(U(X*Nim8#VJqk~IwFmr_4Ms;)^!t-2>yOX+2i(#C8)Y zn?FnFtvK4Zx1F8VO8B~Kq+$|(7A8*|{i4^Bza+U^Fk3t_cb9xD^wSz(T@;J_(qp+* zoLn!ME%FbOIZW_*aS#bU5OGh7xkmfm(Zsa@alsDF71X^$$_3X<)-#8SdViUDy_hyj z@rE^Z@dcQv94G|8D=c?)xlfX#19B11lQhlz7Xqy9@s?Z{i%{-5+32$?CG&%v4l5m0 zKF3wvXgk~v@Ve3Dtcr3rW%7}ED&PdwTHQ??Aq*y^$ovIVZiiQgkcnlYJ zj1w(noj>uXWGRjX7>DbvI01(^g4TEL5DOAoad}-BC~KbT5N8Iv?q$UQTn?m$r82!M zMJvOfrNWzW{njXqdfU7Eg~(DhAMaOg0%45_dG$)+^f?jXK+E*O6Yo{)SGME*T1ssF272OMAgDMOXnBaY zW8snQ1E@9v?tM?9st+uynz`qr@x6+eCF8TI4zc4(;W@Y;8aC=l>Es7U+fG70=~l*o zte4h;0-<+!;!U^&%fj;avKh(wcHMPP!j((gyZ2EOWy`jkx925Uz0y=C6U9wDQ2$uOByE(d z7tlKWI?n3^_Ia-=Dm=l?Q2Vr>H)!Yu`*14H=jTaXDgzmo`i?f&&4H~C$45+SgoAi{RcGzqv$_dB8$qB$UPUc-vkhS8~| z8MAK7oioF+IaVE#f15qMmOBTExCN1E1;S=4PnX+)OQ}@;yfuJ*awlDZBfG(-eUqN$i4e@cFIgBkY{k5}N3Ur~c*UWy@vuhkaTs)=Z;GOD!I z^g?QT(mH-`#ZtU9r;yH-q7yZB5pW{pHw%^XE|5PsBP=pJ+yw2QGG6?->SoJzy_2 zu?kaR%v0K7pYR?S^4j%7VcxSeex|CQ{0bNX-&0P6YEK(;(5;s#4P*8UqFch7#*DpJ z1c!{&>W2=N+#y-)uGpok6pJ5b>RTq%ocq~^c&}n>xoJ$N)h+CO?I)pQqW-hc@dkv> z(&J1l-OGZ*Kodt2)RQy0aIg`O-ric#Qq$TsKHu$2N`kNB10) zS&HtGt(_I_j2Tz_N!k=92!R9|13M4-y|wE`(BM=>K=lRmFB`?v%S7lA8(5N2c6o(yFdJ!(QD=0*f$`4gn zPjhxK`kd6BvI|(EQm`V$T^v=&vASH39(9Hfo4>A-Vp%}{N-j(=RR?>oa!z!>ar*Am{M|ZAKQF6_-G5u&*=^rSyqg<+O-D1&C^~hF$*4(Nph%5XMX~^GGZx{d zahEGb!@exs{v-ykRbC#JxiWZ4Rnh?sJVQ(Fv>l$~EQ9&!3A(dDnTQI6AoLEhd0Tjr zo4~s%pu7GGHRr?f`^ycMx!+p`GxAMKc~k%1TEN6Lxf$c>xOdW8U7SAYT*CE&uvgR7lLPhsDRLZA8OAXZsEeN2v!*kJM z>Czdo_&|Cqa%M|%^cgdEdXXxQHLC)+7-rLJceY6v!RWP~2L9LM^Lx3#FB1tdV-Lwp zqYx_%@XNOz>^jt*>|(#zL6CCIzF5|_)6UH_`K|n8mZS&SUB8}O3O_)yMjpz$-XM8t zbg*E~$<-%A&8pbFTHISDdsqa$IY7%fr2OC%wSj&%s}!{wr}-yhns3HAugbeb+41Mi zULa_UC}jihP7^_9WX<#_ZPHYLRDgY7h?Y8aQ~n0^x$7;-Xzv@Nd68lqx?VlrRok4S zMwS|2CljTJ4qPSjthOuZHAx;4fy~(~V8BITJms>7G3#R)=L(NiPWsN~c;L^Ncd+>| zvaB*sl-KF#y8JZFXlT}L?o+O)dsfn#9DUIXX|6N&LUy}Ouxa;9)190@D5U(PP5Uc| z14d66iLm(2J{aA}-sGl;J=|X`b>E)ThwZbGqItR`VP?O=<1Crb8JVDXnUDdWPF-d> zBs|{52hh~M$V$Cc#SeV5a8C6brY$~%sCT5(vFA#=zMg1|^`%l>q*qlSS zxUu)?_|}%~-`+4%c-BKqa2Ncf_U6X3NXuKofKAUF?k=`#S28EKi&4AfsGJ@Rsj)6v z+cIHoS0HfP3FJg4u4KO6)<#$s%m+S8T75^lX3Q1Iw6173E~5V^5EsFeS`LKF_CXyT zBKmgS=tw+Ms_Z58$FCpVQ2QfrXMSpA%}M?h5>(rD9($~c%H(55V+~Jclaylz{qn3B zd>SnC7(P>}KO^pPMYUSoyG#4i3;7Z zoj2ab<{N3XtXp7+z*kQQZ>ieEMgVtGEkzyhO1;!56fAAFJhIKRGyG~$&T8ji!2xSy z@G_o_c(Fd@&c&~~0R&qjxYnua(aNM*Z5TnQ@PjRJU&9BlZbfL>+p&^xp?TJxk+q9E zYWL%}NN-BL+oe}2&!lo28dmuY#s1_a{C(UJf&U(;*>+OSae+(R55WeR{1fV6d{z_Q zvlmrvzbR3I&PG|nK0VKnjRebJSA6v3t`0DJgxY-b9}j~=wlGFlsAL|8)jDrhBhI35 z)w8LiChtlSWt|mukNsv77Pp3{3oq{2|2c3z28tLLsgr?1)9MtP6psQ$1lp1KOef%p zs7|!|xU-HGM|*YUrGzkhf|T_LefyxxVvF@7VKM@xm*4HeU`QIY!krk?P*}DP)a_k41K2csQzyr=VKCG%y7;;=*^u33MW5 zzmgUFq%d5?0*E=Z0+2%q& zt%R)a$N$z9&)NQMB7U~~%F^skeq@BFPLVMGkV;$iTSFG6rT=NBVxCopon78aNq#lF zcu^@wq7K`A9!q(uC&vrX>YxVyS9#hi0@?6+a}qo;_yKgY=c{Zw z@O`fdnz?TImx2%ksbMaT0CHz-ph@tBf9buoy3qS!3|q$&=(xJHU;|7^&hRfcY%5TW z(yKzRGvt&@g~+sl(G9rkbFx@ULWPiOxuu`0?a{+BuI)=bksKe^XbyI#GyDoK~3A5hr zNr#-*yJxi_EI5P#*7z*swXx^jv%{{js&^8a}N3#)>Y-ax5TX zYcLyMmhb4~o{3N$6s1}&diyL1n2$>Hf|X$OTa|JP$3{|6EP$Y0RRWxd_u|IlXEQDk zE>!V$Dc)SU>8>3I{Ts`Ow@dnF_DylkIJ-EF_7bP3<|x>>9qXBM{{cQ5He z&40jxWeQXVz$Ul4@^%UF#d(^)ajG6J*@7^?+Ws#$iWhhz1By>i>gDb?PdM|hTU{<@ zyHN8N0W!CC@!n~$B#V3*e+r};HkQk--I^ZN=3NGxXOBpkhgO>`WdGg6-2`rdZpOm(B13da+YZp!4H)Kq_@e7>8d@8HT z&_STT^R%~R^YiiRb3AECRM5_~@}vsisw+H22kZ*?5T3{KdW+5 zyQ*B+V~fY9L;q>WKqOMmx_nuvRkf{Uo0GVoDO935AAvrHjrP-=FM)a_`smb8jX!nq z&6zWilONA2X-%3VnMeA)Uhl2z78Y(v&M6tH>t3mkvMa_fLMXEsz1gkY^U}c6)N#pu zFFx4trnB#|Y%e}+WJeUqWkYIl3^cUe5pt(4e-#siIQv_TQC-fNZmG7;C}46sOCd{b zm)11@EW7i*ABowWn!ncb7W(qeX=3wh-(=F}rOeNnm6y+M=b5$_E{n-oA;4dv#!I(o zbu%p%B{cj)bK#;Jtl3H}pKX)3Xescmx8B`1>Lfrdh*dg2MpSdfYL3DT95?Tyr5bW# zQQ=Cu>f7}ro}4fHxxczSl2LsO{yliM0sbqNsQVp{y?zCyAVmQowAeH|cmF>D2sz3v zC3JrmQ{@mQUe>vWHmhKLCSnsIz8Kw^487_+nPI6oQ)%!pwKOya$}|RR1#(A}GdwB6 zwqv|&2l}Vk`)gS3R3EubpjZv4%QQJooJx&8^4+ioGQ#--1_yu`u%*6r?{4CW_3Q5B z;L3QC_muOP?P^%S-=*e6edk1wZCaXOT>MB^bpTPF*~w1u2TYiPb%5hy{W(2BjF3{= z@F;y!#DbToK73RUnbrbHx6{Tc^*mZ6%e!3h9K!3_{^A{~Y&)-$&J?`p2xP&;zU{Z! zjTODRoeqq*E(fFd+C<5&oGw5zsETI`Y1?CcFR6bp?@5_0%fAV%KJVb4=TGJ&3S1K@DgW0`)r*&p`V^A1}K+)ftvZrIdh4kGc;6J8*+Hp08 zHI_LWj#8dHUu#azafs)G?||l>;lr}T(G&4(pXc~?4hKdwG-ck_qg?2D&yJyFXs%Xl z>XMyyP6ehax1rG5yPNOcDX!)BOJ|pQn?wN=o_*}C>H7Qo%Bt8fx`(ofcY^qo z^zKGzGbK;|=bK=vY~t7hJ|*e95pcTX>0fW6PmA@5SsHK4aj%c_u!7+|c_|BagNul@ zXxQ0oSvd``M>2Xrl%rTXEtP&_FOpY&{7mCz$Zf>6Fl(B^>Z@xoQi!R0VUIOLjX=?{ zwYM#uPaB#EXP8Z6N7c{?%`zXGm>`BR%Ztoo1U4b%Ji& ztPMNL*2yc7?G;vRZGZt`$-8eKsVZPt(BJC30deYc8O`K5rJUu#EGG7z*M_BP%Q(|&95*3uXDfulB(@V9+o#){6}`cUeR z^0^Wf3}tHfe7QpFF)DK?2r4nG_K{!DPEu4q|GI}3IoZAT?O?Cpn7=B_GpqPV2ds(< zH?w7t$DUUE(C=Jo(-eV_r)ZWX0<{43az@^0xm(@o}j%tmL6 zcxeE76e{~Y^c_8KghV9D3-nSWi7Si%mnF%q&Z z(?WNi8l{o#0TwaqM5}JWj%P;to!^#%r=!LCH^9d+$>M+CK=xHS_voJhb+7M}tcUA_ zFawh!tLE!GD)Liiw`sR>Ek&tH2@e4lj%VUneJivn=~S>{0Px&&qzs|D%c`S^hVV}p zTUJ2U8L$SWp%T-lIt53$ma4ou-O|AUy(p=G{BA!Ukwt}BE4_Bp=^blb@JlCtDJR{c z=lk))fD*LlOuz_8fsbR6cs=U%pjr(MVcoEv&r{-_mH#?;38at>`ksX}taXy)_JHKQ7FAPOhwSS-H`XGBS$~Y)RConZ zin%|*rk8`R6DwUJKwOMB(hxddI@X@``^?u3td#p@I`vZwvZc9vyEzLbO%pzzasK8i zGTbN)&9gLa=~Jv^33EFLYGiTCw9b(n8;haFosFJ89X)eUYx1l!i}1O5wLs<|Uq?uO7Rz@m=g7(-Q}5J<$ukDvqk-v+7UM z8w33EAb;_#psKEP^ zd9G|jzl8m)^5*jNnrU&Yk+Ppdzqb+eSqp^rM1=jDvNrZs*1QMRjuYiHKl>F6E*b~+ zQm-)<$Wr(a)mEQ&BFKyzH|B3I_DI@culv6mTvN9zR0w>v`H4FreH<_LBh+Pqae{5@ z5g}A*s_vz>&)g=XIb`RNK?aLY`=JcCAY0Q()_<6+T~S;L;LDV_Du5GN1^k_mtI##< z>~1*M;;@Y+GxPm~nwJS9f~}U`s);ZBPj1jDg>N0syykyZV7+)x-C5M@@^UFzZd6*) z26Ad=y)p5nF1VYc(h4NMaJC5`gXB{5OaFc(UBUC}0)G=Xdz4hx=@w1HpajDZtt z@Eh=s3deTe-v_L{=Z>#fkf2?@r-9@O#iv#>TIP(^&c>ggH*&q+P8fRCPhB5}=ih$i zO{2Y@Oc-aGc!js$hDBrFy~8^Vs*%cni2#wy5quOaR*_ICXrMqt7B}J*9zwGFmL5uP zG&?%~?P2=}qhYDyH=TXw8k^Uw@*i(t)^Bcx_OmmW!CjuYKq!|`Wkg{TPE!XU#JQA9-vA@`&US++T`|2xHv@jx|bU8J3B=0=G4A1 zsxOcg|2ajvj;qIOW4avOxjen|t8|vG66`eIS?>$5Ypg{PDya!{hCVVXf3~6y2&bEl z4Y6-)Y0Ur;SAXbhv`Wm!*Kg0f^!p_XHNYfq$w{-DzG_4u30c|j-AK$IO*sK(0Mf(R zn^`7 zr$8~~7uyuV=G{VtO&bsSu6`egAL`rF&~RY#fuvb84hQpiAhoN)4CZN7Y)D!+!(eQ3 zhhEi;BKzEdf`HwGXpgA+yt>cMyhU8zYn}1c8P$1tqKc8Q=I>KYu5Ax`eFptD2T;W1 zQT019=z`$S+Bob>L@VHEH#4;p|pUm7SZM9VtS~b#E_Zu4c z&1RfEtWyuHSYz+}n}_^k{n7h;UsDj5KnOS6o1RiAyz#6BC-`8@w3tFPFYZD{T+e67 zb2$;+dF#bmjr644b#YJg?Ee2PO!5b4uX-mFv2tiVY{FQ?1bsh(%NK9p!{C{|QD52+ z3SCgC3yc#Z#Mxpol!8+4b6jh}vn{t0op`_g@J)segTJV0!rur;O8iL5s}3XUjbGh) zw{k8}k8sPt-q+kL_j&M|I$Wt?LA?z;Lb|OiN$vW;QlGj&i$18$0bdMU ziRuMss-?4bCzBxe-<+N?wZ#`Dr@ntm6F$HGZPI}s zQtnN7Ir2Mafx=Z<+g0|A4%Vd?{bId`wl=fYId&L|F!RV4M5^@1N_7sTxrp9mjYGmWdEOUC>`q_j8lK&-L(gV&c z|3<*0!I|rvvU{OPW}XA=&$LGHdn57*7I8CmEO-RrgU7wR)WGZ ziYfcg`vWQj$&5q^D&~-X&sc*q@}sXQ>d0u@34HOBr*V|RKs!QEavb#CvRy%04|6;d zv7_`BW7`u9#?{wgP|bk3>t*Os?o4#7_IhUyWOhJd&5m>PhZs{hH)6eWL&06~7g9V` z)n>iZk@I;UcM0U4R7@{AR#rhgOcjmmWaoU|!VUJhM;}AG-YNQPFy(yS!wrVq6OQSf zi>*=+Pg1?^bMMiw;I)6^m&_}8qipog>eq(~?T!-ck4Hyr15&uN{U7>vDxDknWj_AC zD!{K#DP&-xf^KA9V<>DHeDT;7{Ly%obEIX}$f<|Dyh(oUUEe{ZUvVeze+w=dUF$lp z#;jBPI8No6;46;{YQj41;c@EEOkd5OSE(BEKL_^sVdO3)Qw{APIdK;yFKD&$I&E;Pe78-14XQJBtX$6{ z*dOb9AAt9M-xt_HFwn3!F@Skff~t#4tH<^;u|^AvJD+4xdXP#9ot)|670vs znd%|ZZeMBc%JE6Wf*#;=3<;)D+D}PC-9jada(+tZIH}OO*sOuR598>X{t$ zJUK*G_*_f!e0h&wg?9Uxw{=2l!p|oKR6SNp?4Hb+KS-;RW%ijvqDYnIS{TeUpc4~G zJduryt2rk!qgSCGFdcA-1-BKr%>Y3pbnzJQC#?z$)aMzX{{xF(ud5zn1VjtUie1bT zcO`vZhW~o;u8kk=Z%|n4Bw2)AOxTOi^N)CMbW<0HIuCv5J5z0RRoY>}hHgCnWvZk{ z$-g5LEk*LWQ+0sLo3BbA@e;X=)Ok~9+3-XF<%Guo1wvXq5HqB6NrQTV_gLVg@)7Ab z-8pW5tNEyG%V?|T)7v`z!ff7oM$VfJQH8ARAGbk07JBGe?sY4*AN~zP^UoJb5;Qb#9!3rLCZBc zbJhbuNBFzDiJ2rJ7Sf8{USS;u*z=o=aE6%^3P574Oh#k84~^~P`2)g}-(_=SA*}`(;w5D5}EcPLi&1UV{tj ztuVFgaogos{FB8srI<}xu1?Ig;`AHkj9p&mN3<>=!|%z*I`YQ-gUr(7H;={s5$K{n zKXUnk{NsDnvCC)UIIa~3-|#yAk1~xh$RZ%$1hP93Qv@;N6Z#Vvr#WCns&}l4MzSV{ z8yQZ%a^H*F38=sSyj>>P;y(6Tpi;kp0SFZ2ySwz*kM)9`=DYyWKfQB(%RCzR{vNgn zTN*b$99%ctAr(IyLp9bAZ;NWfjJE=>BdFjdnj!#2kg^T))iycP}_?U7|Za^`UG1tse-wb0eS_f zI^-x>xI&hZ#4)#ccgXdD)f=Of;(+$0-TJ}rN-_KKnI8k*%zp~7{^nsdR2VHh6^s}7 z=0fxvnf|Ni_tz4%| zihtxf5Ay9jwuD`#vBl1Xn&B(bfW|;SDLmHaLO1mT!B7$T)|PFh(sk(usWt_$~C9MMul=Gw|{IOb$vK9}q=yS(^Ew0MxY_v8~CbK)>}iqqBpCzu>} zii6d>ZgtV~k6h-Fe|wKQVfjVezmoYnF8xk%yqeeTE-n6%n>_Nl_jnVQ|8(X&1@$pq zslzkF;DAf37Ek7y#T`jq-FOYi1)Xdm`PGx^Ypsk>@ppW-7yHrfCq=rO&3&+Kb<51s zH!nOI=Z`PtQ7^x@|E$-6gXg-}PImC|48J`5LFmfS=KPHA2KV`@29ccV2ayEDc?Ey^ ztu-|tSx9KSt;~N3o?1h)M)UX5K?-!?~gS4+KbMKdB^0$cOo& zXqoY0YKxVn`DG-&S~vQz5*<8AnZEY!cH|uDu=&HJDOU)u>%r(m%4r#92{|@GKW`AD zxprb+ki(qiB-`ATNi$-LyAnCyjpQ!Eupa?oX|BgdYD{O%ta*3 zQP^bI2t7qEwM&-5tFS!WW#Vza(-{wA8X1}g2Cp4fI;c#`6%y0bF~x`*z;)RdQ#H(N zuuNi`QNaxilzltr$mjj4Q`~Fw1Zww*G^^vp{SGS~%gnPmL6~7O54nni$k3`zUSbcP zaXp~b>~aSibVD@+F-1o#Sk%a_Jjsu{=398sE znw%-xTDxr{8S43|1E!DEU0EmAbn|dt8|D$MdOkVJhhWg{>l?xmP#lf42AI*g$*Gdc zdx~=`40{I)3ldg%5QaN~zspr`Qb)y&VB&0vznjqMc^(mN%Ilu~FCfY`h(c*Myw8t^ zd+>fr|Gz}=kLP;id`egI{udD4p8SYh(;WBo|4YP0#B)=e7E!gl);Y5Bxwqs#Kk}kS<{~sX$C!HxQ3_Zo*7&Mg*F^e-p3_~I_h^M zpp*;`YM=?E3#cV)2W39U6r?yz7Pe?Nb#znMh?Q8S{mN$br--aXBO-*zLsZ4}%<&$e z_$g_4mj;;^ruXiexpQApI89Lv?LM38IvE1Bf1SVv5 z;fCWf2UL5Ks5(q#S8^_P8&L7~NCY`pbK|tCm@CaE=>4)B4^MuwzPbN(nOb&b;4F1TlN*^BZ7H7Gc+o(SGrm<&^g(@?*R8{#7${&_;_v_UVgS_x- z%6AGgMNEQP%wrlqx?gh5Cwoj*7HZtV7A=G=Zb-lL*81844now`?{Cl}*-Sl>}g@g=2Q=`)S2@KO1O?JnFQD~O~58R zKOP-i@+?HXSP~w)1V8MYvdladD(}j&(&SIn+Hj7NdW+k~*_^eQ&gyi_VpqhdXVFd2 zDd4Mp)iNA{P1$Bg&ms<2Np+T8hS9k@J^lZz{}or_Qt9QFbTm%4?gw9CJ2m>^!{HFA z|Ihm0aV63s({@ZIc_(LZM~Pq7>KfsV@Md_6NR#rzTmcE0BO=7DwzW&RleM&}Rw(dF z7F@-Ci)!Ao*v(&~ygASHh!R8C)DiX&D_3@{#+$?fwe*8o=RHOTc7q*{P`;l{Z$mX`JJUSQXzQCzO9y;6y&s0R)s*Dr$YZ{3C~Kz zlzAAGW92U-KLz1p)Hd{tfUTK0N zE>rD6(dX}^41ou40+KA(buw=-feI9?-BdETL3LEa;xKg{(_weRgXTpDCaBqO;3ztf zu@c02SiiUM;Cv>XY10%9y@6}x!xkoX*re;BFaepLSZrrDSmnb zjOU>F@4;34nPSA#y3l3GdxhtqbR!O(=2yScf0Vz5JzjTJhIUHyQOj}qUlBMzSDy>G zQwkiJs0;>r11hd3s10}rX%K`D)XgfsNTU=>d{s;lQq>{D+C~b2614LS*>w%V|w7jB! zh!9I_bv@Z~la}`n5H1H>P)8LGX(zcH40uaMHmde`O(N&I8l^3_iO%_;DP5eSr>3W+ z`du0c8N=;6`5=oEK7Ct={J?(z#uU(?a*Kl4udFcz&Wo? zujRFd1E_pGUID)bd{tvb?M@KF1yO&h(!}B53Zl3XhM+D(9Z`U7>rX;)0T_)jHU+)B zejB1L(G~}v0yP#Qv<}tZA}I$|Sj{C_p-}XG$Lcx!%%kf91YDIB{ABU(aAz-WxG!&1 zH4-MblRJB;Q29eq(0CfqBatST7K2IeNpFWiqZ1;ZGmg}nK?QMru3r*{E1JhEvmiWP zWYfD9_>soo(U~BELj$XFU=6;j5sL_r#8KlguFLYPx`C%FL8SQI!(7!OY2nC*dxuHL zTc@(;q9fCg`N?M#sMy{gJ?6t%e+w#w>l+15a?-6}%Y+KJ<}Vj&#O5l+vrVUVuXtUf z0e1}O7%=8kv&{?oLm2!@$u^T6Jq--xgXDXgB0&xG%7?fjpp^_IlXu&A|UB$ z45U>!#C5c;5TSHLJ1M=9Apv#NuT+7{vj&tYhftoqgA+L+Fn%dSii~)>D6X}K~RVmU`2)&AQ z0qIqWD1!752q3*fC?W!(C>;WX-VuWIDoB^!d*~qT#(n;rbMD>yp0V%VcZ_7NXT5V} z&L3-L)-k@<`GgunglxHPi>4AY+$HGe`ZYXo1Ibn{$aEd8 z#B<$7;7-C0(GNOkDK;`WUYbJ&_8p9eX|LvE8xT@LeEMK*H(MPp1kA6j2M+|%L-AlJ zMq%YM?ya)&{y~Yq1)R(Kzey;Z(QW-bpnfK{wO`&pB=NTZVL9(WqtqE->+gZ5XUtpS z<-CK9e+wv=^L}fTJG;I0_khZoz*cuT?@;3(g43&=>)YrH?0l)<9j!^WSK^V?M8a#+ z{|GL0uzNi3NIXqX4X}GWxJ&U(!7aXqb58 zQ974Qn8>|gU$;5ZIryx4w-D}3)LFHmW6qJ>toPPCAY|dej?NEpFUagj6EJ@YcnR{n zC4t8nlrzhM@yB$AS)Y&-wWQrl^BXn=HY^qUPw$ON+n;WvSE18p=`Nq^HLdT&Ok=&u zHk;zA+fC;>Z>sA+OVM$ZsYr}vAP1M2{_jcXI3TXu!letFn7bIt@C<5pxO4pv9{;04 z<2ee%^p`q0)pguUyW+G{k$aZEClziPd=i0NS^NlAIR2*B(1$sGycRByWU~ zbN>o%4%PlG^mN;^4!~eh;UCR&Y7S6d)VxFcw%exn?99OGSv$C zvmkDJjGAhJkWT(-D4A-9Fiv{e9{&R_%+Az(Df_*|j(2~wJ2U?8u%B{bbinJo!{r8; zA!WR0O5|C6zR;wFaXDxA;1IrYo(=Av!#sXd)6Fq>OQ(yjeo+16Skq+V8G; z8=9k8MastiCqXoQ+ou+Hoh0`!gy>q?b&@>M%57oit)k2YwAASxxI-Bqj4x z{BkmAqilw+5LtAk_<>KpbM!>zA1_lF+J=!%~$Bt6?bY}kJ;CT zBZ@s1J%?FV3K+oul12U;j!5@d#2aSe$YlUaA9fJrE2upack;98r-Lnz3AU$#k9tb1 zqr{yz6D|HlvJuzXNHpmG?vXtrSdr>}*i&F_BEG+#sM}xfu{mdAwJ8^K4tCH7HX z&YS;#Qsc({aGiu{18BdN{^ZkMyD$913T^@H)U74!9SAyVo$uzA?eXg(Yi~sB@!Kk= zAdR?zlFIjZ)2aW#KPBgetKzV!veExJp`Y9sGig5(sT?h7h}v?sEw+IDp2U%QlnR}I z&A;9W&1v|9o9W;`$ovn>_{U?K;#(J2llld#zjJA{6%&W8>mj;}+u5ERx^CRwFU zD5r+K5tT&IUXb=k{%(F`{zg8G&>|6a?%iIWT-k*TA2F(^@JJWY_OdEKNgJl|*ws~v zj}t=@#BCVM`^Vijb&sqE6(KSEi*9?d=Su@3Mo|py9PLpo8&HS=qOdR1xvyqktcZWq zWz;jTCjDu?f0%}&%?E?eB)R0AvQvY1lG0gRBBF*`T*6GUhYt9?q-O@;2ZRL* z0%t1OBf81?y|q0>8oGU|)hyej+m6Rb(Uru#`jN=tt+v>c2IWt_#OJolH}eMQIpg=GZ7S(FyUhILsetdWNBwU zS`{F#f6Ys0XTyE-eUqouHl&9EIxXuM6{wIWjRdhZ+HKBLjy$yDedR|31kXMXwXKh8 zDdDCyByP$IJ|=h++i=#;coaY6fT!SO@&GMgqgIpvT6|J{|1Df}xvz$6n>qnkARV85 z7EhwdPiFxCrxYNH(PSf=hAf4Y16QQ@?%xs|UK4pF6G3KtxqUZ??<4W+UqC_k2 z?wj++SMic_g6G6nIEt%*WHf;(C~6WknK1s!tbkFlCk)XT_)+)R-v=DQbhLko>SaU%&u(Y_9x6LN5x+wvu{5uuKbdI$=w z`Pgdqx8bI(0^CewuX$2?x?jN(+O?gQ{}QtSs?0_B#zb);rQVIaU5~*uui$0I3hT1Sp5U`i;Hs&irCV{2483+ORZqj%(MkV zDB3%vAH8^BnMk;;Y1GY@daowaoKjg+gYzs__NA}BnawpKF+n}3dxf%_qz@z0ikROF zQ`HYAr6~76mt!JGN#?zzP}02T)vfXtFMsZA6od5IXm%Q2iZ5Sz2fX7w9s@e8EV+$| zoGC}oSdpE*iMB_X9*_8Y#?c>aYkp47zYy-(J+7`} zz*ccN1(f#wa{ROC<{mu+Q}FKkDfMOs-0+OCv=^=bcYP$p*-JMQ<#uvuCcN1)8UkPW z(QCSD^qxR6F9)5v%iH%}rSEx9mEcN#Fbt+TB=^?j+oyXYtrX>$`l#{|U*#{toygSHtqfMsn+nlwcNZO;s)Yw~aDzY2&J_&#UrIj=Im-C9 z+KfREGene2LoIIf=SrT`OP*{-yYY2My91gH0dokU`lT+X<`l9}?tnxm@fwOBtEG|q z@=TfV+Zq_%NWRc0!6*ZGxmJ>-mR3rga9mjyj0;CMW5AV-gZYCe^Ue5vcjiJRvj|OrFZ-r?Agv^cAoG5Vz?iWW4J^?@T?ucJ_Jmi|{ zz-86^r6?Zv^4dvOVUx{TB{c5Zl+A|LoejKd62(2oEvRf#XsPyt<>~u+YTEamxYL~= z+MuVgGPOD>ilALx9CZZY8*QQ$t_&`_bcU>{rP;|m8b$n){`cAoMwKBW+H9)a(MNen ziU!?T&VwrD_mRBsZwFbUDQXdCrHcacmdxIZPg~40z}h~PL_^D(Y6;r?6{&kND%VWG zS_HFFN>X?f0U3|yBT>{RK5{;Iiz@RCMMFgVY7g}|D;CI8R%(5t(^)I{EomCb;X(0% z>mXxt-`i^eT|B$*Vm=>&<6zAkn#+0`!hrGzMwNunf*%&G^7gB)GqTemC@iJ%Ve z_-H)4hCEHIqS=ey=fAIy5jHQhH(0{MjNG16mg}GJ5WF! z(y+UdWl8v zCAJnW3hxHaTB!#sQ(gj7r4#H++f~ZKdJ|uSWpP_XIaci!un4N z6E|$BxC1K539+!1)c`w%2VV!(yTiG2IUDaq5@mw@kz(IP;NMNKuZp07|V&6 z&qY;xbHBV3L+D#e&$$xP(f+kFL4$XKqs44EZ zMO7B}|5%;4qw9)}9a2Dr^(;M$3z}DHQdfZ$7Av6UZ@gHn0d&)ZW@z2^m{T1$96Xx( zOr_6K#SuX3J<)62wcb=W zPVArcXGJ77=R75^yIXzx z`4#bG%)@}lv;}bGP-00Er!Tz=qd;?i4#gWa^%CyqW#U?zcC1!x)b=Ib>*X92gxb5#o_@+YF75Q>G3zUD_ieb}$O1+!1z4=Rw)ZS12-Qn{tez*+ zIBLiZp9^)BJMRoJ6;P=g&Z}A6-Af4zwg#A3e-ip?&Yj;BIFvyyro+y?bv49xG`Xi@LukXG1#>dA!K^G88z~0$?z%Z#tGbSJ)-t+s>#GHHr0ciSXF%IM;SZvp4b===SiNTU7gzSm(gxw!}oT{Psr*%t4)` z`Q~ZJi-D$#5(WhfPJ|`?bWRwHBgLZ#v}-jeW0$fmoj_s1t;d|E_dD&2 z_xx@8ow)9|NZa%n{2XcE77pC(vz$hecNoIqx^sFMQClrWcwh4ASO%7A0`dY=-b37pAs0qlL@dvNpf|Ajppg z#a4+P8M{7d4%_U|pzGzgMYpWNi+70`zDgnBpb|nzD}MDY>KAw6F9nwuG>t+*4&VnZ zx4F^%blr}xzCy;XC7WGqY&kxmlAH&g2W;%Jw(rw0bQ2&ts2CLd3snT<kU4j?rH5)O1Y$89 zyOybFE%!SUP?3>Y`T79Sm}OeAI6>h!>s{Nvd0WpWXXu0e1v+F4mtOb&x4s%g`)R!o z^&YcHk1__#+bUa6#JKCE;uqMtDix%QQL^0SC}xH}ic;XPHSrfKUUIEZC9IAXav<|w zimVS6$_N2uW2jtqb*9@U-GMuc#`VeJ{PD+TBH43zhyZeT-kpUDPajezf`q-ho*lt8 z5#6UZ7?*AqEn0XY)G^p~N6slx+7f5cva=^c&a5ROZ0H1Fx~S}#_~zv1s1tqTtOxhf zbq1YY@XtJJqDD0yn6AUs&~ z>0X2kgrq`w6@>F2(sY_PALI;oJ$1{EI1q8xJ$#D#)<3cOa%*(Vq$iuWZY+jB4BzU# z0qf5EM=eU%07E!_q+sb2hvi> z8t3} zlTX) z61%B4jjZcVg`z%GkUh{uY20V@aAjimuimVx#%%6nv&*EEPx&@++B#{Lq5JzVHeh5 mAAA;HGeKS;3w(s6?Wz!@=OHA(Uu|ot>Ua$&iJmPE=f42Br04_y literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-Black.woff2 b/presentation/template/lato/LatoLatin-Black.woff2 new file mode 100755 index 0000000000000000000000000000000000000000..4127b4d0b9f0977d1a366a5ec6537ded003fcac0 GIT binary patch literal 43456 zcmZ^}bC4)a5InfHZQJ(lTidp6+qP}nwrzX&t!;bneLr2?#a;c=(-ScfU0FF9SrzRj zC&~l>2=Ff|`T-FCEkMl1|DH7ffPmNjd;9+m?0{hcoDgj=eSjDM2rkGpbVLZKz)XOE zDe z1oNbhKhHNzkdkosi%<}stexk{1<61mHkI$!zy}RI`OdL6j&}sjX(pz>|9{~_u2=kd zo0LRmW9I!VOxu6Ek~Yy^h5!`FCy|&OZTK`m(L^yDBVrViqH+PPnzdeT+M6H-MN`ov z&N$^wF>W|cp~xITBOypIri)gz82#3K^m0;(7q@dwZ34~GlLNQsMMrEV|STo#1;cmWO zUO9@yvYQ#dabot+6QWz%>pp}8-!F1;VD$GnLTUQ;wipCR45ol`Dr52#IE z>yRUM+)6r?ZpQth(^X;q45M0%KT=WvJaY-cY!)XC?vc6@q-ztrpvQvTOM8EhiyKmwyQB* z30Bu$?sK_39|+PmtMKy!AEI#6#4_t4>;u1HY%;Ie0SwGOrp6Vc0-I0eZ=Wf9f?Tcy z6Y3n^RT1`wodnoUbi1?#7N6R$pd(2I#R#to^FV(9jU`l~i_Rn5%d;N`%QybB-{PMNYo!NFysitEEoz_AU*X?`1Kzh| zf9X|Vr~Bx7b>!ExIk9G}ulpiM=Jc-aVw}HXW3`1-k*ULfDtug5T z`KiPT>~Kj&;&dFqpdQ6&Apx_Nv94YZPrxqHG_OFAXRHTe5MV$IqCkc&;{W`n_-26g zSJW+~aBZ8*TBuq~M!Hk+sj8R^I|m}!-RY__t^E9Y)pN#)NQIaxKLW~Ch`~^i| z`2Ab@?fa#+SRGy_*L;00F`@)*mFsgWTsd5gR8UYbAIgE`gDuH>M)MZV#5_H1;*Z2A zp8v2NSNhkL&Bv7eT_hbiTjWHtVqec<&N#jat$+b67)T2X-p6R*XZq%97uQ`WibU{W zfiS{cJXn-MxH~dU^aWwYZq)6uYW+zLW6QV1Oc_B&cQ6J9nk3t2z$AE+?Wqg)bL00n zYgJlkHCn-gy(dmBBC-1YO^=(bibSd4Wdmva<BI@qrXExdNtzrmBewIsY_si)gR;? zI=01*N=r+{hU%+KiF0NrtJl@+11jly9b7t*)dTg-M;jIYmmq_nc)T&15SfMp6a?`! z7zq<)?6=VN_K)zAxlF&&WkU)fsKD=I&^!(!<^}({Kk$j=+xet)#u6yg)FJhImphup zXOc1vQ&?1xnHxL5QJICgwOp9q>#a_7 zIERtYLdvNyjJ`}OtX1_iP@3Qm zUm3>7X~o;Ndt)PakgcgPE+H}sZRrY<>&%bEPRvev`o`AE_Owa5pTR67Y^Jg@;{$${ zQlA9;ESbFNYtDLG-~)W}dCNK%sIB>hiktBy#gv8E+XR;Wqm>lKZzrZTk zT`#M#xU2N(Whe1Jq}4N#AbpS75yU$OgAa{jap}>k6c&`#q(g$h%0>AZ>MB-QZGOJE+tA%D zVG*E_WlG3O>LX4(%R$23Aks7Q!%C7e3MtFV$|7pPA?lT-wI|rx+8_4?riBNF#;GT! zE}o-i{;K8XshN`ORk!r@P-t+6Qf0E2d1Y|CE{)s{b%GG`<@Ztxq@|Wg1RR0}*p7UC zMoP;nE-+)~y|%+64)@*TlG}T(+;D?+sn^$nf8$ADsi-&LM>+;NqAc4WDJL--%u^ zSB_k11}j=}-_=-kBoxLK*0eJdWj`5PuG}Q+tU`PC{QyY*L{h{j(jY8S64WIuZh(|` zg{w&b1aCMix>4%b%EZ?yn2i-5xsHffJkKh5Qfrk)V=~9MO!9c_JW8inm($xJD9ZLb zOWl2M`fZ;3c>NjQAwjY!)D0$zzv!L-v6Ybt*Zm3nM9xK^Phco`P(XA{ATvnA2dBVE zi0_9Ak$N{r#_qGTTvU=2K@G_VShY8q#*7=2d$rp&G^-Wtk)iL>)F9U>qs&PKi~n1Y z3?@z>O)>G?_foU#c3L-~B~6?%pDIhFEcxzqTDR>nKHfP)N0fTz43{9prln*<;u(zh zVX*XICWir5f^gGcsfyQ9tfJNx#fAu#0{Kr4Oy0pW$h6x!urhrLnrh6A88F6%?v!_o zj%73?0pN#ETynk!U>73B@Aupey?`Y-0J47IWV1>%_E}or{EU65Vq6k`=5MlL|Fjv;9KHiz?Xgp zq1^XP(0FQ9eRP3VMc@g=;{~x0E&i$L_tBTn!Y}ssZ`(`vZQm!hm}p`Hsf6c5g7uCb zh-+`p!Bgj=jzt?U9w7#CG=d-mVes9@ebW@r*K%8&6X>O-qzY9u;vj@UFryI0LvJ4} zW0?fwYS@L88eQrT24Sc`cu)MGPzxE;tEY;30g+%i%|522i_Wc28R}pf3NFD$V1heI z#%9Uk?KP}X)96E|jJ&fnBcR3UAGtoV3FE!oN^MjHRF7Z?6`%RkIoJGz#2*#F*tCi` z9M+>9+DM>!a_UG&fS(N_9X5i#WW_}AKujS1x^a{+u&f1$g4cHOf4_9v z1I&kGqO+?@o=@3yu8UNB8}-fPrpfGnW1|~d?&I&VlT?tLk{F>c$f#E9QXLy7B5hL! zZd$QgJPmCqjG9>|OeardK4&S62QDJWZE9?eA4ywNT5VeUwvN|fH)va-eV29r?r!#u z>q7nE*rV$}@6ie4>zc;PcC|c*Q^U0#;~yG0E~B%PX3zNvw9VaU<5erqkC9&*E8EYd zYr5O)2K2aa^e7?z_~UOX1&A0OE|5&bMhr(lhTw+SNA%;$<|<0mAP(!8H|0NNx<%e?Po#L`X`3+MumGJpmN6*F*f zS3(efwnjoQFANczFlF3uDD32MB6GAwoNE^hTTYnu3Y+6%(~ics5kHxlZo}zXy-J-r z)7EK++Zt#cB5QXeP>CxCO0$nSy||}w6aD$kJeCZwf3Ig1w7P| znFhr*zTGMx(2X7RC!j9~Z~!7Q#mk9&z1b9l*UDAU{N$Na=&GW5efzIbK~+Rl=oG)Nb?_db%3TdiFqq!_)Zz zGW!S$fRH1&5JNT|1vjZ#n+KvWc^VbhBcpA{VU72d_immzj`x0v-y$O#?R>)9e(?IMA9YEmSlmtAj}xU+Wq1-4I)tEFFFeKxMoL<8%S8 z<2D1cQ6)~-U-i2VEr3Z8pVzY+Zt-9fWoaJBb>lQmRgu0=Rsb)pdM@SaNutnU+-e3l zlW&=+4QKTPCuvwAuDm8Isy3MIJ!BJ>G@RFCTU~-`c|pWH!y(DxogsG$ykpMEsP{II zzTws&w{TgV&gZigwOWTAr{CTnVUmAHCNc0(rZm4vr+vE$0^7_*-H=rIcRk5Uz@sk( zdOtzEM4Pw)E*np=Jub)uJ#JGG#y!adp+Gta)Mch?!D%H5MQ&UF%3S?-*; z&EhE{Dd0YfNXu;JA-$AcPp+pu>JFqHT$fDSSczIRwYIJ=OWC$=tJOJwtjub(9UAup~jtSqf9s3@r^s!HeajEa(ytfG9*$Y$KQ?m*?_ zp~28Zb66X;b$3C&m(oe< zu{9D`sVkpehnty%WSrJ26_8=F5W2tQ=SL@{HB`HAJF$b-XUw|z2^V;Sb^@*fPksJ8 z*AAEQ0I;czk5v^!38uDz{8J4-k}8}NRV{gbay_=VuWGwTd1BiDmes`ie0{Ys=*zic zj?#I{?$7TWJ*1x}VbGzPpMJykuKl#*3u%VmoubU&k05X2)cg7@Y1E+x0(83T z0X(WsKO#v_=dvyUOSxhB(o@8T8F&e?y*s%!rF^yz;HU^djG&Ncfv9XiaCCUS$o@#B z^H`zwh{D4}65=h&A1JS|~i6z2^rOI3#k*%~~Dq%Ibd0;cq3@+Tamld4^f;CHv#03e1?NHieO*x=~!dH(X{4Esdk;UbCgi3v*Kg~dp;qW1a;ZV=rD{Ae56fiCnzijlm_YoMe9YgM`jqSV3IskCn%#iREu$P z-o`Es^M<8ejf|M9mLtb@AO%cFB~#`U4Odi)hDPH?;*L7p1a7e%*hXL=3dt%EA)^ip z5+WT5t`0~dogv+D#yE4BU{pvooN?2it~VUUJqjJ!(HkDxT2Rc>I9x;nTm>Xj1w$ip zHa0eePO>%sZ=924Lowm-GES#VSu0CNQ7t9$z7R$u`##o+0#yM|W)2#qTCt(8>$LkI zmpmd-|K0kA(ixh8gUqaU_H4j(bvLT@pl86IrBSSH$rWS7os9rK@zFsUQGUOYIxqE6 zN_Oul#%Wf zevKmK3`bNdl?qj-&x_%5^ojss;uh1n=5(gLM4??w=c)K#x9t8qa(pRd5M?s4mr9+K9-wM2Jh7fsqMUY&oK)?X zoE(2xuC0D@k{H|mgp0`q3Jww#8Xh1eDlRfLIx=dn|1)9jol{-PuWsz3qV|iA4MF{| z(w;r$4NW;BTSc{Gv{CZfAe=`Myx2n?qKmnRQgFKJao3NJrIfi7t>B#57qI6Q7Z}?% zK};Oym;I&QRUgQFEg3mIK}AVTQB_&odjx~QOu7i9{}~{L8bxSm)fq2-TJ#bI(*_Qn zfPaRh{Eu}wGi?J+Be5Vx)I^R>Sz{P71qMg3DXr$xYSlvRP$$j>xWhW4m{YYGx9xm9 za%c?4dGgXM$7Qy{X-vnSp{ZBJf4{5cSm&w^Jy+;7LBT|or3ZaXFS|qRX;IqXP%Vwa zEw-tV{Yuq?1}L%UU?QcmrZbMv0^^A*x{Mj;bgR$=R_u~C)Ep>Z;Ps>`G%tD&8hB#c z;!xw1qvXQ}cG}9Y%t*08oQ(C*3$wcQ%<7pnYu8?wmYCd<-^g$Er~;-39kc!tsNB#L zrDSWuD5&L8{s|ciU=tflarJw}1V^x(v*iFB)m1CwP%M(tJy_(?JjhITGY!G`4-lHn9~(6j(S#DU`1u7p8dB=;Ha%DGQNLOPXN_OTRU#WGLqh4a3;DTTb1QkJ7sSZQpOM{^4 zDlZj9)I*OVn{64rM%5Wt?4KxpuatLxlPg;SZom2A<~0i#kYpaBh*4$PfTIhN_bLr( zLXx-kUF!+JI}n9r6kb?j{7|obss`#w7fwc1S&AWR8nFb%;Rt6ah(;HdP*s*;m#*?= zVSL3LPwRbfLGd(6p>`7}GKs(6b!!pN7KD0gU68O0ys>c88wS>e7wCo-CQ1+|K^hBy zpiRi1$Do13?@KrM&yciS7MsEThgHN~S@rLg6i|^+f;v&k1n`*dms&Z~7E1?Xl8gXl?5JI zKvy(3=%ypBkO7WmWnY8)ejK;``T02YGrmBfqMa`z{l|I$Y2an4I2?-Vv9vLPj zDJeEFJ~j+y(zxQF?Z|1XZqUn_Hnt*<{3#z#x3Tz$i$g z=9%74PL^QuuYoC=ux{A&2l;;-nM!XkBIPNtb>isq&6AWYn1E0!GkU<#;eQ%Pizg4@ zF%;Fcs!$jtbLl*L|80-*aV&P#4f#ihsf<#zYHiPxBL|L}$sK#kD zm)$fdx{l*UJ7iL+bk>CRSSIuBWS85(ncnR#+B}H6RG(-V?vmwvy^Abn%WgV!Yx~ik zWvjtro2O{A;c&g3ehcN=q0fNBu=Ja|@PSFB|2S)_-s33t!vBvRG+pXr_JD&3BeG-m z4ch0RpstLNr2h;zwv6dNw@qS?VDO*SPOL8f=d)Gc4L_xn(RxbIY}azXaq5BhD1pKp z2AUAR#3ivp0FC}vf<=%^?Cc=v;%EW1lLFjCoT;8xmY{GbZ|qt+%>cdq(j|Fb(u z^Bw+Q(0P7)XQE5`HuR?r-UhUN?4cu|AjuLfOH}X!89<)(W%qb~a9UY^cETeA)q=cCM&wT!WJ;=uM3L}mvMj^j5 z4EAxV#oIj1Vfs16G%1|T6P*}9#4(yH8-A#)2`O?esTf;?okGY z+z(m=GbARC8p{9gBb(cQbORb3YygC%?GARvKxM=JZ~DCXPXBKVn%)oeC~ii~=|eVy z&QbY%0R;&6Ndj|{p+KO8@)>|2VXJjv32kNL(+Z62_g-`; zex#L_?=?k&+yMKOj+!;dRxCX`6CLtD5z#IyhgVesGuV!?ifXxn0M# z)?-VrAiqO==(2bzSx=NPI>-b-73!c*qVV3vP+t>b1ucl((FUu45oarKP$-Zeg6c4p zE3do{1q%!fK38)z5Zu`^A|>v*H5pGyy|JShyM5#k@l~6z4^@vFlttd$Uu0K$qkd0R z(8=kQ?L^_2N6uT1C7s1;H$dCAQ_%KdF4k1SZA|IrstzCEr&GvCVudz6>EXp%Z9_GK z>X*AES~?#}5=4Klh zxJ+~;udLVN?h@7PrW2k8hUxN+#7tA=&tj{6vx>=9wfW~_4d+2p^!0c#i&Fv(Y18Vs zDydfxr)2XGKQhU6V=u4zHL0zltP;=`c~_7}S7Dn~u}<1%jLXQ3pAW>bV{Z@+ZF?~0IFZ5HAn~f1&uJ%bT~U*ys8n?I zF_Lj1$^X$fjQ@wmp*>SgQrW1k8g8i`SKnV|dbDEVgXlznWzzMk<;H*n&nbm5`u*MI;arU*qQ5#e^Yh&JHdHEh{%^1T@>pt)x zh6#Dx#d4A4InKt@?(g0^0*#}K*2VBOtghBAa&jcz$fu3IlJ-kC>D@8d`nP)siV zg$(ce6-;(q%QX>RS;YIu8_Rl7ckG!KNGzGLyU2d(f<6u+q$?j;QpQCREk6pz*zXiP zVfl^tlT6J78yK*VhxpCnAk4pggyQxbct3zrwtQewiOhifFOE8VZrw|!q6cq~YNJ>9 zPEE^N%9VbysBpJ6U9EioAOX=4|6aBl(Tq_Ch?`MxjczxU$V&WKBY+>13wY=iR1;Yn zb|YQO(#ooE#3eiJrJWN^bJnohp!~g0iM6fibTLP~E8QT^!~M|0+L)z0KRP=Qd^C*3cKWx~>gEzpb}1VCM#3D7^;J|=s${ArYwx5=pk^ZhsGXCL|qI6t;S>jg!ZkBuxevW+5(R zkYsib%2292pM0SwktY#r;;9o@M~q}rA<36nH^!2gg}_F&1}l(No0aXO;1f7%N%F{d zt9H9~S6+~(prgSubiAsYU->ld8Xc31NwvC)W|$Zl7>NOd|CYhy(d;H@sOK}fTp1-M z2IC+LG*~5kYwUk6w3dXImlw}RO;79r>}e&doLP)NYOOJI_Qc+Gg41wF;UnANs?%aP zyk&O63;`kj#uYLgsijj87r~5$pe&Fj{*FI3NSORUg{e*z*I~1Lr}Y>S6tDvY>B9KD zlL;&As#Pn6jr;~5ek3fXJs&StjX0obI8x0~*7Yh8w+n%TJi|wfF$oh{www%N^uV%28bzo)TgZ?Oyq2yLGwpAr^0v#wXNTbtd9ec`#m5X%p*#U>hl zmd@S8TlF`=gSBZlS^VcWb&o7>WPWjxE3LViP=9gpW}Ot-;)I~ty*J#jGCU_%RO(aT zX30=9KGkKay1(8@?#666$E(u(Wx`j7VYKyzCN~z;K?+$1l~&Q0qP={6vO1ImDMS3o zB4K7vagvFjXsVYvDYVwwJQi6S%*uGt5z0|72&A_a9V_uK3ie{<6JgFd#XFble)cv^|JVsLm)r^WL&5}b$6s~Gu zX$ds@_E+jHPAO>^NjUg7`V3+8padye+K zHXSt{BU6IUw1&|6v|h*9rTyq8npu`@mC`3$-t~{iDGWcKGH=E*IA!a^LH&J2=n1#0 zP4LKlkQYOAzVsfLOgpqBT9GMUg>gLdcWJs_2u4*THJd9(v6&IO+}U2G+dqR#p~KB_ zz|$RzpTufolk**?^fyayk#9tHP6c#lv3*7&u8i2?8xJdo@U)Vc8QmH!2Vn>HhDB*Q zz3T%#Da>cRAAo;%BsLp)*I_eaH%j|;R>;C*8TSN!UJ3|r(*JQkMY6M7N&X^#UbXpa8y8s7a8|jUC$+o$sj}V8JYlS zH=8E8mic`^cH z!ur#c1OF^QM9fD>Y+afhVW5adD>7A(23f7Cvuww2d+0wNg$!wtq{SWGr+E7+_UDDH z*--crzC%OM{u_aN?ki{xA~X=!ghy*Ce;YLyjtJAM4lYZQPKGO#Ua23C$5rzyTt%vk zRfzg@W3iByYgh?}^H5k1Fk_QL?rf_Ej6&VppkjimB3ONS_eqR#h=ze98(`95t*P&HbCS?{xwViPRXlUL8@BvuR=7GanEFI>5go% zBwmayJM;^d)nV9SE7~MlZ#`HSwdB^GtJ==?uoR1rE#wS!{z^FsPD++_aLOFTw4GgS zPwtv#a+46OGR3(+#d3cOT2Fn|l4Sa-DzET3CbFhsq}LF+kf2&vJvs=08vvN9bm>|( z^=V`~8>ngX?MMg1BC{p|7b!BrG(UKYX-jICy9AF42F9(Nix`?gVqG&)SL>W<=iV{f z3BqH%aF8Qp${w+Jh<$YK_PXbi;+GM1hkW=7erwZ{w&hKGo4MO{Gjcvi@|!VLQo7E! zP;x~IbD9j<@hSZ&0K1B3Q4$+`C#=!k2=ZdSU?G%OQO!HvaELHFq197=J`^8OyYb_R zsPlzkyN+6qyYRg?w!7^dk#Ex;zTMYB{v@Rk>69_~GR=E@T|QEOFg;+jx#o??+Q8G6 zaWL+kZ&3_rt8`5P2=PZ?`(DZvHKdSnCOl;Pw)d>Odrp%|>*mqYe(5;^5A027LL{Z1 zJ0^N`43Ynofu-jAol;M(lLBeFGyW;kZ2SXau-Q)Bz(}z*!vHBz-K}yIDjikDqI3@0 z<40-w$Vvs9#@=M+dH{}^QI)gYQT(utCqN|=NOw!@p2Y9t3iA`h9-X-YYE|+X`)tl` zaDS=Tm{vgdWSY#a>wYX}e+t|t{n#1QR6KoFrU;#Zs1{~W9Bl+%le3dHU_cn!aG~-( zKBOd1h)Gavu3Mbr^R{Pr56U~p-!4j$lYM-@BI97Gx4`RuIa7UR3QlnXhdQoLYq^W7 zbxl60f$47W@_T#;OCul%@H#F$t}r0f!p4>3S$+4O@X*rUYP7z+N5E2^8m`;D%zy)Nui4=StJ&_Si(M@FXG4TuOL3MQ1|FKmkd8BP+O6Qu)b(4omVXSWp6_ z6oDN;ZfTU1;=n2r$qwqnpVcFD{)4$!9O;*RclHbkgW znp2nev*ThDFgovmQKjeS|a`hh@MM@rEq*8&|R;hsY?+~TpPzgs? zAanb$*vQ*1h?q(l2Ao?-k*~O~xMwuF6ABOrh{YQ&pomM}kZ1&oc`6lGi#!pt8lnXx zRKY{~_6n~Dh56L&z*Ob@L=VSzkQ>|D2W9}dX(btUyI&D4!AN#Nc0E`F50fj@#^O{cp z2EuE(6*UfsqfJAC#-!`nWXWSMoeb>V-2eg?R1{o>1tnP6noWJr0tgh_CP;f!LTLDK zOd#+1;eOX~>UT$n^6rTvsOJgI3;C1i9S6qHy(fgfZ9_;Q9>=_Yw$w|&8SZ%}PovyU zL{0eJ2QRR{2LUHg$3$P@m{Pf7*+UDa9-YN<-TqkHbv2rp_jx1*a3er=gs9|r zDkWuy8KgeJq~*Doyc!wvSYqFxOqVcQ0@)!=mNsQ`mAr!lcCfClXI-hv+0aonX%Hpc zDruN?MB7CgFLCmhc#t-19357H2CPsROV}b1!GwumGAXz`5qKekXBbN(o}s=nFT6pQ ztSSRjUAR8d7DJidymG6yBJcub7qh2o zyi{kT^FWfzi^AyCHG`{fYP&=ymF}w1)gi5B3Vy352;x@!VC93u9D8}xeq{mSUfq3c zh#Pe`;!bu_)@i`~r4+eUW(JR=-pdX&V0NW1$BzoXAix1CR(J;^GC!&RR<0sXnfY$@ zQ|}L-4mg}m^4qTg=ZSSw8eafCKx@(+a(_Hi1vVE;Ev%{z1n6s=5*RLkq4!1{`)#6) zNtjTs$B6=nyX` z$Gu~@?WWtrBD$_?g|2LWnJ-LVvpNM&SQGe`+=L=02+8V=E5W^@8^Q@?J`J zGQmsC$VfuL(sdoAH#-k2{MEFO@i{lZZ(35FeCQ8GBtM*=cPv3R&p1}qq>^Cj6(*HL zRWnQv30k5%d`YiQL#(&i0Q{^z=xho|a&E)4T~E3*KJwO`IW>CZV4{nSu*y=vY2l|; zp3Yy%t<9|szyj%+Ps^uYgJ4yRQ9LY*5J@YnvWNeD`^}@K z25?WM_^ce7*ghh5AwQ`avFy;K{c3*cvQ}g&H=gtKMDU*lHmd;o`6YI}TWs_DVRm~{ z+8Zm-)PM%tPeON$>mBjVyK4BdxcZ1{I3{q%iA^Eze+|nU`2zq>EJX#-+cC8+>v8ug za{SnuN}u@W-JAbPv3H#PeJS@FvQo>252(fH=I8s;x657Fhxc&1Zwx$l653%`h*yZ6 z`;Z;I+qy|@3RgJDnL+)n6Vl7jpU=!l5RD{DomCCXmNfh>5J;*jb#@UZHbS?1n5Op| zrNReT;Ha@sTZpP8aufQ3h6807PNy@W0l?jJzBcg1+~*F6PVn;F9zQ6kT3C%7%LVMes=<$|`~O92Uj0o>$X{^OlGm1QNie0OK zb10f>_}YX~Ax6)|aJy#L$1k6E8ZsoAe8+9Y{U8tl@b}$>@o%tEIv%cWwY9|V8VO0& zRu8o&JJ9l>1z`Wimf2io&XqK+-03;@tF~U)PM>TMQGF7+i021GCkww4>AKQM#IBc$|pCXQes4i}KkNMGYS3+h88TGmL`9H;u(=r{GM zos<4o4f6Nc>Q7stC?TvCRNHb20TwboEZNkbL_mi=bhUI_r=B8Y<4tFpOASxf7GX-< zXhoRn(;!70*a-@Ok9t(eI;Ke^E~(NnbakAFjpF6j3JIhHWthJQ1{&7$qXEkVF*-kE z<}tlp#xGoJYCCtO#?+{TZ$i5BIYP;+Dx6SHolFA3pyzb#qlu8kOaAFNgOoJo4Mk#L zbf&8(dD2*r;F$C!+j^%(Etu&~RS{j{X+rs43`p*)BnB*@0hGmRw4=^3Kmm#H1|*#R>v_dy*zQ_fn}{U=W3^_>l8FKzZr$qRkb8nhOHnn3(czw!il~dC6(S*ChuMq z#@62@4D!OG(#7Y)lh6rd5z8W&hcymx9CF+FCs0?c63yg$3JxeTE7Y3Q88D0s6xVjG zEahPw+O;{8bD4<*BS+(SZvU1j_ z*8MOd2`M4|(qH}ca-6emRo(5oa+a@4skxQXw`@Omjv)6e6C)R}F&8^8ia4^DRiKWq zU3tWh>vLKS5$KSjZ{U|wqCfpEO3U%}hd-Ya?w}Oa;l!{adoIdu4q)m#;2|m|4fW@+ zySyH|eUNi#@mraBX89y1B}E3akY=elagq(-_5UsfzOh`T&+^g9K)z z3dsPXS;43Qtq`ZpuGkzwix^il-Lbtuy(U{8;YpC=v=6a@ewc8nMs*r^p z;d3HGi0D1Ewyd`ZgqOI9>~Pu*J(o5Q`g<&1%29Tm(gvdg~54}^|S zv@f0z2g{MrA19Y!UpjsYrY*jABt@c4`Ou=^3mi13F?MndpS2)&EgN0&*;`yU!oj1B z6Uc%e0JywF4)_dn2B#|+I|r zhzjErpR+n~egsd9>IGlPY}m!^_o2&tjn{*$TmK4fNxiDZsypM6dcWIPOX|7ks}gmw z-Ol02Mb-IdwUP$7FBS|y#tSWBqTh%Jq()68SLUYY-AJd!H*5Aksv z04C*3=Y9e(VP;8*$ry`H%%h~IwTIw*v2F>#P<43~xmI08BvsKK`%rO&w=P zeAp6Cj_eW|sGq_0TXwq6isB~2D!SW(Ri0r)IIys1&obkDhl^#`0`(?tAFbCO95TUM zqiygI&uyK5rDdWe?7o8vuActK7D(a<IYs05r0v=F~%1T!3RO*>%01J4E-5Y+xu`^MOg@XOID?60EY0_qI}&6_;EAMb>)mkfs*V5|rZ5lVDyUMsMyEG0J#xN@A*r)9dPDWZ)cKc@arjE z-GmGog48hs&APSwP$xa3a*toq@g)x{;#V>UQyykthd75->%FVx>*vu@TCHnO;E9)c zM&o>`JaD!!Do3O5^-%e-VYVt&z^Kbx$6ruw{MSwf*VAowu}QdqZiS1t9VBDTi2YcV zrb8@Ejyx5LFR!9CCYS`eG4Gm?|EBQd+R%hIX=QRZ!Vro&Cf|pfT;w@xN|j`M+sXz- z0VCW+nLErhb~Q5zz?%nzjnvk6ni(TQLglEPgAC`IzQE4qr^W`0l4wz6g%p6L#iIaG zF7bjNL>tvwXLL^@EJI;O$akQ(f6+l-*y`f$g2s%vm%5gT1{lQFbs_yJQm~Z$UJ<{5Vf0Ff{3q2g|fA>mlL-9DrVOcij0^Kl%Xuk zOQ36p5@YMD8f(;z=aK!o(92T;V9r`y=)F>pd61MkhsKsDi60~ZybUY$^#9zZrKS&( zg@a8tg8Z1`kO~yaBt8EIf|ZkDtKQ&WvjXJymIlgYRHGe)Cu>ToI&&tKGSg}Nq9Z1p zh6X*P77~HM40TehGs%Rl4YQW6p(gh(w68NN&wbwq}=j0=%HKIu{3KIy;+BLatqgm#<;Wc*f$jW1=<)q7JhAOb+0i`L&|9lTTO* z80j@env}S)rqJfFVn(8PcHrBETLwr?ury(Vk`PbmSt4P6_vzPKsFek9&?fTSu1*3G zN(I<2Xvia~ybK7<~;aKS`W4o6(;cVN;pOl;RLl2?_x}D zLheP2fC&D|13$f&>FZwewMIb0Jji@CwR<#vS|U%)ZUIBA*ySr2Q7A`i^ny~epI!2{ zVzjv%g!X^~`v9U*H(=eLXd4XVs=2hcJ^Q((px&bdS(oc}J=o9N?_)Zh*FhN0=5 z)?A^`L#1pJASNkuZ7HEp4={wN-7 zoEFljbq?wD_jbWhIae4Lj%n*Kmbl^ItKj%l=w-@b@6H~4JE2e7!fFzOz~mII3ZG$J zp%HYaRhl$7;V0_JVzi_}EpQ$RFcV!pv+)hBrd-G5dLvP*>~xas$o8#~P2^2Jsl-BA zsIZFSz77`B4zMTZ#HC?$Z(lV zr-XS_zORHD_x(Epp@||M;!zoL98W3%9RDC#(z)gZ$_qm&+|v4@8_=*YALnYz?vy}u zLd>eVbWL(8aYeWqj3CN^Z^>4~yA$8m^iLQV+@$g+xh9Ke)&ky8Nj10>+A?5kk$qF2 z7oC`UMvSCaJ6ug7baqPkso`-VlKBQ~4*ERYEQ(yTHSN!OuE>h9OXbo_(|28Dkyxm$ zCG88?8|yc;a?>k2t&p4)pe^fez|eRO#l=^Jz%X~y5ZLG`+<;P#EZQfGN+aD}!u>J&OGO)4Y*au0W{nHFQVQtNOWLp!yVhUZQJ%9+qP|c zk8SUKH-EsAdo^tB{T@2dmUIMZCS|!UBpO0dSuQd%Y}$?a z;>V{VADDB*wmEq2>%=@)dAnxUJ;UQwl8Aa)d2$rQN77hALG=|R5Z9eWT%k{|(i6E^ z6KiM@f{h+vq8X7_l!EWhI+aFXG zn1*W)p$#6bpQp0^1=C_t3$SC>vmRU$N7H9tEr2bX>{Js}X5kL`vGm zhZ2xwdhUJnEgYT_c_*l(2!fdr+Hy`+C2axd+&yWOf`yd;Ai5&4>TX!3zq~fi-x^IO&b+q^n<2O}rZ(^uRxRWo?rso5g7_8^3e^3Qtp!6!!3O>0NVL19+oMK1Y2-3%1-vQX!{M0aJ z&A%OQYL;)JBR4o+=L7YkDDPpR(4?Sn#kdB>QA*5l!zc~vaVJtIg|HE)gMgm@Oj~qs zfxeghqXq0vVx);T8dXBV&n7s4t{yz#Ea@8bqw|j$3vxV0d&!7;$35e`hv)i)*I_5h zz&v}#gl#z*DFeZIhbX?E23hdtcu723`)0h4gt)iUntfW9FxZ01@%Pgx!3pnxeD^0$gG3<)1*sv4+vriei7wFGC__DCEOPyj2#6#ve7 z2zq&!*crCaze%Iv z?sI7d6f(hSlJXcu0tsDSxf;m|#LXD-K$sdd zPyrC|>So0$B4QDG2Z#`jqyk4!v7&yaU8rym-zgwM*r{^nloVD79&4dc)EHeVO2y&M z2(WF7OzDP7Up8gSTqfBT;^T{kwy&W7e(dSyB7qk({K-|wl>`o&BQAR*m_G??lyuH; z#u~ga+eSAv_j3me;ROYp>o+U>`n;UxikhW=7F2rNG~EiD0JcwD#&j3xB>qA&g2W<)Z7Nqc&du0MS8=&^h5YWCRj-kTK#}XGF%qO?E8e_qLxfEwp z-f6p&U*+cW$UvR4H_xM*S?^If-nLUI?Xp#n_}x{WRu$T-lUsh8)UIBG8HVn*ovly! z*QV^<=KwS(RU?qkEoSyw6Qna#iM4+w3RsY1y12pC8ooha>KivJ zj3sOoE@iBC0tVFdm>?OY6RPOxqISA$-8RAmC$1u(uhKZd^!%>Du5cO*kZ2$w8;{J> zE0v4>ep>*IKbM+04E^>b8c5lsVrriTRcL6w+W~W&zb)6~9TGo6AUP@DiAy`qWbFPG z=*^D`4`u66F?&F=K0dTMQ+A)QYcvDgNs@5t6RKXeCJVx)Q$YV98Ssz!QK&#qvDoD} z>EjE1n%)R=97!U>s7GCL;nB3E5*5SV*|f#^M=XG)gjG_EU;QiOCJznWxR4>jV z`mQ;FvU}(Kl4y(iolm!l54Un7d#Y^YQPG#I1X%}|YiEKIuvvJq<)jq0ewYri4Xj1& zkh&*6dYlx01Tt_X*+AHR?F+Sk>h=sFkl;gzFIFy@F@LTcgsQd+UsK*h*v*J3W_uDC0ZgT1(=YMih@ZNK_}5nff(QfJuQ#LzKQvoO_F>|N=G zJa_tJF77lMHYwl0L|{3UR&`r#ZUJ%XiFRN`H0KJq0u`mtMjoKkf-s9O0*iDJhph!? z5+Be5DzD=yowN-Sp@ z4TmfRRgW`(UFHsWIZGOp;5fz4bWtSv&*Qkc(~Yn?sKXf36t*X%JX{V{#x*$#vlt=p zuyDHCNGFnfvA&c|B5)7yu2Ym+UG<&wkSMOe3afqEN>nlNK(9R)Z^@YXRJV8^6fd@> zS4(c~3VVbL>7W(8_^PGs;(eemIR4VNGOJ;1qZ>3oC2NRW*Lv1CL6hpa^O-b|En0e| z1K^s{Gv|{$Io4Bs#+s%CXHk`L_0EG?;OO!1_}_;FU>reclTZm~AgWZ7i)H{3p~)7b z7f+mU%i<5EyXszlB0LGc6S)Sa!hC=!2L{MI19zI_n{KJzwW%D{zl~o%#9MtmOwz4Q zwuZH?_cCt3&PN91)DZA{UtLLAt?ZbDthdB3~p6D-Px9qz1IkW|}+KqY9R=d%f=W{AhDeP9xEU|teyYhmcgyFhEZwY^v7G8vv(_+vc z7Y%et4cWkpx~2&hWdaVFRRsd=KMw}l^tDZ|&iHM&u|4kM$Xxr9XgR7%B~k46k;v%^ zPnQF!HmKo1#p1cpWOXDMHJx~Nw0Vq3g%zxMsQ0Yn&rn>zO3qnBuL%y{Wo;_R=IU$J zk`=SRUgrTLlQi6B@G`yV%YT>rm5L=A&X%Q+I>Yb~vkbTbq@^dlL*Uw6`h!$C^uaQ< zRz0`W21m*BS*ZXIng5jA*D-f{(EION+?kp@fBrSyZX)7I_w>O+-_bo$-TbhE)c<_DOG2WsHcCiwm+VyFT)DPsI_W~G1t zTVJzrE%JFcyItv7P2Y=-eJ?#Xv*(z5cz!wDY>=@WSDEz5s^2~(3%c?$vzf>%T{*oU zw*@JrEvv2?BLo1hVd>E6p3M@fh<&1asTe^292I5eTr{@EZACpDmg2Osj*7(M ztGSjNpuS$+c&=+wzf>o8>y)(U-h-rZT4-|CxI>q-(o?9HBR#3*f8(YmghhH4f8#Nc z&@sRU-ji{EE@=Se-NqrAvsj?H-SgvfIh=#`p;fMJE15tZd3R)>ph1%NX+~lJdtx~? z-GC{IP>$Iw{$bDe4T+ES_ol>ple$}v+7}XRyjRF!1-KM$Mq8;o3rL4{MSml-(lI%sY3ppZir!in$At6{ zHBDrZ(Ts|PVrc^K3rl(Lgh#^xC2{GFm|tVsU}!8qyNlkRcL{VQNlO z5Kt|Cj&GsvKvR?>m*r#=?yFQC)yxvcFV#Q5++5!nmm974?8RVkmiFr2-9kyhH!1ep z8|%#*(ncT5@R5#&ZjRBH>ZZ{Q7x9}nf_UY#CPO5kgcSy|sSk*79VK|+<_GllI=+w1 z+3CqlyX03ydgSZb4oxLze9MNpCy$%Wj`}pg904(SOMtnC?w-lW#lI6jbiWqe`)H&2WKm0YPmD`3m zvbNU;x0P$y%1ly;8qz(Q<9cf9ahAw--+J6J=NE)e&(-&siZ>Z^M>~RrPk5{iS4(VL zd<@BetZ|9;>@DJ7Ik+<_bxLiXGBvc2nAGa`@?@wdp0XMMCR*wMKjAo%FSJ+FINfa> zwIN{Im6#oBn_PTT-7+aG_%ZJE4)+u1$PXUxW6O>sqdliWg)qg|~@ z%Q>zhBDfQdyfct|;@XqJeO+-h`)WnA{m`NI0y6qqHalx(W_kVD`rE8Ydu&~2ug7@B ziLw(Lg^xin>1qcC2Y-jMwrin~)+K>Dq?eZg_o*<(AJEoOXCBZLfz`qlkRfRwV92w8 zJXzPO!LELW7C1SCaonw#`xH7Ept%N^l3k2}6}k^M8QMv7SAIMOmL{5AX#*io{cte4 z3Nr&cF8e4;$v@F#{9fXz57wbR4sP&2_T2@U-<8OZ1s!RJ8K>iB+p$ZL5DdOM8-%I@_$q zTcZ56$#{|ni^$M#zFnM{$p@~&^LBVGO-wE-Q!O?c0RsY^+IDnIcNxld`u1^AxI&d!>&1j(7y3+;Paq z+~D|_@`Qv&Yzc46;V<*hWWe7E$&rd*CF-G zg+5@AABhVP6^o4XsZVCs;fc5B3ybIlVw(O+0$LKzZJ38JB0={kTj&1cwjV;@v)${EaUX z1q?8CdbLcJ1GkctV;x9d^p?1yJx~#aA}zk1G6rsE-%FiZ9YOx#FF5xLTCAkun{p6O_tM!TZ@z^;NylxrnHL2`@9Xqh>+S$ z+r8y+ZF7=}a)G8T>fy8MemF2{73@?3)JLR<_1t(I!d*7@l2~vxH8`)7U}i;g?+8r@ zH4lg{+#fN}cZmqd?1=cwbD||VdY8m$bOC-jRe|wM@<$i5%j|N;Q%=KfqH`qPCX+@J zU(qgOPD@DrGBh-2=wg_Y$@@LR&0A{_sJ{L^L~AuRoSWgG53UBle-^SRQDHkRYZ<(% zXhj3bpoC2yMWmp;j`y`#%(%5wIL1pM&Ln`3xg)q=Fdi^@xisbT*8ZUOenA-bx?19I zVmqCQ9+3#z$C+Y3faf$Q%dlEqg&84GVeVwAWE~POp-w8-W6gYZSBtO8H#s2V6VGnJ zqet=h_;YpMgs~Vg4ez)ds5idt^)^v~aas_Di&A{Cj!h?UHs8|-C$i1+(V|AuS<>VK zT+`XU&&}&RTu|9ml#6ICxI;U5A7A9BTHc>l|eCyd(Yj?4h_y(*Q)v%=1iGY7P0zBg0>xi*IHEB=9 zfVUARdMOPe7hBCvSo_6L)Y>F(@iKhjo#Zd$)(Bzp zhquehmNf@zO6rA@=-q&XVJ^iP!(a{1Zx$i?Su(NWgC>+wOPn!DQ`NYNa+%s>+r^xF z3!5E~@FngA@v#C@h)m}_(~27p?1)N4f{-Bu3?hr3eTXkRx3{y;Mj!@*VqyAQab5J5 ztgBF}!L`yF0$&IvOGcj(^|p`i5C>sAst?_yo%J^d;FY!q?I2`@NleBL0>ru(E` zt%{CgMd6awN5F9P=ogKV-#w`?!+1o`MsqMyPkwo<*Z{a*2(@xr;X$Ua4fx1o1?f2# zD!h+)@qU*p0`jN2eQ;@g&jKw3>UeWzfJ2(SIpnH4F8R)1Hb6ujJABx=Ek~|rCM2^y z^|b?<-pE-M>&EWA85MKt5AfD=ezI@OKwmwKvOT;;6_i;b<}epGmGUE75-M)n1dZg- zS4}TYb8idj~>-UVkrij(@IuxWYR_wq?R99@e<)Fc)K&D!>8__OeK$XdIf#wtz;^|6X$HIY;c46upreUg?%`ZP z&19p+JYMYbo88d#;(g&lQtqJz4YlO>S99)GoQ2_hW~MExK^LWhZUwgrSbku65bFk_ zOxksp*xhS{0L-VX5civ6l$2XY^8hxlVv=M-K7z;6bhW1YGmLiTMU9P>m$4BLUdHsy zn4NNiAM5M@JL>SQLvpO!Hl9a}W`2bnYs|D&^!Y>IakH+2;Wbk zV+_Hrc2AeY`qT<@vrKY#VRiN|p8bWB4>xDexE)YK^Xozlf2YUPH*-u5a<1#aa*Zp< z>5n}$Kf0ah%OWou_RBQmSKAmKv;DinF|M6|HtBxW8Xr$9b`GpK;VK7CV2~m4tu0S* zEHilP0r)ICEe8|Maq3O#?CJz{6gLOlrX?WFd*qXnfes(sE-=?SCF3Bc)J&IYkS<6M zzgKWS$!T#zo^MC7e5XIPU4=u4H5AE3HVe01AZ`7z`a>3#d@_4nT7q&Czs->a2YoDLvrb|qLLp$Myrx(#~Jp_dJx9h z=yOT%_Yrlq@@Rqv-b}R8=k=vNv{2fg(>g<6pjdQdC=<2W8W5yTfA@B{mT_k2$C?Zl zyTI_4A46$cCr#)5G@}6~A9u?Y&9YQU9_p|y^U^#l9H-Y9Zdq!yTB9uUX5a!=Rkh2x zX)-GGc?~1 zcEY{8e3Xi!3rLYTtr1#2%m-gsMMN*12ZEZe7lkaL^%s#bO{X4mT8VFUE959s6l07=fu|3vf!pJ*NK+wq!w*mS( z>Rry1GxXW!3+&Al2FgB?FHwHpWJ6&sJYVgxt6a`BIX@un5f_qLnM)0}zDrwc+oqOq zHt=kw1qVduiNkhyf)eaVE_nX3wZs0Dv%ZnFT?RBjj{{*SeE0s13`3(pKiRRqmra`v z!e}VG9-+y~V3>LtWy0!$Oe=!?0TD6PY^<7*8PEL*`T&&j+7wBh8>MXDJ~Vci^aGdh z3w;d)5U-X;FC(~#q{8e3;sQS9<5Y50B9Ka;;+xxary`>5Qm6epBDGYnd9HD0QF-k7 z*Iz$`T+>nZ{QQd6t;<#Cw9v!CPJ^HL zx0>3@=Z2prlIAR3`Uzg)G%`wGVG(7R$1U{dTv?n#3m02wr5D`ed5(=cAo@iK1Y%;4 zKbtttS?^?ZOE-QI6C5PM1LiPgBZs9k zz;?=x10nZ^VOSNwi3JXBR%4R9uRq72dedjO3p8s*YNh0(Ws*mFxklZix?hPIg%iS> zdgDyG^MYN50{D1m1`A}@Aq^Eov!pv2RkcFm>wC(5%z-s1F8W^o+3np2QfCI&US~}y zBIK=|7*GO*$sD#y|Gc%O>=5M(GH=kc(At!r0e0cHE_yOrkQ^CVR=%~7bN&2Hz)oXF ztS_;s-tfz#b>+_zYpzb2JhTi7ULVt50uUSCkFMTuR2{*)+R7aeHQk#=fb@{MfKp%a zp^j!LDH-a?C#KW^$UOnTGQ@UHtvQ4@$}m#-mJ8{~jje0IpjTSYkO*xKTPIqK53TFU zuDuesEEx=fw1m_@zmPs~X<;~s=% zF?f*W6G>Mqj$qckGOo7-x6%(TxgtGrx#66=$0S+bcK4siPmh*x(<>UxgPZH{U>E7O z)CFoZMtmdj>KRBNRblfGYMBR135As#1Ai0LN7#}Z1wICcNyCJ(i z5AlF^*Ql0Hq1W%$HjeK=DE#^9!J<>yt_diw9(rW88beLzcw`jL^KGfwfIKqU&dO>B zM4ow?tq*S|0*Vq%Z%wxbN|~jQo3J>D5S59UK_cekPElyvV)cw1 zmHDZdFwJ%IpkqX}prf-uZKOTtkc_$FlB|FUPV}g7#7!-K8kv1Wp*-9U#ZqplBSvR6 zQ9|nwgOZEkb@fc^1Jk9&l)X>c4OhqbYxZKhUSFnx`&9%tw9(wn61?FRu-(;gBxf~G z&eog*J#nc^0TDAp+v&VMHnz{QvBqCl2C3mkyuI(eSktV71|cmoaJ&PE)SmCFL*&r< zVrrHBw|HZ2*-^L8aqPW5Djrvd@gXj<-xqcm$six}%kQzz6(rbkT9uvmRWvLZR4h0q z2lg{3IFc|D!xxc`va%>HpuAma-q5IlY7JH<{%VS7^h$(~yv(R|Xm0GxAHWM&i>~pi z1hpJgXDuO)HreE#$dFix2W1U<+?n+TZry!2k5Ol$%FDmTTmU%XrPbl<$}v;7F6Z#k z7)UASg;ngdl~>(%O7+<~^$Ro47U#(H)1xADVUs{Zy2>QrMGJLh_? zAK?tV(#xCH68qrIOMuz~5F*lZg@m8E`S-*EDGgvkTII?%Mbd2~i_#j;WRfVFQBQ3h zOBdOf3R++E#3URq*5$>E9Zm2*9V(-BjD;2OGkd=Hz}=_oGham*ilI3Rxrux=4Ks2> z#y$z>azA?%#*=l~x9UTE1L)-uq5h-Ea0tGb3>mJKXWhe)Z|jpdH;PJZ+-Gz>MnSy4 zN-k|t>48^t=D2KE0`DOvD=AG3);q?vYOi*3N3nLJSo)W_!^Tjp8K(3-x4;601@VX< zJAuQVl^I1#nI56zCwI=lm-8Bv5kX0r9`)7;$TSi+(bf8!cmUbA#hcJOIVAUJI}pSC zK;-u`ABPb5V1MAx`?)WA3;oX|7`dQFhbyl=GhLBi3l>cvE(h78;>05E{BqRS(O%%! z?3P3b*<$YAos^$(QMY%sFmq?=E!X%lS31;J9F z`m?=d2x99yNM8-k2Z4U9x4{w@c9GtG0%VYkZ>_%v!HSjkCpYE zJhDKpS&C1mCtN5d{&pwW@I*hD77+eW(`}D$!4W_jHS)5}>AIaEo)d77r9-g0rLT{N z8Eh5G(!x?MhOMb?6yvyPZ#yTcUF3^=R>3-l1R53yhKf4NV7FJ@iDu-Kx?a9bE(QIU z*fYu-#$C$Ff?Pg@qP}If0;)`*sE0&P&TjjzL%LE+>E7``ehtBXmIl5N_MY}c@8sxw zWUETa8iyk^bfk9lWx63=M5Sz}((q!#uB58dD`Zc2YQ*MvZ2zSJ-U;%W_0zYITAA3h z+J2CoYorN=OAID3^u5KLyFMAb!ci~9@h{_#y*U${8drcz8VL3m^?LaoXzaH0d}1^6^tcj67@(R6!>MCX|!m1N@RIE>$i8 z9|S?=Dp5j4$^H`6?XU0Oihl^sARMV&E0d`RklBfN4Jc{;KBTm?eRBEfvao6=0lqc@ z8-vJW>w1=fQCWhBStS)W@={KR{MLlBU_SD1SF_Zy$k*UPWmfJq(YgN4Ypvy}vFBvV zty+S~S$}VG#TK>FiGtXG6qcQf*!*Rs=qY=OS3DEw;A+Z6P?p4CHcr-L0u%b_IBeR4 z^c_%A+kmhBTJ3`Lx4g1kF%KZg>!vSV3nAzXNGvjO9YTqD8Ct>$3&e(mdhzkjJ~->* zgBJ%SmN2cOI*N%GG>2!B@?LP>PWlPcpa|f3j?U#f{;*{(zGu#8Fepl7{p-Qeom?4n znktBVrW%Vl)rMey%PX}eeo;LrkZ5~|)jNM7yMotL8eOZQPS!cQPM1F{v$8-|50OsJ zWtpFvcrv;W5C6*tB(Ou1W+q}cA$N7Jx^Gm8U1ga>RY5KHEwu5_Ofz@>$22Os^eWGs zD?`R;<^?gRsLhw9+i$7jlVL<>hesz7nkGo=#m~&7BL3f+NKT90_~zE1bWc}m22G8p zP37*Mx#=1v0DqSA%MPvaG_7(sJ+gURU-mp1`Dx70y*NI=(X3)0%_gVGUE5$PZ?|LsM}tf@L!8bQU7b~qFh!U?yK3G+a2GIouwY> znm&ZrM0_=J_ zvEmz`1|!IpQ;G*}>_^cbOGe~D4dWjZ@aCFk7=P0Pvn!f(mV-Szdqyef&`ELOmdnKDN4wtVQ;oSwiMqP$32F|m#WY(;Y8(}n7V9wRe%Ai9 z+0%$0U7NY}1K8s$5o@b*279@0MB<0XeSaSnfUoR%dT|8TK&fGh>}~H{XwSMs8^CQO zOSvdCs_jO&mKkyOc#JrPpMZ%BFaxpfd2K)q2T4f{#x#f^L(IH7W87({1cfHm{}UM7 zkx%r=ENBt&M^hR#;=J@uGAU)} z5XEYG;7Lxd>7$kn3s7jQi%v%^&s4-4}YA?+Lpg|2^i!(#9K(PG+M|%Nsgo z5}Ct^2LcVQ(5;FA2;E3XZM#1yHjH7TExE1tYS@lmp9oR6gG}$q4ZU`nXZbkVmX&ZW z=1Ykzcyp7|E&P^$To+q!1mup*5^{pQoj<0|>!eKdy6bOkoha(kx@;A7sh~R_=|H%4 zL6P61Jf0(+lHjm*S9`3fNx^ISekK-Tof4aO{BOX{gx*^aA8@~RN3K=6KRzAz7k2(h z11~+Hxyyfmv$X~Nuu-p`ge(&4DuVKN!R$H;^%_@G>^erdU1XmDs?|mZ`xA;yU8c=Z z>e4NlDT1@Qt8h`mnrI|l7ugb}kdEY;}#Bkyn*`9B{9VrINUTq$$ zWerr5oRW(79Kz_K+gl1mWX8A46+ezpDs2Jl#SMA56f+!4TiAI*56=YurLDL zJh|FoHtBm~6q|8uGyR%f`DNICl)wv{)~8=T+7?(($=>u?W1ct9z^e=qd(%vp*cvw& zEe~~_iH(aC_Y~qj7lTCQ+)Wc6DrK_!p1EG0Z^jc_v&%Ai@kY+t6Tt4p@h9L_nU5&o z9N>n)B2RQ&iN{+8M|V#&u9cc59<;n5hQnC(N_Q*Znz zK>cGX-wbWj8U&32*4>sWyd~zFqH2*^=ve9TG9#{+@mff{>-dQ=tAJ{M4m}x)Juv$x zosrez1U(^Gc=UzNRhLT9Bdx40 z?TmK=?Hop#yD_fJfCGentM!Zua?;Swli|*?J zO~TrSH;_C5x&Yv;7}w1RRb#bpyQgVEuA;!v+_^3xTfsD!6}jRRBGz=D$E%W#;swVU zG-%9&#XWUKmXwa(cj`uAwB*@Ph6qlQtO)UV)rFHjI6ZvplFB(J-(Cesi!dGju>RtJ z7|>`lcFG&#OssBDtPq|y*(HEE(PmTQf}ow&SksYM{kxUCRUEXnszchHi>TUCbya5cV|F*AoY`XmKrdk2HOTTq+XE1N_scnq zJNwW@?3eo62lyL0(3kig{)$>JcJHg^pE+)&EsuZddFD;wYe_~WSFx)$m#s&R0k!}o zU&CV{p)Xhl>Sn`uzxc1%OicWtXU!~h>Cv?FScoA!&^nj3yx6~QD?~Tc_gV%m5BlAa z5=<(@u9K1j8EP4ZjfZ-y{Z1?<@8yS#<;;?C{2|1u@dSCE7e)Gc8F3E&=M}k!ykKdS zSbL3)^>_n0ZmKM1J3?XQ9BR2XF5+s}5$%*Nrjm~XRnTc*V#Ent%u~_Rk1+CKZXgUe zp>%FJ?R0-ORzE5cSJNFg5mojMp>zbYv4LO5)PVv(y)enp$Fnb%P4v~<0{zUWTp=Yf z&?r_l37W~+yEAGU-c|^FHxSGH>ny3^$m0^>*y9#rIs|kbKe0#4Hy8x2U##2!S5QxF z7FqkN4JY%en_6ya5O-e3J)Ya%U)#Y`Rd5~1L}AvK*I}x$dl*X1VZ!n!vinpe?+tCx zoB>52rsg=*E#O4VN~jkhOl|$cxbRdH<9aW#wc?{*mcq-Yl@)0c*#CQz!{V^Pn3fSY zhcEzKJU0;C!WFk0RH-=>hTItp;AE9Hq&`O*P&=~`1gbvqDyB7s^!J=BI!N)EqHIBV zyp0~g!vX@TGHW2L$%Oa@daXclisF@E?6$Rwfp~AOn_L){!fKSwpM)4D->M@v0Eap< z)MK>j0+$$A*7;`K`}1hxf1y|${nR}MDE#Q%&dz4dl;hr~{bx_=r3GI84k2C8W`$w&8CYB}SnRJT!KDdajtF zUH1NF$JuR#sBwC7)=%S9)KFongG?4c@ZN5^LTF7O-|y&unKzX6lX(QcCWRu8fm%pl zUPL+i29Tdqs<``}hDU8?p0vJZ=xRw9m}Uwfd!c?;+aPw_8o^|XDi8WzDW*OV8~##6 zeDHjac{$yZtNNf4NIK>FsldLo@9P0va^VVloqGO=g-xQd@Q(KtQoN;0{7DGIZ1<`` zB<6XnPMz@0!m}*J4Em@D_au9!{TTC>~0*aRQRGo~QQEfxQL0!ZxvOPPL@M z(cvU(k_ns;v)nuj0fpXvLE2JiaM*>bp_2#G>C^xo={;(VaomO=chbDR=&wV4_t&gR zlE`X?`Nqx47nM;nXS@6Th$K>5p3L%*HUV@k^tMJ%C3@`S(Uap2A$hKiH<=M=cq*a( z^7sLxXx27n=S>wf(8{mVBx1Sg1@fGJ{v?}2e>%1e_|DlQof1epvdoUz#}1XTUV+^q zowBfqyPDq28O=f4uJPZQ!WZDPS)cpnF+g;7N*xE|2P8{a$ZYPp;fjgZ?v6`KbV1RB z+%FNj=QABZ?F|Wo)M0|eJAJ3_W)CH>u_+xM;)hqKA5Ao6H;@(ZEC-aIv@mvBRa+Uo z^e73gC$CvAB==fjWWQ_RD*J@D4P_fUv*YP& z(;qw|zS6Fo)B6fYr;2E)C>-SX9MS5h5<4xG(N2i^Kc`p}kH0pPE5itkby&!D+J!Gm zF4UR_GS4jr9LHR28%%M1t;T7XL9=F!@?*6|O9V5zqx9j`PhlKY;JZ5z$tM)gOWj_Q z!;xeC5KIaL*dcbyYJwFxt!d3@^+xy`JE!=M;rKEw$x&M@1JUaGvMA>8 zl>2H7JQ3-qPDU2D<*hKMS9qtN9cP*Y2&`_84<2h@Jvp=tgu(yiVAYPwz&zN9$-p2# zKwnQu*B$rxG}BDfTU*m?xHX8^3??)s9^6G1O~sGnz2O7?pGok-tt2@EZx$i5EjG=F zR%P=xXXOF9s1uUNb3(wvKSrNpX>=_e#j5rQzu2Gc2*hxBg)jnMTd*=RN%-GJTo^ge z{A2_R2kXPM9APw_d~K=2>l2&dMexWox;^+KLX+_8*P3N`!DKp_#%MH*p9rX92uL{g z9UdPiWY6HtGB3ZHul{2^GT|w|Pp>2Bt555oB>ZbwUVp)m%K(9zC@!x`$7o=ZIe-TI zKlm*|{Z>H&iRAykCyn{@6zCoQ-*xvwan?13Y@fwZvRRU#&nXF?12TqCdk`aIlnmDr zCg?D@L2?qZ_?zYroTIYG=*cR%4M*37@6jNl&L4`19iE8!ddH!ORGN`0XI!^^rZVc4 zmd(u%wz7>am!1b0L^CSeV-bo2Ayw)Z%;G>w5+vy&CXawkWRPEG(;kTAoXR3^vhq1g zV7ctGTK4SYDDS8Y7Cj&}M4xOsTgZP3*tib1ZzSJ;un|Tmn#d@iE}X)OC9WyXY)?Bwwd}7_s-DVpq8;Ae65U&W{@#Fj4SxvjXb2E_< zo+0|cf9U#blqkO3Nd4^HyuT!`rS?MpM-)+xVKIn?ZSK=>TvGc=e<`w=Oxlx6s!!MO zx-c{hFOO;yRKlCgoy)Ld_oTSF*OU3i;n#@xnqv)eZ?bTJ0soI1RpAe43h_T9>V?rU zk!8~*v=Jw%-{{&ZDa#G9y83=WR+hBRY_8(js52&8K9~7?d`f>Rcn8u*IY7)x^>IU> z`|etmh6hq!8}y+Nr6h|vNGF#mWV4OR+{pe$&RaWaqOg>?p26vKacpkd7oS-@4Sf3& zb$Pvcx$WIIbWrf__dFx7A^m?8gC&~$Ji*e|62zorbauhze=&W{1*((7*QE`4ZIvDL zOlGx!y>mrQ9Qnq-tB|!hxH9lZw21dl5yF81+e&r(*WXpU(JE^GBg2#yIFXl)KzY|5 zMj=}OfGwYHbUpky5;RCjII-x^q`-mv!gwMB*t`2zYPDKdv4H&?ssCykA?H`qPP+JQ zLcYytq4A9~v&*=e2_$FJkh_O+1pm{tC4N58m66ha>dE`veox?DACjVBW5T=7`62m< zedA zj8p0UndEX0mX%O$ zEMQEo+jj;&_>iSQ4obp#e}Vt)wS0n=p!S?$jw^i|9FA?L@H_Kpc=ijlKPMBE+nq5z zhB!=#%)wbdl-%k}RL_|dQ(V<~UBDL(o%J}9bBWYNB-zWw@qn=4F zbFR2D4l9>b(_RPCfwU1Vb&&F6Bw2i+rM_7MS zxnF|%`}}uDr3(>1+&f92M$7WdT#et_(sG*^G#Y8D#{a3^pBGopVMmiS6hEa+U7vmq z9&I~ScV+k-ZJyrfjoN|P9t&9cllcq00QDVe!VJDcBA|%$jx{bp1VeCaD>H0Obk_m~ zr~>q>Xk{%hE+sGJSx;GL?OMAo zfB*mlaGR}MwS|yBH8$Cue+d8ssoALkBSB$-p}}nP`ME?Gn*~4C=^nT|x z{zRnX%B2M>tNsxoI{%Q+YnuM?)`8-DvKG5WMwV$}VDCHi`|GX1;;4)78M*a?t{W9BAOu2dbGZURbEn4^9CRB5 zO476S=4GbBLnSA#_v&ZM-_rd{Gt>luHdv~~mA^&RgGPYyoF$p5^98@EK$TLr6aJg5 z0zLGcpU(h;797ujTZsfVAavWUL0wO=#@YVtez>_WnREXHUx%-VjbrosdD`d`#cXi? z8LZpWU)i**d101&0r=Yq*3)_GqWy)2p9vC$f(;C7o;$4~_zlwT=}N zelu4WuE%SDB&zl)dSs@iQ6*+}C68;#s|l=8SW5;v73he53P9*?+)MFa$io`r$*p*w zcxkq^qHfNhOCZz#oEy1op-cf$=S8FelZ2YaC7spYhOAd+nl-JIsNV z&AQruy?OgVs8qpdqf$h055i?mW5MP!z-BcmrTMu>L}EdYL&-fBpBz2}vHM$O_uFFM z((-~t@_(5XeEb1~|KYT_NIo0)cGI?s5kN3dUTiG_)cYuLikHKT{mjo-~8 z=*{irb_}_XiA<<9r<_NKaf@nYWzou7=aJ4one?1_Wz0^gHS2%0V$z|_SyheWCbY78 zD#XmkqkB0OeEsk?h%gebuRd%$7rNl59XPvgyFob2lmC0KXNwt-m9teebL24p5(dUi zWdFa>gH?V*9k=6i`|@9B6DjZ{_ICIZrnl&8}T>&z87;KLeAc-37s= zifBsLaQE;vQJ!nJW7C!moDTS_B#Ie2#Y%Zv+@_{Q!R3m)TXt{0hVT>K!CBL=n{Bp{ z>luu^jZ5>?gWMYg#gp`Qk#qPhx+bsxJfN}i`ZZimRysFc@!1ux@Cm$^A8Hw>2s`ok zIA*Y(SN2d!5eiZjGd35rH60pK+)LJ^lIlGl(2H&??#Elq%4vlEspB7^Ol+K>09g^6 zddyA8l4(uQzIRfG1;!<`1+&)1c@%*d-YF{CE`Wg3RGwZWg0f5d%o^eT5*z_&IaHz< zuAWX1nN57Vy%;b`u6VCq`0qjy+IGYI1`J+l{{+Z}Kq>0ctoV>0Ir0+j!9;@7O!=z# zO^65AVUd@hO}AynGNLGp}Zzhh+< z!T+bNuYjs*Y5zVb-O?S>B~l_ChXw%&=`KOKyTL;@(%lG1NT+~wcXyX`!~Xzs?|awx z&D!hC&WUH{nWy$Xzi|ros#DiKOHzmyKi==x;>8Y0MzenqTu=@!91d>W+7DRiKsdgE zKH$5FcytT~B9SBL0e~Mi1BqI9pXI2C@=lJeOW#Hm2NJXEvMn!MdqXi>|@4;nnF(^~{qV z3V2iNa8<`1Juepap+r7@vaF=ae?Fm)iK(NW&W>%Qjjj0Jc?2=R$@fdd`IpHCVB#IR zAaQLe2iL0_b)w5VwYkK0)PJ@8Jxjy?Oy5D~Mn(ZiKw z%dKsDJ_qUjFCt)VohZbn5v{oDhr|83^Xc8G)7kA=-Tdag+TtcT9N@{Acn~aryuy}r zHP@WCx9-{KYO0svyv&m+rr|QbkK-9Y!#i91E%1~+vWKpa25X^kbWM3$0h6$ig7`?Z z2zDI3JNdv7%I$r!O+qbd2yUROpm&}w*UuSY6i9lRIQ|EqR@X5_!?#7#)k_~c3A>`#Itz?4KnlkkXoQPhAAByWGY~GhP z3f9T}8;f&JZKVXV3(IvP~kPc+DmMj(Ygi+?Qg#(Lf_%wf=5jCJT>jiHpR`Z0MZb;j@7 ziJ8_9X-4_d4-5))fmV?cR1QgvTat>wWMtmwMtnH4Z^^dP&ror9<Fx`ZA?mlnng zCc)G!A;-^8W1t!vTIPCMx&pLGl`=%Ytg!i3r`3-b9k2&M$3BF`HXY}mFlxzeVTVuz z7k;wEu00s8Lnab}%f8f{PSzov#HqHSahr5r&^QNsUMCOIBY{O|7hy&d!9>r@Z`bX3 z*)FOHaTg3qiIDw_i1n3GV41^;5<=p)6nG>s5=g0D-JA^QrHeMD5gJbzeQTSEJvz{EeqL(nuCa6bLxI%Z}R6^)PnPeOk2N z;sn>BL;^)ali%A__Se~a$kzGvrhnI={iSorqy%=KvgGB@QIzy!D5wgYBdT2NXc9U% zSQ6saCJbg{HXK;of{3_Z6%Y7uUJN2QI2}wn{}C|&ZT{FIymXEOF8gOLx1I?fbOe8f z^o~x4{^g3_*Pt-OB$d5~OQ_M{tLY|Wq&q0}BAS3*Ue*{2js^0K4+~4_+e#~SM(+8Pi zS7t(jeOr<0s1e{iysK*=E=;7GN}!WV#%PDI`NWrCSDZG13sr>y}_&LA@XEUEyd_b-3byuSqAiG*q_x9?*dpJn zs?z`-$e!a5M5{O_5#76B*G%#N)MS#}kg<`RJz7Axi`0L99woi_4@`Q$V; zu$Oz-vSuw*vYBG2&GLhzK@TjZhS2rhnD}-U zxY&%sDFBP$)|4>oPvQZQw4vFcA6cCLGEWxPD}VT@YR+~#k6IQrJWn56ID$eG&iv@E zc-h~6-#^XTz_t*eJ%C)*^OyY(F_IpLu`T7=;}mW|0&8AYNAqA9m}i<=twb+)!Kp;k zuAE*+jW@Z?Xgrz*&i2Ni!MF|=F5=h4h1tuVaKo1G36Q_GE7(?h=RpC9-Cx5_DsIo$jyad zM}y~A98$_4!d$<)`Vx0>IiXup)t5QmN$J&MAl)by9b?MaSTtE{7dH(tt$XP7>wO-J zR%nVR@nx3}%!8V&%Y7lx^vfFnkd>eT036kD>A_|vs<$p=)2KkT(ClTu&Aip3Cm4Ud zI$Q#ONAbN6{=nO(Y0~NI^>>=EF0=gU2Zh5Gu5Y-!8}Wa@U2AaX+uT`MF|R(fSxI;M zZiD?sqsCq@wba{4gcVHv$I8ISB|j<+IByMmD-~pR0!%BQs=f@|AzNM}0Z^v!-Z?r3 zEE30ybi@U8K)?AA$E%kkrH@6b#tJj{%DBV6(7g_cV`7_YLTOX)7Np;tMv6}PA>N$# z0|G^rvbN;X2An1s&aTA|76vX40nzK%BCI~O{R4a)I*6Rv4-W~H&0Jab-nnP4DtDrV zA9a?T?a5pH5azU0J=Q z;l&d~G0K#3wa^*KrlQkQcPX5=pF4fU<#Q4l8~v75gWsWO^4>wg!o$I|G^0`@hVqMe zJ-}~*EyhlaZKlGhv(;AvR+^m3$LAUFXq4B>kL zIa^HY@+`UBjc;BgWTuI2*7ey+l|Um880(9~QdH6Q0z=udaZ#~2*@dLuP{H`Xc8Yo~ z6DFX1Q2RV19IE}r$#C}qoW}q<;7=lGL7dMAyfi*RmF2#Q4yET|1R9o_ZU1%35l<&u zNjxYnn@WGCFxnUdBQ=61yHKYAlHp9z405@x6+#DnzOTbJrG$FPpPUqn+}K8Nvdo%% zAB|dnPs8ey@3HVDk}mblD$sb}ZTl_o-o7IHaN2dddR!&SS^}{y5Sk8ZCD6Du3atFA zV5q&Te5mp{@pqzd|H2!h9`)KhcRS`fM`huAPf~E-u+c$L1hXPYYxZ3U&1orKv%Knd z_4yfa?&&oP0Fd;qDR^n;h&0q-^~6kZuN)Rad%Mniyi9Lo_lEq)>sh>Ta?_U7aOrmp z5-zD3!K(v1z+Nxc;JiMwBN3ja&Jsb=wGZD<3?=UD_R z|1if-`^|1U{&PtcF<*18bb5N$1YC$N*f0Rs58eZ-eHCg|T-V%J4w~Zh=wATZz^(WR8kvzJ-E zLw|F>U;2xN*~P7mtw|Ul#RS%vn;kg8OQPvrt5+oUm4(u`c`#Xz>RSR31;HFaZfg#UvQ%^D2`xd(m?9bC#Ggu%7#_8}obe$HnCoIxre=PchIDnMJTYX`-Y0%?o2c z9WXa>m-AJa%~U>b&lOMu9A4}`jKe>}qM-Pc{7|3o$ybPZ9Gv0R)H<9N*WUu_U*n00 zJ_fMD@0kZHzh7>?fJ3J;U@Kkdp}9s+hvf$sQ-L(JKiD z*!Ulvx2;h!r8eEetcVaIcTMndoxtP|lr!vUv3cSSpW zI)hq(e_&`e;w0|xK3Mg0$zw{z6P1IW+H2G)n+@d9%XcZfCTa$O!eGRv>>MsN8y5LQjOX% z3?nr{ST!{^UpaZq8x0XnCg~~G92MK+3#{$fh$1}B*^!~*Q2gZGvNAdiD!ZtLndRc^ zpFCB&icJSqd^=TXAle65VigE~fKZ(5xMG6ZgWSy)5EK9FG@sZgt8FlF=}C2oI;Gyp z*b6MR_^;PIN8hA9JI1_-TZ^Jk>M9ZUj2S5jOSRIQASAaZ8HRsJo8NLZdkEylt%(M; zsxZjHRd%D^JD?gzuNwPlZG_J0RBqxiOgHTO;MsIvwm#sP(ClkGx{bT_JCCw(`46q1 z58l4){4n2#_c)_^5qlUAfc;(XPxe)zEvxXHvqKS@#b5}i=TuNIU$py$hb2y3;A;`#R<=gQ z^FmS}ivRbfcTah?A&JE2mSw; zMLF*4xhJR9QKmnr4XLTks1NH6=m=0TDPpvzr}N)+tM~5`j`chsPdV_3yqsY7#P@!!H zNhq}cr3{V2!nW-*uG+F|SSpE?-SEN(&FonoHrl%%a@j|;!vxZNvazA23>=-a$nZV} zKqi8S*&Y=mPF2=-8ZplEt){% z?dJRr&5#T%UZ1glOdVF=tyj#joxY>cJ%@&7V(ZnL5I;C|phpV&2+FDn-yHbC0z5&m_;0`^ z-hhosAo^2(`Jd!o(bEd@kEE>Rn4DRG#-qZIL2FErF8A&tQQ#&PP^r=T)qSTtaXt1h zHcupadc@8Z`RYR;U`z*7${7xdWC9I!P%hcMI>~m#S=U+221)NvukdQeWha}3_ICojUX+iu z^)h%+IExE@NMW|alVqRqpNUVYIafG>vzs5<#3)gHz1F=y6vG9&BD~QEN|5Pd7o#8AWh_Lj+w9A%Z++GE1n84c;px99I2F&_})BAKqJT zc9x>&_K!PR+zQjHRXV#E%$ylf>FRlA4T|`53u+)AJ8utG1k_%8Z-+8Q15!wNNd**2 zS4Q6t$qN>V#D#**dsdTzUR^G`wRIIOk72{^?9PXQX?}2B3^W6e1zw}+&H?1oOvK$e z4!D0?vZ4{Dl$M3cZjAbmP8Fz)w{9U_Te(G0 z(Sw6?-Tq|mM)#cst+P0;g~uT7WAXQSY2G}KQ|Mtf-Sb(#0C>)fG~$Egh7jI^9pk$; z#i-~V=F5f9{490@D zCv1PNeIHWg+tsXQ_i@-us^mv?GBgLdK<=x_o&K@#It0M;VZshWJBZeylPL){^z;8^ z*esO89S{oh|9ESIUgoN_43j9-gPm{I3%)V8DbB%WGdt&%Lga^cylOR!))#mdU>%VU zNj$Q`d1ez@5?s^^!1M{YcZ=(xIW~PG5SlmeQhQwcX%IiI^r1(#=ce_o7K%L)umOPT z{i~)ZudI1Cyb3>QzjlA@`x|(?4i4z%qeeI(@lOhUO3811jK>U-Rc48z$!VUv6nC~tv#BrD)AXDVK6J{^Pk&G^)?GUG`=XAQ8+Do3?J zk}mg$cksW(N(iwf|4wUI@ZcLw3~sW9LK&d`n2|ed+gh>9i6#S%8!>^qpAJWN9rj+O zc)$1I6^ln2J~DpN6w;8crML8u5;6v<*HvBz5Wlqt9LRuJqYL+A{PadVUwv(gGG`{i zeEyd;olD1?lu{VcsRM>P_(h{=`fd5B9Q+)E3Gqu`fjk^CYC0Kif$3q>|SZ-|@koeD`)@=*Rh z>JEYCpJOrrQe|B0x@w#ap*|aD1VG* zGqY6rsWYbf9~sbb;k#|zsG11AK^NE!0@`#u(O_&1rB|wL9MqKd>9tLTUXgjqrR9W4 zOoK#mL;ZPD)F&!F0p$C47yICMDN*h6Pn(FDh-Y#0hkt76bgX9(<`~k_!9{h!YROK^ zDLb*>@2m(Dc|tMzWoM31n=RDzikwBQzqnH0y*vClYJc3I+U78_e$B`r%EBsXGp8h< z)H-SafD?MD1nhCdzjnQZy#Lru^L;wR8$xyjl94aaiwoBG<9f0wuoU`T$y)j}NXRML zK8G-oOJ!Vv^pCV1s}NJv2eqv3uO<|74(~p?Ou>{yWmaD?wLoHRUD0Kq6f zd`j3=jPe(~_@^Sikc^I>AP>t78bia+PX@Q4b=J+MaF$cOTO={oJfGVy-DgZ!6+mUK z()YH`BG91S##D&$|LUtF0euh{uZx$7aLeyL<3FDz?hEBiH?fsGXA`*P1YcLdnY+dK zaU(r-sWWbQw|GJ7=Z6+TURSfYaNX;IYJRQ)7<^N*SX2Jd{*QzX-Rhh`tMhJWAH_du zlwGt=Bokb3&+1j7%mO3kpr<0G+9nMo_^7MLgI%mP*T4GARQ zD4aXYb>x!Me%dvK(Wi%=E{$c*O#T=zyE)hhftS%kVPygS_k>@Q;EyX2$M3PiF7tx4 zB@=Ej?L*eB)tg6O3-rHbQVq7m4;haAC1G=VQxb+99300EOU~)4JpEZMKG$fE>I3X; zG|ByY@&uH|8l^+?yII%!Y|IL1*1TD>l-04eAE@RMDj->oP5<#5>%5L0O(>+#(~3&t ziN)TepSxN%nh7C)wHeKSoQ9rEP^>GHJe8${Ju%<`H~7J5d>FJShzw_A{B)2YTf> zvJ$s>g_vSc`Q9$ZFzVGWG)i){43E9ZR`WGL>1B$mD>qOc&GE9tzD_qS#8XY)BcB}M z9o%w1ZqK8Li?tv^pCTR%i+4oDMBK+EMR564uWHqe03}dMcL61AT)&;_lz1eL-AgN5 zs>C8;;A^Si#xd4-Hj-r+ts2)k`o*>#K@c)aaWBC2#iz=S0dD;Ry|L6iUQ1P!1X{gD(+vS9xsJ1%n;VjwJ z=zLzfI${>6?Am87laZM_cCiIZ`TU2<#YQS1f0YBoQUSx9{BL7IW?VZjJ_Di>u@Xky zs2Rk9b6h+Gn=2&=P+?l2VkLIF00lx6BZZZU7?_=3n_C%Ny}MW_;f6}YGBlZlE#OVQ z>I!M*xeXSMB^OK)Dn{ZFC`7b*O$22T_Qug3P;l3)gwT4WyXPQLuJim#!1nM9w5(}) zr#aLdfTgYK7p=Ei<_X6k{lg4JMS`NltQP#98@upIc~l&*YnDZV;3IwMf|e#FCTYKB zi`k%g3T00=ZovmqXpEBLWL;|H8Fj~#`3bF`QDgc2(n`y5Uj9DZ*`SvaJf=&X2yDA# zk+gP<4D;_T^5ebI;qy6e$2i}OBHj^yhAe2HVZwo&uur06gf30l+az2Q8C&3gnKldb z@`I6ysdo)PeMggJ*y`nhfl4A99`;(__oG+nm{pKl5Uub00?rV>vMnm_Qbj_n${S|r zIE?mG++%F=1FQ>)&*Y#WB#vsw3k^P^V!<~;exYJJ$IRC75(PCRTTP0NSd4sRrCZ17 zqnOx?I+4!d@0T^H-sG)TxXotBWoOgPMWZvjQke{^&RvVT1ohA;!#2q3{9@qH%v!cq z<2@k1Dn8j!(y!uqtr}4p(=b%PYsv<+z>3Hh`E@d0OBT&;d(s5uh1AvTo^YDNo^`hanan|>((*w3T>=q85;+;0 zGTf>j0d)K7#qfom7i6@ta5hTI(adYp`F0~Y z18+AAoPew>MnhLbs!r?uHp%@l+4Els<3=KP?h_khYS;V|2b3M{+q)GDsj5ya=bVl4 zXA|Kpmf*HLg5WuID}NNBR37{>oatZDC>Vbkw6D}vy~NU=oXCqZ6PK#g*ECvVS?5sF z1+UtvQOR`>xzW*@CI}U{ujsmPi^5%PaSxHI#diZ@lZfUm*lnIZF(mz(^4@h-d`%`_ zAzdP5J2w^lkyqvbu}jNLB`ynQEzrYyQS`8PD_YRjBZlmCuL z+UubsR|&*2so$~+)n*Fh&IS@9-U_!;o}qfdLfE)OYAxLam6#Dq4%@T9E`>83N0v{a zgWtHT)uvZ0&4ui)3_h1dT49(R!dYgi!%4A_B)t32FX?r2_i6541#}t z>@rQwhst%L)o8ZxElzLz*rU6z-lJ?budP6aijx2FO+a;^{Z6p}{5LO1qr_jXDz@yY z)9sZz}7%P&z%soYsio(AFFOwv}|GRw4 z{YLFI!;WCPr7)wCBvBcW#zgVhoLsbNTn;Aov2~tlk%QXw{7$9Jlw8x;cuiQedl!-B z?tR@n%&%@0YnL_(-jCS{=*|)tsNz)^E2^Bqyh3L4am=}eif(l-H1B`Rc>Fa?-Cx0#IuVam<(cv*Jrd& zWL9T}=Uz?7Tx}nVrvx{1e2C>{>yuC)hy6l>JiQ)|%`&z#U7rVQE$?@T`LB-K8ekLQ F{{S|x{Ez?u literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-BlackItalic.eot b/presentation/template/lato/LatoLatin-BlackItalic.eot new file mode 100755 index 0000000000000000000000000000000000000000..74ea6229bae6c29c8f8b3992e3b20301f11206ae GIT binary patch literal 67322 zcmagFRa6{Iuq`~eySoMp5ZnWUI}GmbJ~#}n!QGwU7TjHeySoPo5Zvwm&RO^6zc06H zt*-9fyQ}K8y1HNBp#ZCJPyi?ZGyoO=z=XztgNBBNg@J~Ff(nHJ{3i;aS^%IxjuHU+ zpVj|JG5|pNKQ;#9v-m&u|1abK1%L^_4dC>DtPQ~NKe`ye{y)?VVD}#x6(IZHzR7=x z&3_00U=7d&SO8oAuK%r_{+G=GU z0)TJ-sptPH>;K02pXiqV>&xvwudM$?aRNB}#{mGC{~y^={$IHP0BWj)eJUD(DjK0G zQiKw@?VFiw5xiOaFiZ>c%PL#0TaAAcuq{?y9iT)T6zP@`b2Bu}wd@SM9PXuEg(;Jf z7Cr-f89d05=b<8m2*U)Z3^+?7hu67?I3r+pZP z_2KUj3IR4C%^l!#zRa;0P$x;8F|uW_5}l=w%KtO6Zf^xv$VP~%+p-03!#;$1{yZNgfk zd|eI1_4x<;hL669HIfD&5$m4Tc48~a_XP?g73;sh!t-!%7R1LF9?q&@)PmV9zjS*w zm~R9i638z0q3H$_UGc~ecQ8j-rh`aM1&M;C*R?&Dq zI8P7rt(KHnYs}n+z9(x?^m@qc?bJm0STVay4n$&aSrNSj^J*UX1=%5oiE?lQlZ&WC zEGo`IcF%juYq@2{qLZMY6KJBRJ?}1@nO4EYy7vh6b6KzcVoj>A(hI%1(#7x zboFDiC%)F$M9Bwdr;C`$gzR^3 z^#gq~m7c4u+x@SV5Z>I=*_^W{r)qoFt5j*Xjd1!Z0Z{I~Xbf%$bKX#_$BLt0j2)18 z!^NNrg;jSUdC3zM64M)Jd1w3!Z~4O}b9e33s+3+!#@al8C(GGeLuV<^h@H<<}Z?2Y;z{8dYEW&Q0YGDR5W3y>JEO8DKFHS35q4d{^J4;1ei2AE~ zaqIjHmRY^SoKX;^4wh#U#OO_t@{O_7s)yxuc8do}?RkqNOYJ*6)m?8gBAS{p#uC&r zg+$D=!RMG}yI$ilr3?O}KCr^S6vn%5ZJ1Y%d!|t=A+UUJ|V-VfLvd=riI6r>){8PUTW z&2#t;^_J0o=KdAhbi$qk3_!e_-MoD!5xZ*}h90i;$Z~m+YS887)WnT*uLS&|aH6O; z%=-l_n$HG)JN3dCjc&F2JxGPwa8@^bHoPa}5>8hvbNHR(=^Yof?xF7GZ!$Q8Im3qy z`q0}O+MTTok>JF2)%7yz^OC8sy)#1W+i)0={%wnJD(y$)QP|Q^zvsH7|7?lyzH^Q0 zFk9{0#*WfIF2kAfkNb6X{3=oZP9_$rpVICheYT7K%rGY%b^L$-)q79!2)W|$&%Jd! zOV`~(p0hOM0NDxog=MUOmZ{5bce z9%(~-MZ_1#B?R40q?LDVR>U!;^_^=%gQi-8#Wzr~jLY*wZdccd^(t-fjo1>Cehle} ztS9UcW(RHP@YzksHI`;jBDQ+~Yy&;uq(88fI7bg&i!G`hJ$Uok_w?wyyeZj=P~IU2 zPT!ZNMk605?{I@V!Tyk3aub`tOfXS-Xy~bjxI3fUoENb$$qgI{>ZlF`qfxTmm*^0c zE9HpZ7GalYCgocr0J#V0iPVOpqYrV=Fu1kUGaB+w?i$$`0&Cza49;+G=)#s?zz{aDT; zUxKILHY5LVY+I19fK~nB`d5wrV#{9xIlvK}JuG?iz08hzavn4@Q}_C|>2P_2n(BT;@{#2xKgNW>Lj>BR(v@ zgIsH>(@mO``N0RQ`U^A3soTHaqfa6<13mf`j%ybft!?WofGZjhfTV43-!H{AEzv|e zr>ezF`aau`9ao$ql>;CUCW-sBalCRa&+_{fFXAfNC$4RYJ?1>RxN3Q)DPNWLhcycK zXkZ$3*D&lv?=Hw{wUe_zqo^lm1g2Wuf!Amjx0R6!<0N5&p;g~qjJawyA}g8Ydl6i(O_6B%#n~hkULeV<+;xZU!(@u zGjfXX2q}6?c5N@e)*wLmfpJV4nsj+rDT9bfyiMyvVEw#7wjw9rKZHEg==HqT)iTBqV=ppwpiHkzu+)W~f5jZo%SL zhqjUJDO^-W-%T1%a?kh)c$XbnPnpY^6yWs;)S1M?Dl|8tF|UKOg7(a6O}{Y>-d_Lq z4pP-6lfqyPKaJC>*kSyYawIz~=qDAcrH$Z}#I468@4oo^QDcXRuB8ot0xWE%

6l zqC-ybouY6dbzW?$&MJ8O`szLN`Pu861(9YoK0CM@X0Yh5g*SXDTn0kMauvE(IwI?M zH+_k8884^$8a>nME<=PScqxt5wJ__kQ%Xs?94F{-B?+|P892A*}4DV^@M%C9~A#@9Y7q zJsIN>P=;D>P*)JhwsNB>`sI;Xylt71p@?8BTKW$5uu2ljgoAxc29?@GflpT^f?koP zUo&css=Js#m{S?d)2-M?qnV2MJ~g1TXQ(%nAxvZt5m^7E!#Lpk50XOdK6Yz~CiC~> zhHI_j&OtGKr57EceUpU&HXf?r4<-5!{mxsb#6GwAQUV3p>1d~p>n>J~4`#2e?bIhM zvX0-Wu^Do0X(-ZVU$PyE<_t=1pYmnyB4K3LAokBe$;2G`#5W8~{&|bTVZ8HvQs$Fa z+HIMJ3Deu(pTJ+0f!vPkt+(bZ5qw_nCEBgw!A6MHy?orsYC2`%*30n zlIgVj&Tp=3T(z)-mx4&9HbQz%v9p7z<3j}mcwXQ zKAD$QFSQpIHZ9m{Wksi=YTDYf^7eCr!a+LOjzIs7^=*MBk}-(cNK~@?(ycp3$(ZE_ zg2HB99#^&E4@tESNmX%REqcHs{Qx(k;`*+UwiMB_%glWrqs;bekxG%qK?lZLKS7$0 z$Bn=(?lZJ`>Zn=@)F7IX3E}$M;T}&8wy*=peUJ{k@*qCKazyYSC@lVHLi*?2W1z$Zl( zZFxXk#FS{Rw!~BMy@lS~N>p?yRdGE10E160To*PoaVw4VHyS3GmAPUonGmW=!y{Mj zwcD%V2wGf<9>|=vGT|IYlkaqFI|ts06r|O%Acz>T&nRa;Di^am9IIWC!GT^mg4Mhy8{P3447N)$Qeib!po4e2v9=3zwl&x{TuMZj^F$ zzqfe!3G0r|vE=;7htdqmJ`z8U(*}Q3a}AG$jmURbWmsk!> zScf6br3>#Q$)c7Kj+fw->Zz39!?o(k683m zWoo=fa&-lgog5A)J4?VbxwTRXb@lGyV*xg@QbmT|yIajiyeqs@nRt~tYtgp0UxwCVeUx$0wjH1e~5k4U{yr$$T_WHnS?Cbs8_OK%DIjWF)gb*IZPg%Ca59+%#)z{3A zZ7OkeC}`x@+#gi1oA@Z#FAPbxcGXkSmWnqydQ4V_rPc7kXo%!#-}gir5?H-h2>HUs zOO2IS_7lW~f5)Cp)I{mTwv@na9kIZ{YI8qNNX8+?xYJ9=YcgxDioCdZ*H*@zXNmr) znZB@4GuWv0#xRLk06GwiYiHW0{Sn_cRr_Ly18KmIiYW=CNvSivl@|Q|)Q0C?@#S!P zU%1UsUa;cM9O_#zG)uf4jvhx!PNQLl(m%YnT(3OcsK$L4W?xft$bRa-1swrN*+&SM zOqJCc!GZu5sh2XY_iXGO4sCMwkEO+csau`yIg<3`Nb8Ing)7ZW1#|qO>?SZ(8%8u0|)n!88lB_;^U*6W;M#XwOy8GrihH`M7vzO zucjM6$T8_7XyJR8y?fsigt?rqs}$S)`7j<&F5B2H66~bPHttK8vJS&4p02K+ zgZW{ncJtNxO-iaHVYv+QbjD^y*Qt~J05VLGw)jWxv8NqqfK*?66`eigi&B`?{?+%nuQ)Z$2N3!{O#7gZ+xSI;&U z-R$+AD@gWa>Fbjo;5vNYF)MWMRqe^9mMy!P3#Ukcw$vw*o)Nb4`A1n%lk(@N1ZWo8 zAkMCK#Uww*0MIFla{o+wlp0uJD|AzBDjTq$`lB4H{!C8y-CU#ZR14NMr|^n3-9YiH zJet31iJBPkKfuwj&@k+h{T_mK8NR$yet;2NO4FwmvJKV}y0S(?Bkr}dR6pbAE7ChB z{0t_6zwGw8(?$%_zT0kRk<*?wQf`+Z(u#RMf854!m&A^x^pkG!i`=ObXH%8&iAsM* zaU@h*M=_}Q>#rad95v%vA_9(J$O44c1s9jbAi$a695n|V$_)iS)Na(jL7%>&)C$AVo)_CJVQQ7Vnnu-n&HbR1q2XQy#3f213brG3m=Fan=z>P3`(LVm-}OHIe~MaM zLBm*jGTOx>{zxH|B4S{Bbs>SmsGLEO+OnD;v8nz ziv~U5PY~3en0c$ZxMVKRMLc}d)0RcFXv~v8V6Cd|&=k3z)(`QW1SjeFnolb0t~omv z7-ogZ@KPSEc#ye!VYPDY@}}v6e%@~Gn(3fFz-&66Y3QKkMnF3(E(f+hY3DD!B-w11 zKWdg+4`$bfU1NWVMJe-hS2l+G$L#oiG1~D*U<($%S_OUn4Gm8%v_qZOM?4QlAvowN zhhe>YmvN2MUIdnRDK?cDTswy8YP)crWQ;V>Q@VkA*>Nb&1V z`WrsGPYq>#;E(+*5v%e$=_jMZxinVnTluV1$g?Q0C{3x6&%oQmvj)=Bq);n1gu`@f?~bIdxjv*Q`lg5{l-=xtGKlicyoE%_j~xY^imW)52`y#OOYM+7VR>6u85m|}PoPO5OaLOX21SBN zsRh_H*Q%kz!?g`V*S<9fa`Y_&q`sPG%aZKlThex~UPKV-ZRi{m*_oc7x*X@SJNf+D zN_WGmRtz{f$ONrECKI}_0UTu=9_SOO2>e|B0DnC}1pvwBZ%Oap~dN_a`q;{RN_kzDmxNbxYG z!-^K3l-dtA>lf{b`ecc`aRRY{pf_Vz_g;gXQfrmw>Ji?8iTVC+E&ISlh2K|rZCf)8 z9*2UX((k~g>%hY1O3H8XjOCJxE3V1#2)-7X6}c_q|6Jz@J4V z$TS<7Z@Wn!Rl-L@^ffA?77o~4R5kPG`e(yIhT8JjTX_l`UfUktkwGc6IX{O+xOMF! zwWows--FnPY5iX~hpYjtLMVr>H z%@~Y6*K=0`u05XoZkZALlBn#WTyNB08FhB}SO;OXIm6Qeqq5)uluXqO)di8sx1;{wvzf#d(%AD20$s?Gd*vC@Rt zl>*ZgTz9J|`9%{NUmHq+l6L;8(@5K*@XN1DD3f`rM%NWlK+f~5dUUz!qL(EqeQV&`FQ z*keehs3OKd4ssn$q6Rfk$%GC(IJ;v>uC5XHp|T8$&WY#8q&HzL>zu^IU3r*uSHaug zR^3xaiBkGF;Bb_k zFA-*alZhOmd}68;dYk06}k31YI+xD_h ztG{*}xF(5j0Ego%zwOvs8qk*bj4`AJDB}}s&T^s+03{=#2FMY1@}mhlbw}mI?~L3f zSY`{5^s8j{=tpgq3J+NeCPwUVsG@QL&PYUP zLeE?b*TjDX02NwEX%WA{Uf)GLp=&_I^|XK0wiwW;bEHn9kypQ{|5g}hJozoR0s7^g z?4rLEnLKeGKf#s56|OiuzV+Fg)jIg7r`(2F!+@|JgMOkrxaE`}p=liM3VR8C|Q-@M?%&NgRd zqOxB{UBd3~cbFk_VU0eOLJy;1{$knNy|=&d4)c^#~>XHJ^M7bxS#0+cj31r1FfnZC`wfKOHoFl+LjiA=PgMIvDsAE0XWga%36&Updsa2n*4KWHZ;eXA_57@??{KH1!@u*r;0zbPGpAvVUo3J!G34DhozDjNVmM zT62%YhScDMoZ=v33i>!^{Zx4%q~9Q^R*Rmn?wZ%C=!zs_Cikx1q+9ywy9{*>URG83 zbadt+E2oI8HA@@KY4eX9a;VueEHZ0-DxW1V;XNmIf~?^M#EvRHw~4oWcd~W?c6o2H zyQcmI@n}U>6ZmVY8fp3=(xeY+u70PkCjJWZ{^Gqw#?iwLh93$~W>f~p_oQPSpnp_`^9EW^g547DWqX>=*;hUX z%|~`r;kkiiij9J|?Yneq5_0v1Kq;f;akDet9aZoy+L0i#ukH*c1z>rBr2~D1*yH6A z9MCM^-hjh_U>X_w7)@(HT|WIQ2$nyI=R}N`fhqZlbjhJwR)!7Vx?p<{TREnX*oDe& zc-=CvI|V&wwP5gHrsT*~iQ1pwYaXHD;OwI1qF zc_*%h`7x?Z>e^;^&%sy}X+=Ea>ie%**TWB`bH^-!u2CVt;ais)wKkpbkvR4wMm;?OBKtOG~6GP zy5M0oYCIwEntH}~(G(p@2o+bOPe{(;4U4!ukSr`FV$PQ&su1;uiq3W_Hl|F~!ZlBH z1&E&UjUV-OJ&3IVP@il`xd<2p3SvqImDLxGaz(=5V=ni}P6VeK9r@PG!L5#trKzZt zr9BAOH74hoi`B)5-(!X+w~t9<^MTTy3vE<0HK@eaw*(&cM%UWRsMX5YA4v-PhfgK- zC8&`to3{MemBfo(MQMzGCI>r)aw67GDX=8dMLwagkK*H>!-!$F48*{}9E*teChpsY>$Ck!`5(*;IKuJhA;D#7yAvyPLZ;E7=hu!6P?>A!tO+G5tyhXs$ZU zx^RodIil7|1=Kx_Ah~Dft2}8J1&)sbS1zqmkVcXIvJ{E9$kx|hZws1&I^ZDMZNLzp zM)X7DiFfyE5H*X=q@bla76OQA`R3{r}g27*>!mk@O(Y8;@_8qD(HOp zjKu0f_kkyEmf#&jt2q33hZ)r(ZAqEKocLeMYUzanu^bWN)fr`z-PiO3%LXg__buAS z8)*v1C9Z>pspo=?q0%|$%Q?3eWLp7C{dPTI2K6b98z7SMRjyj~?(U>*YpWB}tz^GjHtiz`4;jtw zk2}YX-Ms_lGv;nhzzgEH_^r48LfjL_IXnvjo{{{hu?;f)GwY^&vIzO%+G5h>=#>$e z`RY0{7WWPHBaTF&c&ljP4Q0CcjVL+!duK=K+vme*4|tTl=I2j=6be& z1SyUN$9`*bVN6^vwmjKn^E@l1b1Cu!EO`eyYQRWI1L;~|4%vpzm^G5lSfMkM1QSFp zhyyN+XTfm{`AT z+|})SY?LFglBUKDb1tk->pv8{tX4!v{7g%0YJtkVkLK< zFc0htbCAN0+9J!@C4!BWD#FbAYW>6oB;!n9WIDYzCyGr!6Qu*fMAi%`QQL*~jW@XB zVEOXniwAbTPl}v2_Tk*G=>k&B#-ildwEe(H^*n**HH|#NBUqUIPnNGI1o3~tt&G%7 zf$3p;hRE4;|J~}pV3t26lYErz{VYkVdjve&r#TZU;V}ilsH)Mjm=bj!_n-%%m-l|F z&M@ICh-FP7pk1b%XxJ2O;&J6R6`Z}G8*CH{J0R;nvE7*Rk)gyEca1o3gm&{`(9)>3 zBTmxA85eV)UslgUDzSxWyn`L*@GX+I7AM3EgW{XmHr)MnbGo~X_*~*9jJPt_J^hP~CbY=YAT1`I3L4}@z6dO;TwP!jihmfz&hJEghwIyCqj-{Xm0oe6;%y+UWziDu_lkrTjVJGJ35}vN3#)Q_I(p zaV5mSo~AQ%fK8AeB`dXLzt0OuaGZSVeK&Jez?$MLn#)W#vOfwSx;XDQ>0_~rL%ExZ zZy&1Gcaf7>^|=ChXe1P_*vDh})~gOxuONU|7ZJAMj~yV4ea>Z!B}J+e1v+9s_B<3|4gv+~OPQZV@z9$CXt zwD%XyjAm%=RrjO|xQE%K1aagCBkH93qKI2rN!8QGTUh!xYdZvQ5yBG%c6+zxaG*Up zsr@+@$y?jAWi6+ZruG(ouVy8Zxl6_fzaj})7lKtpD3^7$tv1e5l}@Mq#li!8r@cEl zw*;6p?DxSn zKYu?Zy*G-?eIop9>B)Co0pjJb30{T@lJN<1sBVFa%xJDTz0Gectc(KS@Tn$2HZ}1Dq{E>0b)**-;OjPCWd-!o`08GF>g4l zdn}O9z@F?ku*gid3hds~5;KL;iEFJYuhM-g_46RHHiuZfa4!EE{VBBrCcABi=!BI^ zR6XX2!f=6C!ZSaJi+tOd!$aF_pjm{qjI@$qCB7 zq0%PWeTLj#=Ik+1bhlwxjleGqy>+CwrHbJ-b|qnUrUw;%UaG|cSC{%y01<$Z5gZTb zat~x}=n81$@Icg^CNUUXbyD3(E?Btn=)=pQiFjiNLU%25>3>|*o(z7+*&Ce$Uap8a zlYUHTKRMK#L3{C_i;RP&woRhhhi{Hm)Wax9WWSECy!Gpi7q9cYi-j*&F1|Xhv_i?$ z03%vr_GQ>zCe%>ZFQ7E&7cCeROw=lf45~Omn9FR5PG4NJayCQ6^2wye;cqsdiDd#Q zUylWeUhaT7ZbMoHlD;bXFB|fs+BOyY)>}%vX^OTR zAFz_fW156&Hf}JK<`{C`F5^henG|$oLt`F&NJh_K3v1ky2v=$ClN`_!6(*i|*r-KS zIMOVMUnOzPs4{NB{C`aVX$z<6K%|#UKJ2Y&)?>fjJ%P&$R22)`t&nS6pP;O~lP*er zTbPwd7!6#4K8=VueBXt|bu(+Rzj`9>1fZr9-lO9jmD*u^SPQD79j`(b*7AcZUo&Nt-vcZY^7=+58V zwSfaz(*_j;u$8m((uRD@FLu($J41dhF*j|UW&QF-GtQI^h~zM0_Le^<-5muo3ZT20 zx@YInCehI*$uKmh3;NkH`d%&lDC{9h88^Fa!kf}y*KkT}<1$_LgcX|VgA{AZ9wD1= zM&OkS-PVUTwMgvW33i=N(zW&97uB*`KFR;;#L;wC|%{s&u=U#JSJbu$7i2v8|+azXsjc_51O zTG(7c2ah+j39Rqvizg1#n_3<|K8wj7e2UTaj)H+3$G;RZr<)W5L1{k-VG0@Bb=irY)h) zI!w_F&X>1@snljOrrFr^6cv3aXJLI9wcKXd=v&)v_YBU7!48KxnCivEus|&8INAbm zIN>^lz5n)6z@3)jop#H(VruQmBlwTrW~;*2E;?0k6bJ@?O?EZa+Fe%_R-5yrXY(1` z9y&W_?u~*d@4~L`MC`%r3pxu|V3h}t&Cw%In=`643Z~huDz|)#t_|Z)Et{_tt1!ve z`hv-SdUc1)!=<(kHZ!GHuKqG}pE2xOP51s+(A@75kp9i8q_pRs_997WJ<)b`WK-bo zQzwHCLp3aGZl6;fN0pl6hv|Jp%u?HslR-F!j}kYS2T?4>;d|xCir5`47n)+aN0CNs zi;zNS1dST+aSg8X@%nRlxWpj?LhEMEd7sd`?k!?vWAlCOQBPmSTOPuBkQBkWqTvx& z0qg(Ob_sCLc^{V764!1KmvWzEuZa>NPaHkz+H&`yA_4`+X%}UJOo?Kb5ib%t3;3f6 zbm6G*yjsp(Hu*nJD#h$!aD{Di`8Z%0&^m|qras7PT;E~nZG)T!PqQUMj@VH2StUvq z{5^kmR_ zy}$+t#uaER*SfnHs<+`N)u=PRR;6DQ?I^1%A9d4 zg?gf~`)Mc#;m^F7*!5AyPBoz)DwdoOr}cdMpjy!)iER4!p9Ofx2bXB6GKF-0Zezcj zb@Z;&h`8;pY4T(P*XQkC5(;hJEz*CDSM7`K4iUi~14g4tDS9U1f^NLBTf3L2JZFnG z*wKP#ax^Obi5-OGY_iwp5Y*FYY40|Hl4=T!noTuVbPcY4*{OZTnCB+tN88NeQBGwZ$!(~Yx}YOfL`s=|Cg~E z1*yu-BA+{-1UBtV;^&>mi53ZFy#E9_4EfQ?(~-wDI~h}q(Os&{v~R~Hf_@fj1OcBR z$Hbk1ACR$MGy2BBFxIyqXcms`7Sq7Z1&zZ17@p$Ja_|ifc=J_ejN-!$lpDP4_dawK zNJjyCFTf)AVh__Z=l5bbmfl1y`!5Wjd^Fx8fjv+6sXmw-a~L(?mhd%Vr>xT4FMSJyR##BR=PZEZP*Q$({fcZsF7Pi z=#%%3J1fRsdOCz2rGa)+;t02$sjH$N=<8?Q^AFa&-xjL!%sTS&fdv#*^x4xkt)nsp z+d+|1osT^p@=pkvaa)=YnoMNX%ll!LYEvDz_?*uM@**kXiTGtKIpbt~!jDme9pvIN z8~lnJ@3591XfwmJpW<@{^-prJ@#qKUK4W9v@gIp-1MD84=db{@>`l}g`JF!h(3!}^ zh3}8Tg?9Y8F8ST1Sp(4T1*lH1;@Rf-<_nR}=7z_DhIdd3m2Fh5h|94Tls>I`>iPiS zjWNiQn`w#7dQp4hVm|HkY${=~{po0n)*rCCe27nTR$bJzO%0C^CB2cHmlLm&|QLJDJf7ngZt#ddE-G#Lu4DytRja^+RwWi#yr&S^IAv~J6);chO3WbnHSH} z-O_B_UX7jylE>{m2&PT3H%P534q&G_Z!lj|;5L6PnhNtj&NcCZz(zxrE&_5&oK^;b zp#Y_;ML%Ka>x9XuKsE`@fj(T>f5t^%*~$FqT$i3(`Egy5L=^>^W7=ANyj`^pc+~-y zt9!nFe;u99x%nG?KImW(tj-ZSU|hUN6lT>%7qlpMBSOR)qgWMJ_sm()A z&NBYFQg_soZ;-T)vy_a(MUx$D!G~;OQXmv!1+^8S5J@T2Fn7=9RxCr*Fj%5S9#m*+ zywn2A4W}ElmJtW8(n*KuXiE9OO3f*Vp>j=T!c-VV(IwOAZ=zKvDP6%aG*P1qYMX>6 zviR6Sq@D+r(|)xVWMjjB$yy%oBHWie^Jk-1TzL1=^|fypJuYXdVu-OoKK9XuTnY^IMwHmCYM`y&zh z@XPbuaY*VWb^O2KbEUtIody50V^E)vB~b31ld|=tLC8w@83q}T8ShpFs_wx7{g?KmghXA z=76^j!oR95bv55CTn2We(+;j~Q*QrdkpVmwpyH=5N_kcC8|m;Z z@<}ei{$5tmiWPzRBHC?E8)kN`*T#&IN zIZo8Mgj12}rPhx*b;{rVczyyET~hjUA~a`HI1OD6VWcfnGE6jg*;X!JBRfN>`3px9 zB+38UQ}YF^cHLWkq5hWq+8VX+h#%LdoQT%7jGZy%TkXLdfj3Ub&%SL!-R0R~iI~Fh zVUPk*=^ZvhfJ?w+C$J-n&w9e@#q11!RAYw>IFr;tj67`X)ijJ^TqO)>enP)~*w(g8)}n4A;Tt6jGF}C#K=fHg2%7&9k&w%1yi{xQ zOzvcq5cs<>`ywv%-{#t(SG5rBh9}SqB)lX(^aq@RW}oYzZQfmUa|Do_ru@BkK2R1`67BP%-he6cv@sDbmQ6Bc2r{8me3nIbgGNVisR*$bj==>dim( zzeebaYUXb|yhF>^?)Ox89{n6pP_q6CW+k2N9()hk_If@rq!Ou%1{k!0P4%!yaI$?F z=A=8l0Bch+5p*_hRx4A24BW0@-34{ac{-~pJ0o-oOPFy@&%kWyvyMVNxD_qCRW~Hx z`1!82ep&6T&p^R6yB$YKy{(lrJR^1FW z4^<~b#l}5PH->K+-rqiVtZi+xleN*FY^Xw120iwH5%@YEC=c!)(?!uVuE}MAV3U>~ zi33Hbo@6J9#KZ~e-OZmGvyu=p2ahVG#NhvWFR;k-ktnWo4sE*zVkaKOvSG&ZnAee} zE`8Rn?-S+U|8z9i){ZNruxa0&pYGY|X%h)(VNawd6Dn*d&@HZHcY4LFJNNUP*0@zu z$P~((tEw&9lNC^L^VU&|06^emF4wn;sqs7=M?9H~diMsb~vfSp#E55EWiGRO&xs;MhW79r%!XsQk z;FaM-4|o`o5%&AbskKZ%eVX{3ItA#zw_Hr@TH7;E2~^W%rOC5MGOlEKBe-+w_vvgn>;cL8hFcc zOy!i*p`X)!s${|gbbuN{{X_-(G14l|h4JM?qB+UKkg8-WQ@Q!yo5y)e+TZKg<7Uc}u=hNOtAvvvYduscc5C zvH&d}Fj5W2OBs(U)3iK-=qI_2lg+AY%7SzMxGH-*c+S&>%eqmU1tz4Zq9<8fl;oXi z4a1ng7y@X&pN?uCh&vEP7Cxz2=&D(R_XbsOEhe4w)=yA13X}903ioC@eFxRz=wH|( z5%15h0Agof%wM7Chv%~Xt?oLZ<&BO(=cAOzt*Q)XnJzx7WnjGlPUOYV?4gL!{HdG0 zFID&tBs)^CCp_@_kb+>@TT3v_|7uJZ8ZXKmw|I78I!|XJKW4jWwgBN_R1goB>Ooul zd7R_Dlr#(k#_P&)%x!FT(2trT+oktv=1J$&zrn+c805rz0R7*0U{;AawT3nql5UL+ zZ$t0+z}FwG9!O>B$WB}+E90sGz=xlR0B%`GNFhkqrCL$~lo;i5B))i`oeXp)y>1Uq z4AimwRsS>==D$7_PFq1xI`eIl90xV5iL?Au!!FzVUsp}Pe<4zT##+yI+!9cr5kp!o<_2?LtqR`B#4eHU2-s&O02g@89=&ucM9LMMR=^iP1+NZFENOj6QmaE)p$z zgdh=-WYi#t(FrjajNV0y=+WJLf9H43z2`pXx%YWq&uhQe-us{R&)RM6^(mx+2-Cdi zP4($&ii_OCX!E_FrHZPMHI@qVSWTP|O_5M-HQjvz@jo1Y^>`Hxb#n&Y7$`X#>&BS# zYkCyG1V2sX=8`)L3w=t6sOE{_ukX195v?u3D&|95^1kV% zaHfZgaHW`*ys=J_3RPd7EqNs$b4`w%=a=0?Zk)Iw)}Z#R`;WCLNz-VSU!SzPYel?i z#gnA$&mF3hg{H&((#cSMLW@xLDEt_4!7l4jZ1#acrdcV_mRbs#kba#lt!$flgxq+u z+EcU-Vf_MS*sxK`Z_Kh!&YHF+s>B?V!DUUegyTeJt5P?$)>x?{FB~rQ%-+7|$h2y1 zNJ{suUs5K%@bBO*R`2XR$z=fsEJ8XHV&s=w!IKxAYKb{sg&YpQ8#fixATr-Ysn~2Q z!`Gx0Yld7)rmKuzNzpyG2 z{YcBBN0zLSFNSJ*p2qAx5JqQqkT<~&!l{^YoSSPQngL#YT2@2mJ}<;920Aew5b8U;*!H>`=Cm~y6Wu9Mtxhe;Px!m&Eme>%f+%b0r;e(Zu!Vu_kPB^3xD6exBq;Lc8D)2Mz-=65ZpKO1Ey)?Tn7mq4 zvJbHd!D(@okSok75SQn88P46CY?Lz(0v%ASR**J`$~BkOER)!e2GRvs^Q0fPVr24N zbtxQci2dp_Mi<>DL30-9-I+f0vVB|1pLoRY`KsgbkEufo>77k3#X_9OZ=?@mJeoUD zdU^yG$ez48u}O%8=u-w$mMxslxNZV5w}SaayqRPx!) zK6SwYb>NIba>wb6(8Jqz{-~ZXqi-9oZ$C`7?sQgxjKxebHLwxz-DFtc#40;7<1{Rx zeuzVPP3?ynF5amt#JZvG8&Ak1#Qw}Q_uK8kA0032ECL0s_HSsGge(MC^&~t=sMscU zesexGfiD?6yOLnkx{o7Vmv6%UqNd|%CMiyZvnh87!FK^W^c!k4i)G`gAtPnx3o#nNW{tYZiZ$KxJS*QV3)LcVE?|^{qPJIh{gFE%Zz>Zfu`vh zTRP&QAj$?r359IuO+4H&(TnI+;}zId~(Y)#@OsIvWTGyd%)Ue1lQindCnan>DOhc(XN z?2+&@Xxs>>xZUWdvzu|6(xea2goFAuFe%O7mN z4?1v};(zWqBDU8lIjEfX8b`&-__~b{N(D9M=fl9oaM@G3BI&C&U zp2F7igRGc>^NO;wnrLP27hK{*O2gSz#QDZWe5$Qp=DZr%n5#*uVbO=eqv6~fZ@Dmr82u$wm|#K;h*0yoIoMVoz*X@ygwo(xs) zB`t~Vtx7yGKvoX*#J^_tWVHL~|G6^D@%Agp(6TZeQr$>)cb0>it8)TJh`}~*Z-|cYKpVb(Q)(vs}F!89>>37++iw}}$1K#IC zJLNnte0h*Q6PL~f%MH<`W&jmj&)X~3Df-dSiZwiW*j1Q0V6Z?)TA)t{{;6iWR)MJc z6uYF#Vmp%6vGsc)AhR*wJjUoVq>^kb#PVqz>aCit6%PCJY&nUTJ2IvKm7<4lP8Oxq zR||gFs6WNF=@M_l`Ofa1z4wCt zMlDdQQFPPu!NZ^qQ^D11FVrIuOtl7G2n{Byx=xGkRUFjEoeAS@w64>eQ6YTpbOW3tzrU<9+>MSx~E+3II;NDSUTI#W7Ck zFGw<|>~&w!{eePzU=~jP9qL)OZtX%IT*53wtLvf6r*}&HZhn#|?-NqJx6r@j&AlN(`9et+`U@E*qEV|F8xG@!Ex3luH)DVHj{1o zJ1*nQY}z{OfN4@o+3UPVZ`wzYD>t#xYHGi#7_01h?C)W(1O}ZYr|EqIex|Pyr`)Rr z)2&(F>ubV^Qf0?8GZ=GlYJORooL>$kl*o!Cg5EdRCxn{OznxR0b%&>ZVI=*y(TxL5 zDfF7QYL0VT6L)~XY-fI}u%L$$d*Q|8^%G4_bV(CE7INBMdb%ixMOT59b$#V;<)S5U z%(-azRC30*S?T!=;5pv8{mVWtb_P5rYcF>pGm){PlK^{Ouoc&{mz8~ zdbpE9b=FSUnAqLLmh)mrLG%!Uf()uD7bj7#RDL7WozWr3NrXrX!@Q3|rS zDHk56UlxL2u#UEDcALcuYP5Fzup<CT&|BCeV^7gtldxv7C2pD5 zz~+JWuniJ}0tRT1>agllq;78rv3PzQaS-vQvr=6~3b?)?q!J&-_CW zHW;_P8J<6@W+cErILFewvQpl%Y^o{hAY68ew#a>bmb3b1#$Kpiks0ZVpm${oNS`2D z4Rg6pf_OM*`R(OfNs|1E{~2I1ty_azPIo3}gI{hn)uO@AC9|d~%J|-ifFgSY)IE*wwf9>sbeLYrSQuwbq-ev-~1tOyP6S z(v(HkG)t2S+ED5)PELBs1*`IXEtOdGfSr^BUx%v)n2y^@3j#bjB3XQ*P2uvGHpi;n zV(yOjuMT6l4nllRP6a3NS~>DjTtu!ajnx=K1VdE(3ag?B0~*;U+0x zZ=FdXtQ&`2X{Xs|rmetJS`c&8Lp_pVxoZK<5RLKaD1~>~ws+j{Y#gCwEu}+=ooX*H zL+AX#wUvr!s8sL1T3`7mm(Nx?5PZ^`Cnn=RIjV-ve<>Qpe#MZ_$FUb9c4H>`$5U5Y>qsq;E-GQlg&>1B-^?zk<2S6@SP~d68ge0dVW|g)MG^FWc!S2j_ImMZ{y{!rzeP1L$k;&8y6WvJf!+28+balPY{_cCz-=#IsLf2PwG(pxvo{+1V z<{2Ja9p6U^iSJ(T{dk}Tq@(Ng?{-O>!YOButpAM$mfizIp%Jz215qEjR)a-0xOx4} z7p>}C@f+H#;`A^YTm>Z3vn0h+M7ZxNWDmLGAB7fSCG(C}iGyZ88Kn#|3lWi)!AeIQ zdplK!LvlG>~4pIZ9c_9vVxL%Eg~nb(tICS1deUOIiInEul9W(Pb4=fmrKM1L znB@O#%<@vBkW9y`Lwx*iF%ws= ztGNml|Jfa36eHJXvJUd5y7OhK+11A;8n`4uOKYi9ze(HKzX9T5Q4iiufrw|Qgd^kXoM6}9o^T%G$9G2^TrW*@^W zAT0X=^PThZ>KYek{Ly|1hPxDF7uD-FeKSUYd&ssXD5MKO={+L*ls^oGQw>ir|2!%aop75N14CAN%xnXV= z+4r=)4|>{n>Yrhbm2^Zvt+9qn?lhWh`wj?b^dpDz5_OF`PY|mqm6)JGV6rSujVev| zO3!QW>>-w7>_cWu?x$+yyy?zFNg#r-JMO^{R>`|F>3%bs@ZQ@vjYZ|zZ6fTX$&lAk2PcO_~ zKgRPUryV31wR0$K`K0Ct-6VnXk~QHp-h6r+Z&vh?-{LIpvwM@+*`f1Iv=l{Bs-=pL zB#Xqx`FSckE?bTjTN>ABA1cYe?IaLQ{N1OW!u5#GO{Dd=`o-9=sVZG>H^PS@% zUNK40dsZh8kkGAe?x+e^88f@T*N8DM)A|nHDwYlwsnyL@9DoYKDZ3#y#I2(#8PMSd zKX!C%{MvSCh7H%qf%KUjvW>(}wAyXV zcZm8^PP52#=6o;%<4|8!T^H#7PQtPdsg^7KL1DCfG8J56dSI79U2wVo8G^0A6sXY) z0B@ey#2cBGIG}NYbKppGPRO6ryZ6qDmkiy={wwJP=UxGVl7UDSj1H%U3^5~@DP}Bn z!s$>2KVRWRwxWrxIL!)N5={%u)-Y|F6hx?4%T{sf6s}RIxUgul@6c|eV+ASei1qW zHt3*uaW4}zdHK`hlfLS!e0#omH(!<}VGbi25hei3XDWlYG)@o0$9(T-ZM~jqrG7Y4 z;FWsb(528#iev+5zhy^njMKoC ze?eZoA6iA3ZeQ>W^+>K)+Qdx*j59Y0y1`3s`H5?x^f=hSqs}Z#%)MT;i>6s|xVNAF zerT;%5t<~53(_^e9?`7`F)14s&Us8pL)YMz6fUJ{90~Ky=7U%z|3MNHSpfy7W=%kL z-ym<^A0mb-l+f?NbXan>(OBFE<9J3fw5VT(_8tYxhAYGw8APCpmk^OxmZACh@kTqJ)nIp=83U=H`(2p1R6KAr&dgoq*3Cz0gY$?T?2KUGS~!S95VD5>lP4d02Amk7MoO zQw75q#J7GkGd|a)bL#fU#Dl+{wXHxrTF4m^9yM4La7ff7rHi@7G3lsnS>eZ-SeScd zf)YJ?u0*SWtrTlNHq|VtpI)~1zv)lsL(X2Lj{Q+|d_Xt%^?0jHlx9)55Ng^(-zPcb z+1Ao_D>K_1tm|uRoHzAewsKie@O^SVot#Z{t7!?k@)GqhkK2%Cy3`?X-T)k{2ja~(tV0A<{$RW zwz-QMIWvSj4ndoa`@d;t>O_ni9+3aTy$ZR_kG}RC{3@T8o}N2FzAm`uy^vA?-UaOteK3w+BIEz_JLY_0lDFLrXs#h6uB57W7bQMAJZ&vx zVZ*@Q)fm8a7S_0Aj-XTg(+t5qG$^kQKx!qwqReo5U#wZ}dn`ew%@kL7hs$2)q=6gv zK`|gz$Bof&I-*O+5OUAhEKrld?j+J4@+!M-IpfiRVNR942q*9K0VD!_MnyI`QxZpN z@_UVZ<5#kK8GCcqDRITwEm4B2+1l=EHU6hgsxS*m?eJrq7cBrDs2qh`tlUCWEhmJN zpkIKF)A-40S}2i8n2YerQRu~7!G7M7ky+#A%#*zRui<$9oeGyDcLV4_Z#>$tqYy|H zhumU$b?!Z7v-z;rzwMJk#D^uHWH&AWL%%0C1&I82_Y9^;~P`a$LQU7(%*_ z>cup-?k6z(crv{=Z^q|8X8HZre1K=w3F^@SU952mdwdF|-!#rAXR0S+pspZc70*iY z!e6wccPJEEin~ARUIdN@I~Jrp=!LP7YB<|ySjt5R1-&4f7GW4;kG_)EHaF=WDEK;$ za>fsl__e{ftm$U(z(CA&Z(oBZEbh?TCpm)U_jv^`(8s=J>F-p#v20fUnH-sYh(lje z&g*?c-L6$}`zK(dH_2Md+jaDfKdGz=B%4FK?|2tR18V?heYMZs1MrXU^lHr&G%mPtEr7kb?073IQQk|!+I&%^9+~S)DW;y!g=3FA9PAOxWf}7Q)FyrXW9St z{XuK@{X>(%2a@*_*MH#YD|t!z*&?ITvzJqErG=EO?p3e5H5i-}~vXjd>vpqf> zugriSxv~)NN{39eQBTeh7~6PJ?`ms>p=X--vTb7|r_N!(cy#)GPLe)}YXU%!xYW!l z5rrckliGssQ89im&90~JogcEU5!a4dBa#pFQ%GVQdhxAz>m-4jd3>>!S*R1R!b7aT z!6x+5H?=U}(?rzg%O2>hADL(<i=Xm12-$MS>Tr0l%jlbpGmOEUJ9 z8lJST+IR|Z*>9$2ADrAsZkvCQ=zB5clKA5<29m)$MCKX=`}(I(l37wrD1SdySdv#E z)nL^iPoEO!9GGhndizrUesqxtS5o9w{z2Dr;)tH{`9sz4hlPVu{H*Kwn*1z3)!K>b z25L1Gfu?n*WJx}gdcaXv(LffbvhUhdaY=;xp{OWUF;ybc_zFKa(MgJ2+iIf27eLV; zF&Tqfuk7hMN9?spHKCC2LzVJ%%R*?^2) zi2gWJGM|%Pgxw$2hG+(C zKkI8|gAvkP<9bc5>37fLvS`321Q{I{aR3@3We4@(atA#Xwr zKZe%7SL6HC*-|r3|73ATV!A?lsX?`zP4p8svqp#{)HUcd74Yf2y2`R`*r{ za}G|caf}f>cQJk4NGMJMImpc#EpE%cbe1uQ>%wjnu`?HlEGBXAYd?G2qV!10ih2-` zBrloy>QEtkrN>LmpM**wHSEiq90JeT1=IVi>WvYsJu4b`+3#8Gq=H?0I!o~UQ-D@d zaKBzgw%5pu{r(ud#7cQW;B0F@+cAx!|6ja9{M~f^!AaHM$;uyQ?C&y9e#^nBt4uG#95l@z_kC036R;^u)~{xD5#pz;9_T}!6vi~Z7TPc>JG4RgMHOJ`q5{EPlJB*L#Og%XINT=KH7wL z!5b7T)l98wjr^L$HG&?%t)SkHlfxki#|sueCoB(+*<(*@GUrZ53^&adl`f0+jpj+ z%;ufg(cN96#jnZEUTmA#h|!OzG|vzIfsE$+*id?Hv1XixJ$ZU!uGWfsjJ0>k@fiDn zdBVx9qd{b^7v7&rdiozTwBmRNeUM2CEruz=+HOG^V0fbX-$wzF!7QeXa82`{Ze&n( zEgPgbDRb;>SUYptW$50hYcJA?%jPBY9T`ECh1R$*O@OE+$hg$76a6ILo2q7YpV_49 z69aYkbirIal6C2$x-H^^hm6P-Yc6d)yi88;#jcFr5vgB)m#@ONKg4ST)b*tY(5TN7 zUZ2UP^`3OfYK49VI zTi4Zo+sMV^t$Ay>9%^6qvs2nGHeGVKnRs1Y>0Iv3>^B4gO<>DE>#D_%xi>8Z!z z*x_fuVa%)%sAQ|SoF8kbbtX}5L&NaCm$d6wUTDk8wdfho&K0CjC>2P+3S6gPhrlHM5}PpJ1`eI**pT#q~X z^FxAX$E`RsWQ29Jg=uDZf08D$=`4Xy@ZxD(r!~rFe;u zqEN*HRL&(i6_2XBq`R5>C*CgH82g*C^R2$Hsmnw_d<#l-Fe<=lTz>p2Hmjn5MP`>>1Z|9BC52I zIw&DqJfZmM*k7nqudBmrJ>685X9$izsFBJ6>Bz-*d%E4JEvf}XC<=g5Cdm1Jpoj*b4(O{(nBr-y-pq0c|ZMqp}l zg5+?0IT`u*GXSFR6!J8}re|uF3>1=!sd`MF_pIG`ul>-q%kQ@K7agY&l@ZPO16lS% zEazj3Ym7z9q4S7S@Y)$BQ9y-ZI1m}s5F&ty!!;StBFUo762UYoS3p%MR3Z#!xj0@~ zoRE(98w$v>`++p_`CJ`oTD0JcuPlaz#@k{BvmyRsCioePHx@nprU{1*L+imR9#&TX zYA0FNrUeVWAfu+3ex{75sj(s*nslo?=@+s($E7xCt7OX<%Vi5$n`SFf%Vg_P+q{_R z^wFzPURlJaWFHzoMA%j^SA1z^ zDljfKK>QB=7W_HD*O^LS@8f&R_bTseT7z4q>Oa05%=>$~de!Kacz8+p^T_>(=iwbr zHg_XiPC+QtruU}rPbg-U$t7NKE}0Bk@Bly@=(5%Re*K$5U(DmP6#tgV?@F>P61Rhq z-b17n!*aY&dEK5O_%Q1$QdWhg{c5}i5gYFGb!BWtfA?!>F@vATXv2TnxHV4^iO^Fc zab0=iowrZpOZ$%$OTR1VPW8hO#WvUVPW{<=ZDe%V*mj?mQl z@skV#VE)^_F%%>ahgS3|GiN;1B+df;n-02P5dncIJ)YW+eJ9ds%~dK^tLyh5w#~6S zStjJJgp+#s$8Rl%AYXTHAugc`T3Yu^WM%&Iaad`-7_vcOoWVrHa$T3{Xo>Clfb~7z zBzRFW@kZT?d)}XDY=LBr9EBJ7tD^*MGU}dMK^(b$_$yNcU(0=AWuiAjib)k-H3ZqNg(S&sBNRp$Qy(^yg?uxN~p!$ z%ZSH-+p|C*=|>38ObO{10x>&6urVPcBmoy4N zM%)r(6mf7At7(Q~NINTUK{nb64JAQ5Z_Vi&u3d-PJk!;PWSZpd3dkO@@f(ko&f=<{!m$42E4O{AgSt$VjTHXVbXFiO74FCN_1>UIrqkZxdP zi^moWb`Cni64#4jYV9NPCXb6AZP>Gqqnv}}#q8(vttCKmtc3&C5~`t`#>zTu4TD&! zvwg$GP|_ExLE)b57apQ#%$yG4$z8WBVln-)EO()VEaI&#vU~wx%$A%YUZo|T?d8s2 z%rAGxr^0C+@NfI;h_Vkem%?c>=|@}z`+GM0=dIrfj`VCk9ToeIwMVog7Q(tHO)e#m z?HTU6c9~Og!f;nfnK?t*%IjvPIr~!UX*GvFv{6*-8pU==Nr%%XJ z_U`be9i|vt$diwhj7iBeowV2H$2_kTVbdYDwp;77xG_J|#mru(vy?Cit zybbL22=_$sbgMMNyOK=$E+RRaM{>4-te!JGJQ{q=a`-tE8X=(P^{5K2=Czb@pI-lC z9-q~1oZ%=>_`S)jocfDom$y&nWHdN5_b%ce(x_nkN*J>(3d_+&qPH?QPtkv%KWfY< z1L;N>6R`3*wW?Gc!o&C68F>nmqsC?@K!*r^GG4?yy6;qFV$F~o5|S9&8AFK}fQ7(_ zWdnPx2ENloil$vk5G7^duIt5mR7B`7^DE?BAi-Lk*5`4Pymre;;3m8IjIP_Yv!BI0Ylh{cu&U464*m| zHs^h8bM4Jou??HCb;v*#Y!+sq{7}G6^Av=ke72}5qwOA@b$#qtIn{7TS?ePJH_Uy1XAkk6@ zk*@NqH6@ z*Y%dcozal-knw^6m)Q?U%5Hi{t|TDOoz(>xKRsADR&`wOF~7DNYO<`oe1muPM~m)q z>c)I=&(z!t_m~7DndqlI*i7q`e}ceYNr3fPi+Q_A>MB}} zW}$)B2y$WuL;rFl5+*aRRS3jkZ-Ku7peKP|4nPjtRy$i#TPZ`3(biVg-?!O|MttJ^ znmH!%%8)Xnoz?&(8)g`9=<1kr=v;BG^1v+T=40cz_8KzTOX;Po_FApvM2vc_vWb;5 zl7V!UpXTi{7RNtmn*Q33`f_;*Wu$5oc0DASQvTJE-bOt8Te4FMDJjI?$|Tg>3gigS zJoBL&7JVx9sKK-WVxnqJ4)Ot6O&|Bkam;H=9Kb-u+7c&O{!IhT+h;COatmW14q#^q zeC5o=$2c|7DS5bA{A?ik;>;yXZhrRf*W{^z{KFsimsu|e9FxRKWw=UYr3?d%v)ywM zGV{`ge@I@Iz9O+xb9}iS6LX~Q+9ks(uT_^qV3Naiu`?yq1_Y$2Pk<-1CbW*#kNpGu zCSW`aVbVekbJlb7s)3dXj^0lQ7)_L4ZibFT=0gV*(p9=)b*5`4pCR!mA7Sn9Q8RG ziQd%c;v`elePug9G=|^Y4%-T<2@u9*ImkedfpcIl{DKog2FA9Q#4N`nOtdk^S)W1O z^7autmcHjsKmeflf%J^BxQ$$Ep%e=4M$a|xXDNHsJT?t5Ghs4eU0{Fn;qR52Qz5Y2 zthf77UT;0en;*9W4kHv*wduqR#-ky;jsC9m+_2D3aF+lq%`;kb2ni#IEvbaXNae_E zx?sIo%$MpOPz*o-i~j_WWV~gWEuDwWFV7=qxlr(>gMI}4EZ=t)6l`gEJi_1OZ$!`4 zk?{3`gWSyVUOuo25MQXm$I%Ae?Qnn=oN?J2?P=Lh{PKawp_b`OzW8K7jAQwuxV7-l`%TWQ2qPa4`y1(seDSApDs4 z!vrl%IT&${d{Qludw^2=d)N-m3Bf{?AdH5ej9{i!Cd+1ShG27;1+I+KZeq~iGEt8s8N3bW zZQ3nI6dm$NOr8nDtNLBYtHOT< z0475ng%aJDsH@L)oflF0L|b!D(0t~T*2PioXwU9E0XS7ng;J@T%BX6)!F6ok32daq zA>3Kc?4%W$omYlO`;F9#y0nS_{GH%YF}j=$51~UAZMg3&Xpijg9*H_G=Vs>EpJy)9 zG<`uvRH{>J%9i1ppAB)|%yRHhzy(oO{^4M|C|i|!Cr9ODaIo7Vf%22g6AGTLyX*2H ztE#NmocpBze!HQ+(}((g67qM+3j<-i1S?(c5T)_g9(%wy_r{kXhps$%x`;m+ykp-~ zt7y5NAVo5wvA27QeDmG6Jx4!VF#hX!CM}IPfpXAlK9lmd0ip2gH&RO_E!Z^G${1h=?}5`+8BwA>R^_X(y`b!!I0uISt_Kat# zzN}Cyt_VCapV&6fe2rF2&VkeGF#}2STMk$xjiSXO=Vn~??R&^tPc=%JcmSI|Y(@!iyjkGXS)vnEGc2wna=>urrn>hk68*j0t<}Wvx zqX6!Bb!~vcThK58quk{gFT9dpg? z(mnca9vPJHk!NMzEtG`l|5|jIsxOCf3B(9L_~+3^3OM z(d3Uq>Fr?f`(wt%=K2%>UuCd$A4)vqQ^Rb2$|TY>mf|qyNm$bZ!^l=&d-aF5Xa;hs z8fP8kXHY`#G2T;gPrj*%FXP|e&o`*g6t^j*Ja_%lZ0QdF2uKM=YMRwQGVCl;oL}(* zbqfo>`l2_|=a^z4#Xi)hN6KMIK9{mrzEW3!#IK=xB~5B=@YI=}ip-M> zEXH}Dc5RcB{Jj0M9gV=q^_;EJlAgzSiuJl0H8t(^?CQK4H93^GFzFBs6 zJ+=kx6tSe<3=)9bB;|J9yfT#cAv_{}xw@bEyst4Q|)AWg;s9M2qY>A06(zTfp5FyB7HhTiehdZ87g-q{HwuAOzj$<(2B2c7eDu-=6+i*4Qe z+qIuUVt>qJwDk|0bMIxazgdr_bQ1Mr#l!h>_?2;L&PMm)J^yuYgo}itb`J85I;k&F zmUTLiF9`?n3OWuK8KmhEmCZt6m~5LCi1cl z*N3Vv8C$+`avx*mHkvI)pbrGW#FdP{bk-el-Z9*0_2}VvSqGqwXQ$<%V;BKG=P^+x zuOi)Y1bOkHlEdU)A*dWdSA1yaFuqr4S&j%OK3H-X_bP;zBXo)nlpMzP3Qfups>KJK z4zykcCgp*u#huX(GfEYh}`e~P&`T{SzR8IH0ZOJU)IF5w&d4Yb2DVQQ(V<(GLf6Eb}(qvG-IBiQnjZD?n>_vqV%@K+d6BAO!(Z82zQ0~^`_rNj8qb{z;&QI=vz&>#sL*`RPO@^Gfo zRM^D82c;VDPqvIWzrDeL%mKu3KJhuCJ~AJMN|3`G?OW+Uj*=z-ex|DY-5s z_8Z)D$MclB;MoY1lOYh(WQ9D!Ags5^{J3y%B5lg(a<$&58g3&U&TW*8wEWY@#| z`rNGy_I=$QS8pwJCu)+DS9!#gDc+VCfFO%JQBRLnG72^S&VN|soK<=4)~RAhVP11< zB1CND9zK_33O|DsTDMcxq`3vKE2W<0xvHgdUKjcria zTp|^TjXk!s5;96|p;BCq;bVgoCWXjgV#Ba4^Mnlg+rl6&U)pNjUA)?=+g%L*tA(qrxZQ>DzX~RN zCPkV1FR4Ehqs;wB8wqKY|A>@wgD{PdaxegZaJo+~qz=6^Ti3h|z@7ZM{7fama;DXz zfjp90*0;NDgZ*ss=*gUXwCvl2?EFMA@|;NtpKudsheG8Z8PsdaKgB3nv4t4>ZsK?{|KO+X6{pfgPPp@D5Hn z3l+@dKadO=|DVLE^>#7b+ISb(ZaMWv8VBk2u2L1$UUhz*AX%lm zweeAVxj{}&xWP|O{EzSnH=O^s$nXhID#oG2} zHB3G$p5RN-ILj$|37$#1tN8p3mV$IKE#U(Ks$lr3s)#Mum!V zW(yjCJYz>}MzzqZq(b^;PNi192Y1O!E)=AvL-D}~d~gUpI0zpcfUoI~uL=Jb`uLi<_?jB{n(FwP zYWNy|vBTG}`4>=pjsL(HU&9bzqx#J0?O9|C8+q2i9X~8tXy?z><^LAX&Y$qhe{1UM zTz=>OCGnl9@N@B<;P9jWLF@LE#_BQll#FCMrdJ35Uxgpw?U?>IZ8wJh!23rm+YML$ zvvwWSU;9zw1$Ubr1`bN3M4Mn)(yE!Nh`!=6s%+d;9U{zo)piE@3W@0%)h?=OGg)5G z#j@)1!BOJ&H)?-k-GahANbg5t9=HX8`QSZbG2^(?01E=FN}YvCA-?qjkcWs&0eR#V!17silg{~z0w@u*@O0a1mGZ_-gR zj8QVQ5hdcJ!vovHB-_K_?eEFk-v_q8W7b?|q!m?)6N3gX<_1sa`VZ&&QFHyBgwd*+ ze~J3=FX}a;{*r%5$xX0Rcfmi2*E)Nepw4<0*3U*5g}tQIh@ueqPZ*;pT>fEN)ok0- z#9I^<-$|EfL1RY}1o0N_UalPD$WAm>2!M_7=`V*T5{5N+i{hp_Sr8DcS&~piSeEsY zD0XE_cHPn?n!4GMsF9%n`juVN+hM#7k682@uAO=wF*S&FFt+7425EKyK<@(NC4Y8A zx#%~@NvaRXS=#u~o*|CJH+V(?A%w#PYSX%=00T1Cqv_#6V;@TqXJ1~rA@+)>2&-!BzI=x zCzCk{)SCKm!nA|p)N;a1Chcbv;?!;eZ3Z7oeAQ>5IR#eBYMT38GGx!F54ggw2bCoQ zQHgBsHi393nXOMj&JaW)Fx0Wb^QBI7PZ!BMD;vpuwFV`G_(E+7;rK$snzYbFdl~}Y zfFcSfpsIpnh{%~e{t74qG7`cALiHt=Hk52<_@1K9fF;;(`F(|O zWyfrb(kx-vsCCGH3tq4#>ws+Y(ku_y;(WlddGo&m1l0xgSfx%MFo|0ev|0q#I*=O4 z2uE47*)SRU&?EK8+DK;fMBO)OXr~F$7rX4{;vR>I$c#KD!VgBW$x9bwG>ma1QR|tB zF?6D>&$gPF$gY}|V=>;zriNO;_Q1yr-x!OeDHa^)6W8`)$PqM*R6R^A0jJ7Y*jl>V z0x{6ydM}#M<4zyzG1&WR*yAk0M8M;Q&=AiJwrCwNVUEoDZ^7*UYz5{wk?JBA)qE`t zr0iCwQ|Q_b-{O2gJnRX7sb#+brG*}t(_U1-G6L)auzxNd>~MmmqPL(+(1gA?fUT|J20s&`GbqktEDxG=HzM@pM|C4|0ASc za}M7=bh*q#Z8*@vmrjFJUoV_H5P6+HMuHwM+{{J|xMY_#=&WSRulIHREg9%iU8H44 zU+s`jfNC3llDUEMA8=XIduLIxbQ(`cI?gnhEZ~pk zcFtEB3aBe$Jor{sCF4n4h{MP3Ti_W=ig#NA-X)S0L@~w>YO0=gK4#UEs+b58mCH!m z>B(bETwm$4S*D$UJ_RX&Qzbe_0+tqv<l5)i&6A-vF4&LrOjc=(9Jj_}e!;$2r9zxv$(4$5>$C>CGc~M$7zb`Jg@kAq21< zeG^^q(C-P&H<|M`4}9$gEgJcWc`LA5jJhZ^6Bo(`af6nE;HESL z$J}dLcn9PRr(?a&cDxc{CTjV#hW(PE!47MFota-Wr%1u-2g_sRH2id$M!wdk$rdrL zo%82X6dC=Nw_5BvJdE4)Tyt^Lg`Z5#%|!*qQ%%fO;glU@U#yh;tF(~!I-KH9j&{2dGYnX0(o-}m;!ev}~ zaf?D_X4=@xcHPHSHDpO2=w5WNGw<=GTgBoML_;aOVNKah%L0flyVt4S8P&7bpRIRq z55>+mcMS~6Br|<#PR(^WQzH4lhuv}ZM=h4tcjTTS zeJ4JjU8d16YIg@}-<#xTmD(J*UIO>?~3ZqyBo>xxP&Mg1pqTBU&-)h zP@}!qNJrwgVBx%GRaei}-jOrb?z<7vDt-3bb|D@tiw{1dC3eetKh7(;notK4y&8^j!An-NnBu?D13s%N*K z?yjDnNs?UrM03J(=I5`BDS4y$mhd5dDmM_wrr*RH{74(?&9NwA`wJ9|rOxU_H@BfhW)KL@-6^j^u-po`R$pCpA zYi$6AwFkzD4jOYV*dKd@p-806A)ei}!J6z3`5Y>khfjQGveT8Mj-{6UjdUCmG?N*Gh8!2RRJhi0QZ5`5T zu8%JJK8kIM&cMTr>TN$qd72%iaA4J+Doh1|SLD+sYJYN`yzLoMYWD zG^t+AOPyA$R&Fxk9(yJJs6(70Wot~{FP3A1R$My+t8o}8*c>CTw=ErTD5;Vp>d+*Q zt?E&Uf`?1Yl9MDia!af_0c@JCOctexb=MnQQ)gEa2#34&%W8Ed5pfd6^Lb4e+~kAv zCjj*3hz``);rzFVnSBNt&H$yggP z5PuV06(aIE;UMc4QVxM)J`K2rOdD+X;uy0A)y#$rBHM^cxb$XKy@2rzjc)w0w65|Y zdb1j1H!U(R_aI{p%Z>Nps@}UY1lk+Mr{k0kSK9#5DsSVpM|+EQAU##=d%~+#pF?9o zRVu`@sV78ix0NwCkrS|E%%*mgZvSICbRl1wJm!@a7gK!Y7=KZ4q{U8oKtmnT9+>n> zq%?v4w(y5616Ac+IRclh#X->oiSm_*^-)o}=Ngi8kGP_+4Q<3$oV{8kjZp#CA@3$g z1c-DEfS^U8vZ$2$$$Ly^W%ubB9SC6kvH$%+$;K*a|=G}N2J9Iig4M;mejbp z@AS|76x}|@JuV2!w3ko;g4E(XN^QD(RRXwJ zul3B6hiTu6gT<_^Z^{VJ5nXYZU?n6{Vscz|zEr!`fIaA}Ri~B28QdA7HkMEG#`ewY zUOK0zW(In$WY?U&%EStO%@p5k?&4=KaUg;fieeodC@ror+5Cby8q6Rmc04Rmpc)Y& z9GAOV19IQZ{GwT~p&uz3KXQq1RPO2#$Z_}f7tN>*A7ki@qe9&<02^OyF=k_CgQ`rdHhjtw?hxO(F zVH%S|e+s`0xzrCtcZWNo^_U--;$~9MW(`GIfBIlSDF_c*BD}|(;V+F?Z>%Dk+PDoJ z=Tm(B&Um%lOeNHC&w!xJU5;K(pa(XWehWPl;TuSUQfGgyE{%Iewo&LvUye~-A~a*< z)BZxIE~!hl@w5;?)y{g=54xrX;GBtSJl$Ljj3n#bKC)l}t9Ri8zo04Q08=EL&^<#O zks(N7>YM67fvq1GG58#va~)CJne)^`wP$2agK|aOBDH)?nhdv0_*$pgj@1E2;0KKXzq`b-IMr8T7jTvu-u z32Y!e+k_hOpG+>(Im_+57Yjej-+PW5UR?P)KD_W`n1Y5f!;^w^X z)O+<92BXZmz9jozF(GHHsmfL*)^O#W0xIbG8+Lc=$dH)wMvCzAbjvAGX~i>WM&q2& z4_7z9l3FX~x3ZoBHy;F7Avk~$1T&FAjuzj|bY$Qo3wPlCUrk(<&JXonf~m;BFJ?hN zHiEiH&z}roX~;`<)ij3UuclD?a9{$TX`G|byRV^d0e8$*9bkGu_hSQ)Q6K@rB$LDs z*xN^xihj|3t=NE>W_N-f=RmRsxI>g6vqo5Jg(F>y@-SF1S=3xL0-OY*Jya=%>!SRO zt8ba>tv>5rhwYMK47*D$2N1Am1`OQLFx>`c2D<~KHWYi>$<+X_6ho)>3L}i*lpF73 zEGlMJSJ5H*B;*_kbTe z_3T_kvBv8KmDaud(Z03>9ma+oG#w^zeA@?+o>9Y4_*L2{U;7T#RF z#=O_X2Isb#-0d^n7~am_(tSO36K?C(sk1A&Y6xKMOfWFiLbABZq=tMYFkH*;Hdot4 z61>dO0V#Xl?ri|OK-1u0nqOa_ z<>%&EyA~!753Z?(*Xffu-4VqIVN5P* z>SGhx5M~zEG_)_it>Vva*_o{Y=P-)wUHdLTf-sFi2f}nK-!kS%LV#M@w#fl{ zwYkqv^O)f))hnEpb+^vQc(^N0+@ql*ML!NA!>f6}2Z^Mwz11sg&SSJGQVU~RvwYSd zCLDR2L5U1)W*I|xg&+oif@9F^%q56alXRm2LfDPlI%%S2cue#yU)o#uess}b+!KX2+MeT7CnN!K&SURxyDduI-8NAKTLK8Mm_e#lj{t@UIMS)4+rv;R&Jduv!2x^L<8cV8 zG-mH?FQ=Uton<4cGp+VQqyj4*wNaHR#0f{|L9jt?r?JgxNiGYq(ixY@5~KFNlCMXzDJ~ zU@H9QO%7fN!5l+!0jF2k_nuxP+G86s#1KtDck7xlQ&yaT&<*vwhP!d1hKI;{F$OrX z+2Pfl!TDLRI68fx)M0=KL(!Yfbq=n5AIb(1zBUi14%bI^r?J0=J2v5DB!+xDO~ZZ2 zNI(Pvfwj1&9;6K#(FN(aoQyg@8z_B3R%@Rtn&`Q|#1Owsw}q!fVBmVXXdJ{s5?bUp zq1KlC;SQ|7%j-D$bVJ$-W_iGMlmMRrJ!wq|g(ohkMb4w+Z|yC2J^6GFbP`@dB#ed#j9OVcKQE z=}n}Z8K(Q9RMq_$f-HETAju<=-c$x6G^K`RHNI1BkxQG@L&@5&oD8<(ct%HvR2zp5 zN_h;Rgl{ymv)98Z1lJ!ii>Q0&DZ&r!q|Q1tvC18HPLnd`*&2X)+!VHO&(5ziVGalV z3*~Eh87OV$Dnv^$aWVt<3SXT5L1$md2Oadyr?S*kK1gZHrT2?6Mh_#!l%-BWv-WfI zmWAnFBz!M2Xtx$D=K*?6OE9H(Ja7r~I$_Bb6DK$DyiPwKjEe7q_9PA)w|3gmI~Lvf zbbAol$AhgV6VG;{frT<$mf0SlTo02BLoqI@h7YNFIjTxxiSv~u&lLay9aYI@!4XzA zNi0@t9@EXW4^^16IrJtSc+hlPsG}94Dt72>TSk5^s=E;yy|+!{qz!{ z6ukRss}q%hE*92ZznJOO!#4)Dk@p<|3=3-MI;aVs>OFe{bt6JM?en<4>PK6o4zE1m zorI=DuK0C~Ghlg)2#cHbC>?A1=I)Z-QqsKNf&d!IXiu1&Zu+Q3hXQgtmCTxVheIC{ zmANX>Fo3-K24C-HdWS``txyhx zCVZwdMYl{7tc$nu$alYco&F*&u+aDd`lL+lS=To_d7k+TdOBRde;8$H{iBscyH4<= zdFEf~$#MRL#&qa|GPU1F0cFOb9Vd9TJj1U5a-4ag0UbJ^Y_#sZS<7Y2L*Gngn)JI1 z-Zvzs#%~DI`?QD|d0#r$dIukFBN4YoX-MQjId1K#59{;j5;(nD8&LKItbi6B?7BKY zh2b6mYKQ1Zi|e$4d6zFYaVyZ(Rg&eJCmK*E2M8J~!jFp8mXY6KIM?x;yy8IUO`@>C z=eCNSznP@%$8T1O6wiP9n^6?9B1}>mE=?}-s{E;MhU#$E}y1> z9*HgyV15i@3bn*p!uHVRVl$6Qf=#`g-TzDu?*CeZ#7=G00$;1urcKzD~`C0m-3}L&%jy9mR%1C$Z{tbeBxqlk%{==aT zvELWyCdif3w_-@y6?C)-YSfb7O$q%)-!qf7;z+mO4*N%ua(@>=E~~y7LyE7UmyOX{ zaf6$3-xcLPqu*t}8&+=knPp~ZQdI{J$F%qb>`jo^{!W1;|4cr{zzhI#m*O8whT=aI z3A%)3v+bD=pYRTdH_T#+K$Vb}kXPwk*tyV$?rMH&UTPRMJxjtc!tei-2x0FYqQT9Z zRHOB*TPp7DzRX)84&&fHS^XxL9QsR1b!-tzXI8;E-S{DoOfQ5L6Ocep*_ANeino37 zy&aq69si|iN`hsQ5H*Vo`Ui7~niS9;Mp4)Ykb%yoPHmzli<43pU};KXRsMl`f^w5p z7pAyRdz8f`ndy#c@Zdv(^;Bg>etaabM1|h4a@@9|u%oZeCCVHu$6TUkZuIf2l9=*@ z)$;bOk2I{FpA`w8F}_=~BkWS?lLjOew&ggF@8vk}VkJo8~zo4a=qshe7`_8>V0Ii`HFm6E6&J?{KCM7{;r?t&l zM@df~B%;m~Dgu*3p9eJb(j#@(E5^La+Dm2xYLzirjNCnbDt2m~^gQq9&DTbSJcI$| zr{^@JFMl}CCKG*+_73+wS{5X-2opG5>IA-qQRw4gfu7y(`GA5&+SkSIJ*!_)ykkzg zF5eFf!a3RP8mqzjv4?$K>c}RMjPPLOW8pqKXX*JmjoMshL-x%@a7jxkTi>ODy*+zY zd@TXc=24sKthc;M$lw?0`JtyClH^yZrfHZM2BKO@{oaMpW`K7IRi!YPNNqS>iZzvN zC#SKqF>96v1T)&h=%;RU9bd&@fPlDxOVMQX_#RnADher=<(QPGnPUW$REVKNXhHzE z5f9seN;H7cOl7{1&yIfd14FHKY{An|OR07DRD@=KxJi!=?gdb$Cl0}b0^>c3JFg0`voD0XDIEw&+fj3^Jq zhAR)jHq4I^m7>_d<$>6Si7}#76f3yg58JRgMpXB!?Lx64%YCs8t7Al6C>C6~54NFo zjELvE^~N?dj1d7*EXZ;XY{S6V>3y(Za5)Cs&@;xWjPeDStzzp$$5={HJ_BWK*gD=Z zmT;60_-{59<%2BygsqbwW0^vEnQJm?-n}7Qit*emo;PS#K%~=P*_~q zIJVAh44j9;4wQ{y>zv2HrOuAm<~G8dY7c}}Np7ygTjti(HiVVvs6EBKM=O~Gok9(4 zYE%ui!1_uovT&srK<%1^$rY-AiGB}j@CkOHH&p}KCvrQROIwQlqKE!fw@V|EK}-Vu zWcaFZJt~F+FrTdT5hiNWW#$i&_DnY!UM}2ojY54fUssv;iA7R@}T z`l|u0*x!eS?NmnO%N992*FHab1Ju63^>eW3kf5zF>IC|9di=t6WdyJ6?}Faykr%SM zgJMtNt(-SQeJ(DFtDMIgbzbjJRypuU>CoCO#o)qX_vJkNgOPh4WgQ^~d=v1di4G+M z#2qoG#*6Ul9~jKHJ^>lc zkY4WH4ufMpWd87vjmg6XBry(FFjH|k7BPDt1T8P-bg37r~W)poPgC2G(rj(EYM zfCa^&Oxw~|-K`l4)E%Vt!H+_&nK>R|uPq7qj)?nqgk5LkQ85C9wrk%_PXl*R#U8+3EFLrDyycBBtMk0B`F0yd?5xBb;9YHXom$ zf`G4N$A~sR7}N7m4ZB$NY!39mP*C$!wR8jIMY4ukQ3?kSFjqR~dEU*087qYTjG|M+ zTUSpgSvYtBxx=CT;)+K+ihl;l(lnmpYp8FuI#93d*B~~B+`C+-ypF!mpkBgAEpM~~ z)vvh;@V~=rygs(;(-f$hBED^598BTIlfw4FoMM6~1M(q2b&q1pJj0jF4>-xvIK+NP z#004eP_3od9Ln$@^D~?Ts|^7TJ#-HV$|3y$swj%JtPE>1U&thb+K}cUK?bBdKvj!k zH7mn}%-3#`UTp|@NWcW?3Q$#|SRKkRB=c3C1T+pA9TIp!Is#M;C|1og;AA1?kQYB9 z1M-Y4poqVg<;BjY1`v*8Eob4bO&QgiM9MXyjBgCk_pl z$2Jvi@pbSU#F~oh{jQ;$uugV`S0jGcSdjfRxLWUbx=fpr_>+EGiq|026rcw`ZFC)e zv42Z`YD^z}@BA_OxdN_QceubS5x;A^b`eM2f1(lE{Cf>C`jv1WbFaOm?c-5J#|BU2 zCqrc?mSi7MZ|_QRm0D$IW`$LH=gNT`C7s2XUGFPOKp)(AmlHAta9QCa*e6g%>u3_& zGo<{kLtZ72U7|#Nxr_DZIvZ%*PlbI_e(c0l=z7mue3J*{fuP=4IM#-xb9nYojkD ztp^R=grg~KWv^^$!4kL}uk3EBvVg}Y1J`|xCI@DflXjjiJ)yqXGx!zY(Nyh_DY5Np zbv0IYERCICTXG^oukY_6CRWxu4a~32FcGfThp%?%m)LZ*`eV56YNZq_GnU54uZ^7u z)9V|kc3_tHw?czh8S69vzcykbRIjh2+QC#})z#`>gm?A&D5~u;B|f-XPR2@&r3Lb9 zF-&CX^$}Ft^-DCkTCT-PS*Q7a5AW#pfvfG9CF)!)Yh$5fX`cLA*zX~r+Rju0?`qi@ z3$;!|^J^g{aQ`B_8Y?lDX34K9IgzHADbeR@`MWUbH~l@XmY7)au{0xoP3%O9 zULUgBmRX|9)l%u7hfRoyWW7FkwXLZ{hpVMQthjX=oL}=Vgg9|)1~`u<0{;SK^Xg}O zMOnPU{{y7qmr)k~E6k%Ty7B)VOuO;?C{xLwQ0Mw{`*XsJGG)O3Rq&upvG|{m$c!%I zvHs^UMHll}|2weCMBn21FA>XQ)sOz`u*^hf^ZbB*G>*seUxSGc92`vxF`4T1$dx>- zD?Ll83$|10Of5ryGGp$%!suQ5_;$zIwJC>QduRbO#$>H|Jp=1IxQ+$$YYh38jzW}a zZM&p-RLai7av4}Gx?`B`rgWI)C}xN#=_f+#YZMnBIYN zWZjnJmP0ppbSRlj_O8G4*yK>5EZt}^=y!7L?9Yyx^)|Zda9`myql&w{5xRMP23`$xR+3o$R4fJMg+kU_a3BG23OvV~I2)_<%bMkC6j9bZA*F zvBVt!CB+=VfwdZCRb;ElJP6P8_%hH{gVGyw-FyLDRrJQ&V_RnK3?1z0YY-rglr%8!= zl}tv96Ic`O<&+`7AdAl|ssvJzF7%Gg%r9*0d%R{%6Idgjyp6W?R`6xLWM0&`GjoX` z!)!%C3xp|S0{4`t*{Sz{@^v^@>)dCd;scJns_|Xmf{Gy`)-T*jKt%gO=Rv96Not;Gf#QIumWMrYu@wvl|}{NMk`* zd0IN)ZU1O3^6??zfEz6E=bngsyv=`Yt-}GXEbtmn#0>twu_^JK*5Taz_1(O!I-A7_ zJ|=IRomf&9IjzFE75=?Y`VS$xmOMArG=4FAfcb6pQx zHCl_8D~v0gLr^I~ITktGwEtdM`qx*OZdGe7KCCdl=p2Abq0BMQ;U+uRHQg5Vy-xUU z|Fr-AY1mqEdcvy@Dg~8emcz|?uIpT@N^9}|-(f5zHHkwe<{_|On@uAg!>}!G(g#u7 zJP#{k7}UJ#rHBc?0l`#`oPoJ$+aOI$lWkb1c!C;2J2V372~E$H@5We2572_ zz4JXDelmsc7Bcs+95@48LWeWgs-{bwzH==_FYV+eVB8mAU_u|;xrUrlGSbA+!d8=n zEP%3f#9cToRl_SiL^v`fB8)I&JMT;o;wBUX?#Ety_d!tDF^Hadz!b9?hpL@LgZt{kot-tjBmi7Oa zx!pWvYx+AqW$tD19^_{1F6>>gv;p> zu}G%V{jYr_?Q@Y8H3^=~Wq%haFcOf48~<6!H_m^aW^HL$5sy%2(wlMUhEmbf~E_Mv1lq%&Ds+L0F z2sp@YGnQz?t4mVE-Ri&?0xUb44S`naG)gB6b?k+=j6Co|XR@X)=De<2IH(Z$jhLF* z#ft-py3rOIf@z_Y`sqV@d9;Ngq94DqC3(HCdwfTvY~{~`5BJ_Z|E*lfljxG@5+hc2 zL^uoDYFy(5X5P#GS;=te*Dm&g<{JC>i!=9SKS#K4i~Or{$S+7PeirCfmaT3CUaqh$ zO~(0s91fgoJ2TyPW!Pm(mZ{b3`N8SymXx57z>qA{HKvXQJ*x51N(=Q?Y50_a*^|H} zaE-b@c=YT_Uv2!sfux7b@cZ!%{?^P=n=<%-89o4giz!7vNfyiBnr!ETTYc&QszH5{ z%WjML->5m}Cq>U+r2R*dBKr?SRNhGWKNX0dRQi7^BQ4VA|EXlM4*xgWKm19@8KhGG zQ!#Fk-PvzLE{3wME(<-WOB?;@AULJHW9U8b@EvuZ5~sM9N;=oQ{b&902auL>$E-^Y zF@DFyG}{XtJU^C4e7|;m;gD;Ia@@Z}61{gsOtt-mLpZ?j(0sx_`QVR@q3zwrqjX&? zC{xvtLh7$DoHAGfRBkJAUCKd1KDA`~t{I+@Sm+&@QopdZ0ri}Ou5E4ZTnQ)6K|-SB zvXkR#?O>0wUimw(PVBAQ@m_2`La1I@rAAR}M&C}aJ)CD>DyeE2BN3{#Bu@TuI5G#WLH^xkV&clWJJ zapV<(HANN~k(aP_+bSAB4U7ytb)m*k5t%WcYoHyET%_LWi}i`*!1X>F$u7pAyMbm} zc+TC=F=|&IONYp8flD#V^qXUOCh0ejyY$KHOers!{LmN2#90VOca*Wn3oh#cvA}2A zuMKqW(d*G8990O+7_Y6L^+>E_H#1D0GVtPyUG;ov`eD!qhk$XZ-ALmQlqan7)0G_G&Y3S#MLgj~WNcAJ@o+jv?b8Sy>nR0f&;@-GQ5 z^>5#SUWFNEQoLM0i`Klr2=lmW>w5%sUq5UbTo&*CNFZ^{?tZ6#!S=DYe!oBU7GsBL ztF>JxxX|Gi%5Am*G0-oRcZ( zYxiW%-5N~wA-RFEQDxTNS0vH z!Cx~pJ7^!#5(L#9fr_Fht3=}3U*Vh$^ z?-SoAblUwC$x-F~NJV&Xg)wnm@xKmk<^GQr`oo90CG&r^astu+*~*On<;rii^CN_1 zR~!;s6gix>KSgl-JxDP8v-EVBl~doRG>($(+z3J0WrsxVe>+H+`3v*rd6F8{|AR-A zo+lCZT8zdX=$))(Q>P_3)ozd{pS6Lx9^T1a)QI|c`dy?IF^CsiJ!{L1&?V_^P7TuR zA#r|be862QsE^l$bU%8ix+mv1M6x?OX;~%$!+OjQCSy&qlJ_7g<|l1KrM62UK3z9hW@)ZYW_~-PaWE{T5b-@-}S=^KdFXS?#S_kqgo+!mqqGwwI)@KW8*kYy^Q*aMG=;Q`wZTW&`VY7DLG+yAwgYLe zs#Chq8*R~ncS`EheEPU7KWn+29_^a@$Fh?BmoAl5pB^scXC*feLB`y{lE0U(xL>@P zo3fy1E=zHJicc4p(dS>vnjie{y8c$Wu>UxVcm2oNe;acB){jH}^f~)IzdrMH7H7jB zXT+xTE-xL~yGU2?b=`}KkZ7XwT4bQ^BG`7^Gc;H3yuJnkxOEWPLcsS5Sk9SHcCG;j zLdgmcNFIfu+j5#Y7bknLf$Wp^{n_tXQR;6tv!-oDuWvJUJ2$_7&2IvuZ;JsF?Bo(Z z@q4EF!u*2qjjr|-uHyeJcq#aw&HKZ%pU3Xxn_mF@i`7E?o*TCRgs*;2OWS|KpM3Va zB80p338s5d#t!V2bNdEtNUlXWd;dhVImUq4fSsDiNELfCnVzfOJ{zIcgH|1%q<1qM z>{hxhe-sHL)|cXskT+H`JWKeRf6H#}jM_-})u#IlNE7mA3TB%YR${DF1ic!gxKKS& zGdjmpxNwja+U+vnTsx1Br;qJ6Q}^V92`qy9fR;U4NIMu5jibkRV@&>sB>?e%wD9-O zXz6H6>cqh)g-|r?{3H-+4xy&+*iaF6Gb$nE%>fcQ&ttop?!TL|1y3hk2GP9WUgR2R zQ1bO4U|b!fSMKsMVnzO@WQ+cXUEfFgXwNftje1g%P_L$_H>y{qt|vgCOubBt6T5R{ zYU))}>j~7u#TL;d)caY(e3XO=2mV1(QcR0nuvC8!Qt@Zz_O%4eSNgMJZB@BoEofDM zOt&9$${AVu(3{k!gLrpDIjHA`pH&H`Z2QZ&gZl(SHgtakUWvLqZ+- zT8@hP)O>JI*u+5*Kd=8t99nwm-Q9lD`3XnxN_temR8-!>H+$@6vEwKz&WOIy_y*g& z;@C&iuW}6{ghRszxrS@_d8s(skMw1tI;HI|Sh$S5kCmK}n3{=o+o6RCAd22sS2*%_ z6pLLuTmATfwmtLxTM-NJlW$o(=VGR)$7U5ZEftTUBo+5WvlTZi@MY-|1e`R32vo1z z`|v^UlzS+`o7S(#s`&d;!(5sbKmyxxGDb>dm-P-v)8D$Jx&~GGo)AyzCwQFA{z%=) zGAVHj=8?eq0YL<*b-%acq;f&x`T30PT#<^&gE!->d>dP?Tf9^j7rLTjP^F(RR zgzgEn#!a3~4P5fd4=vlaZ^-@3RI#sE%r4+9&z5xV#P#$dkP#t9{HI~__$YIU%-J;A zxxq2$^cF{&ocC^QG{Qh8BqnMQF1Q(Se5tuau~8nvL_Rl_WVEhA zr@e)UAh&$;#0gV})?o1;@SEI-VAz#c+II-Ts%I0+&B)5^HYUO#KI#kBeV0BH zp6@XIf-}AFjp0;^-I( z6t&odl}$gDSw`16$)1b(bOR@w=9Zs?bvfoqyNOxGXJ$wc7f3L6YwWQ+V3*9cgE)@k zG7J_WD!w&O`lC~4lFt4i1k`LH#&-2MqypcsbSk#w|s3yWT z>jk|UHNETULRC&zY@Rjm)Dw=@q7uY^6-Na#Ev$IhMzG~hjl%hR)Rf!v!wUI|q<|jn=gb>n z-bewcI^D!3<1yb{iocpY2&h+6%XnC|F`K-Vvl+D{) z9JVtux%|22so$2ONEpOlAWjzF=2=y1kPuPMjvbig`4nEb5FB#uT`+8h^tfT<(d=Rv zbN96~MSi-cca(f%)T?=#xBb96Z?R%`s(Re_A)T5OQURu+@K%CAUt)v*6?d&~R0izo<2`36XqJ7==n#+F0v7{{Z(7N9TvxjGd?zC5PNUj-vHD(=cWg>lW~rWQ ztSQws46;qdc7xhj{Bmr_!mzdt?8 z_QgkzXCHm&gTxdH7*@Bv71s?(eE^AMUE~is@s$W+NU7Q)wS^|>-IJUM(m$TpQ>yT z(pWr+Ek}i_bvXo}PQ*Y_?(Qni6J5HPyCF0IS*^)g?Gt zlPP&@pGaEm^`NF-a{9gT8!G#NqI%5#j3l+F!SR6TDv`DBHW4XriL!eJta6vC=wv?~_rdltCr!hU zb18v_%mpb68TlH~HM+2-LZ;{kIG2z6h~>;r2vp!0YiSHNda}S0^A*|rz)@2eE+nkeXuxyfX;E-2`gK#@x)}y3Xt1^^c(>xnQ zzEW%Q!by8+NZ}d*-3+h$N+b&F&IE#~P8@u_-4-Z|^ks2-_k-BScBb@65hGPieOmSg z-iR&?^d-Oh{2P%IIC5@8!DSonddwE+G+&){wn_ale=bc*$cy4v<|K#I;Z>AzlJ-ds z1xhDi-hlM1W-DtekX!}Wh)uFFbdoC$y+z@@QJD8Wtfzu?Md#T0*##GJ0jejvCC9>C z%NvR1H^O!nOMN>aFAaAo$vt=9Mh4c>T^KPMS>c<}%H*ggWCqs8M2xqQM;!*1^IW&8 zo}#B_lK2|h#$&H+>O~)?{>FaVv9uZLK9Gemi=wc$uGA$A2{{+11FRC67|tD7bovGy z)6&-A%1UykvwEiy`gjBhl;Uv zBCS%oA=WHW$xK;VX8JH<+WWaU;a6#)H?f3b`veE}ABwdG{DjR@nrGF%d9_Dcp!$kD zE9F!9wTrx=!U{~ybv4hNLd{fF@e835c+VV3ycwHw;$XtCs82@|=e3i9uH+2fprN>6BKW2-?778deYL%i z+RIOkA*!VEgrxbVwA)2g!?ci8LRZ7CDNye~16~>z)pTg;b zOC@=V48-rdHGfb$=Wy*U`$(v0>CHN!Ir+p1>83V;uw#F|S;gs;h@s`$f!@pEtBvFl zmykJ^vA*;8XTg-rq2GwMCdXHXXXKvWYzRaKFd4o>oIH6NsKvuhfBq#EJ_uS1-NXvq z+ap)QO|?jbUko~GfAzr!7*iaSKS53Lh9&+@|L2$SAy&qF?3eJ6H~kxHvuzg9IAR+Y zk0`x}+mT<6if(F~i9q9v+`KO+IW2{DgkOAb#vbITa$|`@1>q{ag)Z27z5t}B*l4wf zG*j&>TX({g>dSrRY4IN~+^(P`d2_;kk<_4IYc4NCo%DT|L{gn_sC;utgqCGy?5x+_ z`e40}ys?bYt2ZvhEV8?&cafb5rE#~|W^3%q3eV2}GBYJCcBFLVt+%GeCSjIVpgi9> zaYi)arPFiMnY*gVh~=)=1JJD@vJgdz073+nPz0qe`C|AJ?-kI=7#BLxI`P4Z#7WZav}D&fjYifx^YFu_BFaRsj$n3a zp7W0H+v0rL5|9oo`W)_GbFJQWmd1r9L}!Q@P78T%KN~_8=4C`q&ob=$2s&PXB$`MX z5z*+mQhl_N4V`&M#odN_zfjy7*vh!P$I?qR%Q4y#7fel(86pdtsd#m1m`<1d)+>^O zcD@5D=Cg)TQpV3o=$S}L0PsrIzI$u|at+EKw$6oXe+7FUpWh)`9heKyUhmxxq>?T! z*cRWq5D>mZsXfE`fYu)jUgH)<-mhMT=qQQB0L4l+IPoM)CVI^2@(_Uq~1+LsPSuj-zC@L|( z{H!SAtJGr6QGSrhYnxjU>``L-)P8Rjj~W_74(dMKW7P2S7W4fg|ByHCXyXzYE)@3x zO-z;{8$&Hfe|*W1$i{;#lFn*%04(C^9M*!vjZ}gR3CDF6n8F4W*9+Jp)?dnuIe=QQ z^k%T;xm;;l)2wBS(4Ci4Dm7+l^)c%x9pDoH2l1L0TKW9$HG6 zAFH&HFRgfS?Q!k7D1zF^smk+R+Q#>$D(LM$1`B<(XVXDU3obbM(-w0RiE{YvTyHEL z&u_O25`A~k4YJke`-J|%B=7v?8*I%rQMVHL9||f%B|Tv}J7NdBO@ghA^R8}< zBGvgli4SP6)5}e*Z_K{04-KUHh^nK^c8Kdh%(84wbnSVOJ1`YXCoz)lM)A*RSH+O@ zDL+<>k}A`Q@>siA%w^xdcblU6<2IRR-Czq})(gjwoBM^Dc&d}Fi&lXsM-`f6@q-Xq z5gkqczDt^}p6mt`q!t1qRNv}Yx;Ljb-M`k)CX$f8SA;b#&2JwyKJcL=eqekNwA#V3 z!DR8dEBclG@YxZz8Qbf8ugaSYnEbsCgcC9;Iu3Nn_UH$~B9cN)T==w&-|W`UWYol6 zd#~d5e&jZ&YmiO6aevl~V>39Dsd#OJ+qN>BVDri9yBkYg+iOHbt|}U1=})AdgiRez zyjx;vivhGnSNPv?xSyYO(9i)<8M=N+_*+Zh)u4zk43){dp}*s_@E)zQv&yC@0Kcv{9q*mg7{X+gdt7uZg)vuLYzJ#c*q_n~Kb=*XZ%k z5?A6$5x-3|Mk8R2F8|y?-aDv9P6^3Zm{fb4;6YJvRLFRLaNZr68-)_&QZ7WD)9$oy zo7+axt~TgeSft52x89!YD<#|Ly2Q~bAVFs!QT|**tkUIi>VkY>`ST^?{r5*!9uMq} zYT43yjkn*&#ZcXoz3Q1v*mL1>KX0ct!@zUplJ>i@Tg*yzF|0K=wLn4Pji0?)K6;7h zOYKjNWyqCNa4t3Z1l!!XfU8em{K7-abm#QPuqqkUQZSXsl(%a@VMe|03_0;}1~2kU zWT#8n*0uCf3dnDwws--wf zq8gc9V)d@L{JX?6AXe9^tg{WQ27Ky`y;Mt!*0!jeSD#0DXJqdf-mT}PhQ<>!vAf96 z#QMGP>E{S+QEv%xTp2nf0j3mSNZOM>l0-cQxC#jIn9XNeSVbd-F}4>|d`=bFtDZsv4H z-y0?ZvDeZj(r>{wbuT_yCHr?%$=TjCQt8R*XUHwReI8~m@o6i|7`WVK4D{+hXEFGu zEa9^tsqEFJk_S-0lUf;3DYI0i^Px3#r1&1XtnStYbP`t#fBqWn4KtK0A2zB_@+L)* zso{gvEOd`T9-kf+crX1;Zj_*;l|4(^;UT7v7|^dFtGZ-&q2I#keZ}jt>@AvVs*PCM z`x2PXsUA1ZYos_)Ni=38MA;`_=p#PXH!?}xQ|OCRE%csJn=8=>E2e&cvIV4%QCEdxBP{wsc2tTsNLL%uMTI2 zH}f_17T=HKg=0RH%9QO7wd&Q*X+6|G=lS;h`7Z;tH>i?z*_$WrhoqOY{p#vfRn+XQ zBCH;w&v`u5jIgw`*F(rL8};ug8Fxc5b*79sJ`8D^+jwq=a}t&axI7T2XNRcMt#jMd z+_Z&;fJbosU<#Z!t`Kj6Cv;)BgNE1c23~3}ex|2~HvmJ}xKcAwM!X&G00P*z==XR+ zoOu~QA@v=PrK}M~+~`7|LDHU*kZC5^-t(%bP8kYnw;2cpK~*y0FQQ5!PH1GCPqHtG3(3rB%v5+8LLJmkoTS()Epy}av;=@JSM>Cm%ssLQeIcclWwpIVhvuaa4ugU-caam&_-V-dS??# z>SLhCF`gB-S5{;bbT}vpjxvvgP$qO7ljlq*%t21_7)4z1RZ)U|#5S!?e3u^CF(vUF zxlMRQ#JL3Q`@lZeH(-hfzt=c`eZILDWA$3<0PqUThC+;}LIJja-@&?{i{?!C&Fg;X z3UE*nBc(={GjE+~>8?CXw@{6N@RCBRN*bsgQ$1_Hl#|WD;~8*vY|X&!!WBs~#4Rl+nUiY2{PWQ=C|*fC6$< z)Lx^-IP_DSGY_Tq_N>Cund73{IEY1Bmp%mK79*KkdFl|De1Xx$cfNtJ_ZcE7URek$ z(TC6gDciDL-k%7FJiGj-RUNmIhU~L#)`8JupC5J!xuoxHS5a7SuRVhYJd>^0{SDVo zysc!ei|?yGJgww8uCAx1hTpwTu7S&ssr##OxB? zAkLcOopwA@w!oWCzi)!TAE2PKqW9 zU`jkN=Z+)fPzo(dNHn3)ijXK-Ig-<;TsIJ`=9!UTQG)5HR>W0Zj}O(%M2ItMU!YCb z2~x?OZc_ye>9DtUzZeHRoZ{6(0sgoCu z3CMLbutmD-XW&p+`$9*azX1|MZ#@W?qhNW5)L(>R5&Z7kH|;AVj{cvH6K3+SJ711e zFla)wt%FRSMw!nbGg`A-A!@rIpl3~ehYYr)MSCp&fc_ALr42oZ(dP{{_wtHr2{??= z_4qJ32?OJ`WIi-UJ?DL9bXgI2RZ$4S`!d$(ea^<)olwfl*kTY$lfZQ=QbKU40L?Nf z%NE+IKnL(&F(2Ut*NDiLhvPup-w^jxsi8Lfa`UmE^w<;}aUn}bzEJ=JumMw1k-R*4 zVLyr}h|f({mOVg3wzHIANJ9zcFsXWX)~H}~-PhLE=V&&PV1dv95({!pt=@K%^6mg z0x{Wy-`Y_-YbBX#+TQXZ5rmv}YRXw2_L5`y%n~J5Kur>1OjusRS& z%k_<}L0h;G;jQgsXw^dlpnt3W|IY|NQq31YO{pEPvSk?J=yt$WBq!~j{yUrX6ze2w#?kg41y+&U+#)(r>69?O^(^-7$AKQi@7ipf1w=cDB z*LkQ3OQxdwAoHi1wM`)7P;5{*0joI|z4vC?E`1PsXDSxsP?TX)#FSc;Q}aM?$k2I+ z(d?8^q1uDHRKK8SO}6|}npbG|+&vSK22l@cD|8d%(HvuJrNwD{(455UGoo@;nj#pO#x~D@Gsm!;z;*F64uVy`HWCGX5zE{jQ z{c1piQ>*ntkD{i#d|U#O3qu_@OrsLiLFzwb*W zuS@bXQjT2o#EV1wG!yN?8M5`4>axFwK-mjCy9BWiE5}eIVABta)9$J)}*RKaygAgcHaPX(F9urO?jO{<`*E`4>7OOenD6r5;y2*!&^Cl{u(_ zY=h{thahBGmmh3B zn&zWSE$G;2n%$@#X;dTLURJHM-o5LK1`A3(OeZB+Rv`cRIw#E$3z8+_*ag9{ zcT>0bfc!b3-el_$U=bcw+DS}M_&FLwD1J#ThdJCh{W+U4Z!oMdIWe4&Fpwyb{E)bj z0+KF}gpi_;u8_2lvXXF;V3CxNE|Un7E|MOTS=UQlMnb%9NE&Q6emc8qnb1>B+f-Xk zJ8T9>MrX!oe8BwN{G$fUcz$9~*&Vo8#o^&8A>9emOjy`vmeF7r1>R{@+Au*7pk*_~ zF|9M*Go>)xqi3xXlsWuIXd>7cjZCtWL0*jiVNJBWAC zW)p~3n0io&IS}$oND@$?NU&hs5&4g->nx~AbJE{k67~@RIAMd z9$nRLo6n-eQRQMPGq2Mz3Gv|b2@|7Y@L^~XWC|{GGgtMe>-wrZkc(8#vox3--Pg^b z;InlW0@GU40@I~JwH-7fQ9>!efmHa3yBXcJf>pscI7M6b(?rpF)5OzM(W20R)5TDk zP_j!9Q`u0dR>4+5RMA#)USvvmb-*ofoe-MRIc9$f zQ0i9-UsO}1U9;X-ba!)CbC#KicveN;OLu|uTNvThIB?m3Y)lqRhI?HNT*7*KJvw5iOD8D^5`H?pK*w z&_L-_7m}*Ypzg>5D8LENWEYQtCY?&p*a$Az z7%*g4Q7LaaD$*607}gzYZ6|$ePMyQ9pqqOQ<6gDJoGHNck@z%LUZp{x~}&1lSBUoa!xPjc6F!Hl%wCTM&P zU&epe)@_s1PUx{RIAme8N=Tz!MtYM~+K~d4Ao()>cnI@aMtM}*M3NQSXu&cZbO^*j zd>dHCbh35ZVA(Q&5aB#<2; zcZybOHs1ETv}aH0@|A4#mMes%)=r>_6|80vyaP!wbLL^*6G3)#&d7W@*<(&R=z(Mv zmj~NuE9f)u&X7P%;u*wzz%WRhU~OO~VBRoH`36>e%2-33)izPvaFCV2(DlHO^}sHZ zQbS(DO}1CoOIA!=7u*$`QbrVz)l*VN70{q7bT(rya9}K0-yUjP$VJGDVT3a%mI2&D zSR+`|SL0RUU-Cf_+!55n&Yr{1*Wnf~?T~V_O%qBpQd3oPWL82}AKaTL#0xWMmT%ls zS~*B!95aXf;d7KjLBZk7k;-w&;n2X8NS@G{0FewdvSK1*=3{J0{YgUHQFg|0Q%Omk zNEGc6lyo;Gb-I5*2&^V5F+&3*sOHvSZH!S9Yw^_95~r}5$p(0opq!D^;nfk?vr+Ex zr&d}PL@gbz79})YvB??rVik8a2Y?`uLi?kZlFLN~;mDhCW2iTdYEVTBYZh1*YE~y) zc3e1IAW2F|Mo5Vqu^2b5U|OnDP+<1oNJdC^N&aK>Hn5z*$WuU*K(kvDTQg5{a??oD zSd&9-P(hc**uMdDWL9L{%t4B9Fs0H=vTM{r)M3L2!;XcAXO@2z=|0 zFX#uHO>?opl|aNn$Z*1N_HlF;>NTv+m{HFA%W_w8Z^dEmR3s^Rrc^Xo&!A7kPEnF? z#SiaA4ym$tte0q1Z&<@YOWs0KP*O{1+o;F{Ncanwl5`Ze!2dYV=+{8rfmAVEVO=tE zl5!GAuFX`jPp=>0)h@*g%}zAm^#+o~zH+dwU>7K`L_lUi_;c_U_}tM$l4}1|hjX=& z(xH?i&T!Ord~p;-ltxr;6ciL-lwXn=-F6Ncxaw?jDgToCXOj9K)dY>2_^q1z=OX%} z=>;vbYQLp=&FaM;YQ-Pw#U8F>@gxXysB=hhWOt|$P!jl=tAKcCfO=1Wc~5|TWAOyT z$pp*E1mBqYcCrOTumwh;;zx556q0GuVbU1VM944()ED8ow5b}gOtDOnO^zSNSakSw zFm{Y~Aa)RUjB;3abad2kghC!!Vp)M%-PD0pCXy$^>a5Z&(jAg4l5|o~(Mz#l(Ob~X zAj|N~SsIxj(8w5*k%Cn8H3C?lb=F`M@Eq{e(A7ZMab)eg4i78cwE;cA(;(EK&k<^E z-z1VV)U>@yp%h^1xdbU7`fmSOZ@opbSgb-AbUk<%)KFA9f`70%EMy(9LU47G_&%`G zAl;D7u~(5u5lhk(Qg2cUmcl|3E`cykOK_(+*$-wFSCDy7fmjjX8$iube9{9{%~^ve zjHO540L7(Bqy05Ax@Z#Ad(?bXEL1PlG1O1g!YF_N@pIC5{h%K>@}ij)rNZ0kPgJHF zcE(zElq^Gtc>4!<{QdzA4D$aB^4$pX!r>KV0@`f?*<}LR8udbyEJMPrV19789;x^Q z;{w5cxeKP(D)80(XE}wHPa4MNoG|cZ{UqOi_Pv zp8>Qp)pT)?R8TGgu-oX8OjA75Jc9isg8dFT2Hjx$8DRSzVEY%y1;ZP9nj3nXK=P73 zDCiPVTvC8jcv-Mcuv9IgT(C~CSI|PROAv05ZqQ*+LC`MHUr^~Ju`y9)P;pQw4D`cH z`S*gm+BI=Rn-Y1$l6m71dE|0x z9jrpjWKzo*Rc3%NKw2@vvba@Y@I;gEdCkwnpHIY}&%~a;noZBdY;m9x@Tl>Lp%a&t zU&2eY4p6XBQc?kfloQawQLTi5Vi0mrC#jD_N^W>&&_sWuFT{VtP^j@YOY3wmrkWhk z`%!rm;IK}_LlUJCEX_#sg8Yeox|1SNo+e<`MQ|2ygQ5E~>E`tO2RU)ZLjD#{96Q>D z=G*@{e4m^L5TkIse_;(%;uJ-R`$d3kkZW$T>Q^*9Ttt48wYe0{ZEQig74w4IH?b5a z)j)!LM&Y+aofSGbdxClGE2|0d!*WTDM1pF0_8j>5 zs-F62SD0#f#v}uGBm*`i130wyiH!T`6li(ZJ_BoKdCq5f&u4kfi$rT?cqoMNrx?JG zxk64B_sVKaI%#s@450^)!=~odH~@k16E`UkqF`U}UBFUcQ}9M`SulA}Z4ETv4Njy~ zSXR|d%3M(o452Twu-zVw<6Kbf`rt_0swwX!Zcp%1094z7(AE!#!l4#Z zSK44~cUqpYa7Fak|D`Kmf)TZPzmA&%)-A8!H=_DKb?^cSs>wxVVteUga{9U)2qH8G zC4|dEblBHijkB$U{|8>;@Yp2fShqiUoV__2>*oTK%<@sl9I~4O!s1F;N*vqNPGrFF zf^{zR)eTfJUyNte>2+n^^z==K&o|=GOo}t~_#w*NV0n30--p)>Z$*$%_*!Gq*+a~9 z+n`r;vWd|5QL||A@L#ULtl&j(S>Q|nMQ}inSP)N8S@2rWO>jYwMG$&0Td+WoThLmN zTCh)WanMC@Snz(3da!m7dyp&8uu%|GtW^RD0LWQLSCCaGQAkmMTX0m+M9_QC4AAOP zQc?g^avMTWZ_s+TMP5^(bkuNt@)Ac-A80gA&{Qx*@NCdtkaJLe(9%#YP#*MASXYM> zQSQiot;`2rwHsdrwUKt^sKpga=-LEZR8@@}4im_i;LyL(foW%?9$WC^#RO^V4oy(4 zxfL2vPNAc+*O&jm?{=O=l(R7e29kR0S?SxDKi}U)u2}3$sWq`jntyvJ%SUbvDOIpZ zt`x%#ep0bl)sKB_45BNLPts)D1R!?vbc1|Vi%549rs3=x+a73U)qCc=nvS-lK z)u&q9$!P(Xi`zF-kNGN1kb9I|bwo$F+U!|0CC$HhQ#-67SG7_YK`7q15&C}3ja7mC zM_L>6I39F&WvR??%uXNosnMTvYUVVr2(J3^lYlA$kp6mbR7Ho9XeWu~Dq_2rWvNi3 z!)yQzB$<_JA~$dCQ5XXDbE^NTRG9v<^V))&`tH~G`9;%yZ(6SwQFy+4@F@r-l8F9( z9Gz7pUgcm1vQT^QDQGTHQ4LeYgA(sX5f9MP;c2lnUX|l4@Zo3Lfeh=Jll%b)F5FQ& zY84{B

7|a^OS&uL+pQBzkfLO929&84S}!o9g0H=_kRkr2nA`=2Zqq3yTK-w_Y&* z{Ur;U@Q^`3|FZt7!J_(w0mTLJy-C3q58G7bwe#~w59%a;PmN$*Sjr{DgVOduS2oR{ zW`Tr4hOMFHP!c>;dKl?KQ8x73-d<;?G1TYh%t6S;Heh9z>i`MG_vYziN&w1J7IgK& zJJItZ8Jrm292!Vc{cG^hPeu1qvZ7%M^bFjQ0gBq|FBk!@7+cZ|6DUt1N`Hl2k}M6p z(9#SW5(9#I1Bi6@_(TlM0}PZbj9zR*j=Df)veqB;Ok54kf;-_e4hXb7cD zn-w=ktVSs1^3g7xlqS0bCbiTi60t=gNXseZcDTqIaS3S0#B`xpMhPnTXwdL9%PXQ= zfg-KSA;&hsbK?*lv2!G>rtY6A7dlix+SS0?+tk!v9sqi;5cw5S@`_awu)Q9_7ogu( zdMINM_zh^sSGpI!EBzvf_r!TC56NkqepSeC>$$L3e+(Ub?BeMGbWJ^|PIu zRc6IoRh$H;T4rrDnK~e&nI{*$iiYf170C4#$#BU1H?dpX`I?0IVPqQ$8gMlLLyT(3 z#-FyezQPA)yExTa*og*q*nFzR0Tu-X$pun%1vPs0Z!6MP;xx^S&6h;YvosBtAWE6< zK%iTRC*u=kJKv{x!D*uN(-H&jdI-jj0h)IG>M{-G*69Z^Th|9+nP0rT9>+a7flJ>$ zaRiJK(9zT2UWbGq3-*O%?z-P4k=j}B|6p-84RSk*uZhQ_@P~piTL${b;~^kt*P^0q zPFuQw3?WlGhaWA9<$2DPF7<9g^0J!MnTb)@H_=97Mb-7wRlQG7I5 zMq>1QG=5w3%tttCw>FaTe&|YkF`ZLo=K43c7A@ec6NPunUj(7Vv3E5g0<&a^=DL(A5#fbVH+us?`7f> zx>tCZ99prdyfkLIHfqM`8QI!mLsUDhd%kPhXQ>Kl@)I@67qKt^z)bORU;&hGBm|>+ z05B|$HA}$aAsb8TY7mW0Kr7?_$Z&4Jz%^>a=opN6NU>%L3(_#EN9%N2#M)GGDZ~Z`EKgQ<1D=SD_gL(VD*2XnWrN|70hvZm{25(nDudKz>+V{#dUJ zKncWea&d=zd4r#~_aD$u%!BnlIkBZRWlQ=*^FfMrc=e-bG^hl@CXFfw$4i#kz$8&% zxYRYq;0*|81yF65bZ4d^bU;tMhIhaFFC}dcQ(-?Jb^Ak_{)k8RfNOwKFH;CM z`BLsMr%vUM4#5zOk_XV5B_%BMx9t+$GiW1cOkscCNb=2p8k*dHG_4M5X?>891b5m# z@1Paz*TNRHG;=iuelYS*G%s*OeQZ)EAXIBp2U>*G4xZgEkl=ao^5I$PX+)SsP0?sb zYKS~SAS%{Yg$;i$L12+D&b8Vup~LVDn(1ubZ$Y?~6;*ON1$bC^-g??R^~%FXHG{SL zOVi$w@O>}pJ7EB*GtFlxYXskbL@|qCDa`iT_(fuIRbWJcYi6vk000Fr>62u-Uys;3 z;0n*<4dBy-)G3X`a@^5s=X4S8Pq1w}S^oaGE@&$#7`IR^cq&Ai;TJ;Iwf?ZfuDiHt z4Oy3Z)lLVw!gh%cI{_KvTA_|Hay1yjz{|qZa+6umrCHFV@*w}4O4H>-zm-_U6+!{{ z@M#?a*zz@11wkFB2lzZL69~A-?Ca2R|`OVI`Ow4j4k%& zP@Wh9Ai!cDf|6`nW`2>`9hx4a%;*N-&lo$yXHPptqSypQd4qTG%@Sb+-SSPoZm`TW z>EAFyGDzZ1MpT6H!OsjN)s3yDx0&C|hqh@Mhf_&nbPUmbamP%MV@kC^i5%GCWNg56 zz`ufm1@Wyhx)eCLd3OIDbQFNa<*XG|XLyr!saitK<9}I}6kai0-7<^M+HWd3A=oZxfJ@o&SG3JXKwGk>#d<`o_8Jv@j zy#fcqYl_`eXa(=+UrmMdrgCW48QKFFc3d1o1kbXMPujzBR*BeQ21=n+&G?zY({xP9 z=x-isZ{H?y;uYA@Xc;qHRQj?STFM;Bs}C4wiqk*DNrg>Go0>>V-_ky34&@m3^_D&P z%CBM^QZN#k=Nb5T7m*M@xlosxr#)JPH2M8t;GEhEE zM3WJidXlb30buRvaZW1n3~f)4A_@sUz+@SFU2no=aHMWA3y4SX(?)!{P;jbXeOi#p z;>b|wL*S_pfLRTg#MQNTaW8R?@Qd8;>ny-a7kx7Oc3EA|L%%)sJ)db~#ndT)^|8=) z>ZK1X&XVd!^y5c_d{V#wm7B&?@>zxaU|O49C^O_iF)l7-2oq8O3pyal11WhybLyFNr)hP<(ozdQxp$alPd?p zdS_KR5p&^uwlXS+g-s0l&vRv{cm{Lvg;zLsL~1IXbS)n7mA0Gyqnj|(VF)8O!h~y4 z<#AmrHoE~w9}Qa>QfSVEG|WDLwTjKhMh?p4un-0h=Sakrj*|tnO-A!(t&H4JnB*Ho z>Hgu3)`3#YAp9C_8N9;)G00Zd9o#^M!6ag3=8Op%W$V*uMrJB~J?~4W{cW)bZA$}b zF)osdTuWJhW6-D=Zg}Ui9RN0F+LF|jJqr?-yvlW*=!tb0#j4@_2hiw|>cKo^-8Imh zd!|zI;!hPTB7A5Qy?gt(SMGTr%8LfF&Rk)@9l%rC zT2XwNfmr6s+#%-<`owt4XXxIr@8KHX!4^hbrh}^YHJ2F_m7d6BDL%ImFfVh111;gd$;6vRc zHLz?zs*<`$c+2tugS@lZyF?2Fta{B_Ki6?gS{j;QjZ#Q?eGgO2k64VI$x79ob<{5i z(HA>H+2DT(3%ffts3{0mc*czI2?!2apv4qn^ahQt^alqbq5iVc0p0=W=pcluu=JFx zAyosk6vboZ%-Xupnjry{(c!?dn!4(5dR>u$a_idq=zIIcxR)fkJm1%5NQMZE1OuTA zB>8|^wsIq>gJqM_>uAdQ#FIFjV_joJ;wJmW;%*7cR@E`nAk8@cZFdfP=ALUsnM@0F zyT*Fjk|4wd;%@yF1kzL}lEISLqxI@?lU;$7Cfd|4Si7TJq;S=|w1x7fLGin(O-A1E z@cYDc(wR+Mhh%6MbTsv!@@d#OSf<~Dg%uwM9|0|G5oD!F zSf?HQ-Nx0j_s^d(`S09(xjDfrR%1JC0d2qB<&9yqPPys|Mfq^|y- z?XpyRo#mF_-bi|cff<*OB|ePY0Du>BMx;Lf(xGE?|35?^>)gLxX44#%;e|6XLN?7z zWV71W(N{KxKd{>6-SL5vXW*moHb%ciUTz~hV~c_I08AaH*6HrPOSriBbg}DL1<}g( z#!UgiH|)UPXTaZY;rM$nMni^CF>NqYawuxx3m7m*G$(hu^nNx`Ghz-#V|B4JVh^~P z%LJI592lHKM;aj&s zTazJMn}J)G0b86QTZJ>LSnHHZnsQwc0aoH@(*SG{`&<$DR&a(saEC5%hCXnHD?mH4 zT^wOn;DDBJsMXV!bRhu3&~w0o+f!z|j1#|0KvI#kqLH{6CgxVV&{!hTAXB_umu6PF z6_GIcJbXobQ2^;BK=m9F!l7DQazqRicvjc|oiO+VFr+TvevsIEZrFM@*m|AVdtB&o z>w0kbHgNq`kn3+UZ$(tA2-dOq*0cE5wsF*Db&Td`|Z-}O4+eNAc z)G!B;D2cxF;1ylqtr&(! z@WT>AY(4xyUJm@;`6iKRc-?4%i+V!hBgU5Cr<$0hc~~|O;gI3{y}-U8VQ3`Ek}g6W zF|y5it4LilwPbPsV@i`1S8CilMRrgoae^}lef@D7L0i|g3HR_Wf7o(wR_2EDpuiVC zDh~?=_wc0LvAGvLFKt}*&jWetz=Y~qlDUs#KuF}SxH4q0-x0`z*-X~ADr$Q@>bDYJ z$LR6qjUjaj%kIFsnq)kP$@7;1!28D$3tRM45c>;OW+%=2td1D0z`?4WMW7S`0TcOO=hp&AlFZe4q|mw(NFA60 T&nsT^*Z|fHP*6}%P*6}%Yuuh7 literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-BlackItalic.ttf b/presentation/template/lato/LatoLatin-BlackItalic.ttf new file mode 100755 index 0000000000000000000000000000000000000000..76563c22f86daf9caaffeb5b93d791f5db74d9b5 GIT binary patch literal 150720 zcmdRXcVJUT()jKxlH4TAsQUNT<9GVAcPhOgd{*nLVyrb zNN>o5G;*nz{$+1c6I z6~YK1Is9Qz?6`&r&F|pJi3lI(5Ndy6TytybJ;Cd}h^qbyA?mXU&8ZnT4<29;!n@(C z&hGhLi@s7^ZX}pOBccO zSg2nMSINwIEBoB-|1Cu*5$+!j%yK55qcWh=gY zs(nA)|B8^fcy8~K1rv%k%t7d_c?ctF-ooy#XLnzpgwSiRAVl9WziY)JT8;~#{0jJ< zThKMXH*x*6rx1P%;L!YM(ZZ$6ewerLJA}XP0UY`lE$LnK^EHDWfWHCCZ-qJmZTin2 zT(;_(>9YKvP?Y!`c!J*j=H8XU_1lv7c_+U-Vv6{3M4<>sp?~n5_%VJW)Y%R1`DG2PH2 z{KI>p1z+$0Nuoao?_s_~Im~;ggd}z=%3=2+nn{IcBqhUrB|N_uu1}+KsuAT-jltjO zlHlj82j$T3L*j$~qCY@6q5&vF%H0F$IDB&)#fble%9w|sp1VWOm^UD=4t_7B1!yL7 zC0fcZLtT(&us+l(z8`h7%HS=`cc_(_7krnoA{AppYW9oZ&rCJa&{rV?NlYzD6jBXb zGmw`49O+4-?n6algbE_MQ6U?LibOo*XP`o6H!6Tsa*iat6P<$cBh$%I_wbI{g$hN3 z@cdP%*8}z5jtayS%4NHu-Phn=8a%>GKpJL3@HcX$M2MqA!S{qK6Re;hG4X(t7OAPV z$cBGL8c_i$kF-n!BqQLa4}K~tMmnZC_=AuDf9lVGdsgr$Nz9MX2eTm^M_JSlkbXfj z)(>?38q(j9pY1??G4z4B98xLrGviS@N%RjWl|72Q^l!o2>F-e*y(IWoDuCuv|3*ux zW9UUlcTmUh97yXSzYEgike-C}0;DG({RPsmkd8t64$5(mrb7OExW+)_dvP{ z(o=AM8QU7%&#pt!%nInk$Ag1Z3d*FHqHXwFq@dDK4*na85qVJzK8#l3LueMoqgB)Z znuQMrpQV0)VM$}EOtqMt@A%L5;7LDxVUj}M^hXa%~C ztw#ot6qSnlP#a0?CUg^Bh~`6?PDruL7Qkf-YJuxlaIJ>xZ*Xmb^e`k1q#Q^_NG?d1 zK$=7CL;2Lc;NKzr3h7I%<(=?+0;Cm?av_a}MC!i@(gsM^LD~(8)YlDZC8TAdiD(M5 z86~l$C=>W5hE5LN&U}E3?Dc3Cb0YW#DMRfE%Hb*nxW0j_m+%?mM9q+|5GhbHr9hDY zPcx*MknUsmp!w_;R131(P0tAaTk(G zCkgl~hwvHEF_aeCIEHo(>6vp~hxE?S^(_4}q=!ab1)W6n(oh1uL-bNeKasqU(nsF2 zOF&nR)LWptSfZ~+rjXtux@*iN=r5wfM(VMV`i$r_NMW5u^x8QS(RCw}p!0~{8`6D5 z{|)Itq6g2BhIHcaHLMGVbmHhM(SbzI3H?X()yRa95p-2lSa1Ckt}&3Lp?i>{u>KK5zqqLByWWi1VBSsjv5!{QY zNW%AIh$q*v{^5kNo}TrLLU*9o(4W!!m_o0kSJ5BP)93~CcXTIu4Bd?mp^wog=r8C~ z^cngbn)(7`bQJ5*UFhHFTl5_|fZhO@L;!6Bib63+ieyNR6iA6wNQ>f;4jB-KOvsFq zkPYmC6y!io3;l$CL%*Wi(a&fTx)Q&MQqde7iD~p7^b0zL{)OK_0o0G~K@`?w z4%Z<)nu{JsPoVqJ1L$6KANmHJ#IN8v=qvOddKeuZJ`{+N=&lxsxv7C}i;0&CZvvFx$E?3Uo$=$;}Xi}KWCY#A) zrpzL<%p7M{nG?(gv(sE=r z;Io6hywm4 z{QoZc2pvW*0pGs~+#LX(ehg$`2S~^Fn87Sa#9JUAPoce7gsw#WSd1k&0=QofJZl7Q zCvwPwBsxJB-N41!AudLdAeq$yC)eS6^beGXCky;M9nV5Wv;^dJAxP|EklE!RPZ=Pw zmkBbv6{Hqq7WqJG_ki5q3^IEQNYEUR+oy=+;+N5UkR~%;iY<5<%y2x|iZ8)7d?`-G zE3qA~z+m}d2g<@}AP?zy9nQe(Q8dcN9(+0W;!QXcUx~BuX6(aTupdo^dE*qEhp)v2 zcsnk{J5U^&hKta2T#T>6CHOjAig%)JT!yd5<@g4qLA_WDJgY`MxB}mZtMG1IiFe_* zQ36<#(LWCgn&=_Wc`t&tBN}J`4T4Vl8v6AYLCfU}I;jeQ zMhPGn7eK9T73~~X`vj6U)&@k)9c_V3T_Cx=vya=_+7_U!T~A7o1a)^?X6Q_&0BR4Q zGE4a(khrqWQg;Bm0$gXGJ3zU(9xm`)Lx8b$97@KKWfk2OO_SS97L#sk8y9G3Xfp+h z+jU$Zo8+?F+qwQwp{|}lGCT_3ae*}QK8=)ouAz+sAhvdKfyjooPI$tRcabFLBROBE zuCu+pT^GR4_I67EHMI4%x4Q$hi>u%QjI|2@V#^xZ0<5JpAhMJK`0WAQ=?*Y13&6$o z^s_TcIr1jdIQa|jE4l-;!vxRExUJk)sJlOnwE|j=ZJiCeuBP@jOFO(RZf=8DI)YTV zWp{ve1;k~}L!d4M(um;JQfdJbTS~hE)Qr9W?uPmUtiv4;yEp=5R9W{E44MH&0LeLZB4V5o!iF9RN85 zWq`I?y2?XMM4jXFKoWcf9}lB8@}p?NGnUdrQIT{-n@MLewL47iK#Z%OqACJCUFGh8 z)CCA|Tp+rvhTsJmOKE!`hTJv5T@2j012U*4Rv-xn6zB%91JbfiZfhqOkOI-%fml~< zOIttFQ{J8wi0QSga0leB+Qzop=Fmf(37#v2=W(unBr9ue>zB!(|GG*8GAChDVBOOG zX!0ip{sgcZdV;n#wDl9t1!9$Mh3+NII!qS$Y$&e_y(gal?~}LffXO(3e_SVY;u&3a zjt&I(h{6ISE(@T-Ll|R$8x$@u9H@$xwt&o1%2foSfGH!P;m%U76PkZCHWq_zRa&~W zvp-Jc3@mr*%s?h3;HGf811eWPCRa7knOrrlewtjhu6~AG<6ZqMxhA;!MdYe;^^3_h z(bX>@SG}u0f?QKvoF{;%x&sa&v)CPQ3YjJDfWd_VG0y)1j7EUb0CjT!Be|LYMshU+ zjO1zo7|AsWU?f*7z(}q(fRSA703*331B~SAa&h^B2)JE9n%GXRjF5@+XBS)pF2Zjf zSHSHIxIvOqfr-Zfw~Z-Emac3IQDf&V0j%T>qz!iuRtHiY{VY~hw1FBTosd3~GH1We zaB*1zyk01WE6$c^P!wZ=N1h|~VPa;W@#+3rA=%cIG6 z2YeSQ3QX7y#r@DFNNwdj+&Ch}gO*W)fWZGk zkw8S5vv;enzYh zCEx`Yp%tiaj79(uqAVFu06=>d7z$MTC`h2jF8J6g00Dntq#;`FbX&j?xr7E_1P54K zm!dUPBJ`?MscVs3tbk@L#S2>iaEdC)9=Ab5Wu40$IzRn z9~Tcl7D^9&dPbQNS0LLt^yZ98OI?8+=T_h$!Yo@sEYE5fy2TUlK>K9^xd;OeQI{~6 z1*F0QLK1?p9Fzv=@L^6J!uP_gIBqP)_@8hep&QXJ`Ic;*X+(dU+QTqb5Mm4wwUXd( zB9tc}hVd9ic^sgu3JE8S_8^A}PaqRyvFaSpt3l^tr6Q08WoldjKU``F)hd9lTqO)^ zLv*Th5q1pJ0$J-_hd|FjW;|pt$xLt^!orgV$OumwNtp_G)kMmWOfxA%GA*PG$+VI( zC6Jj&%8<+?Qif#ONEwo8CuPbY(?QCR%w$rAWTucZBr}zisf5flQif!vlQJaJNy?B+ z7b#N;nHi)E$#j!4B-2C6kW8;DkULD~K5`Q%gvT?5ToL4E3H$_)i{WOrE08x_dJee} zO3xK?r1U%?M~cpO1@ecBE+98T(S<^e6kR0bNYTZvK*4a)CFDjZx>U%KqRWIFDZ1SC zNCZO-8Be9ofTTA-CpD}X8gkqSfieC{6BsIZ8))W``MszgiAoP?F>;X1BT*783FTBG zAtx?90=^`SBH*c{^av^r<>{XC{v^Dm5vrIf{NS7a7a;g@jhp|DAA z@EgMDhsu)T#G5!86WS=HCb|9TK*8D zIQ3mUy>Q?(? zVC4Wi6+8g2p90t=F#kiC_F%gdi)m~z+w8Q7mST$uo9LQx5=DeIRsH~N9B`yYxOw?J zX@Nb6s3-7v%875Y&n+yPo6OG`{Ls!}5r0zWf*PT2{w`J`)D0_zr|X7F&98YyixGIZO&_X?~MeBTp$yf6sG?XP>{V$lTg)So`SGEMwX1+DjJI z?|gUT;IYF$S&CXROg^iM-%P*CZ&7Epl{A+9nAU!IUH-ypbvkbI%-(|=YN2&dSir9_ z?DOE4Brq`E47Cx97{Yj2ndH_$X~d*MJn&2k9BZJcNBxbt$y{P=tcqPSoj-N=)(>~q zX7_D>_?7uho99pDmPB(2@FYmhl+s&6BduI2X z9HYO^vr(#!)g)?S$6xpMx~V&Rvj{x=J^`NbAXgsxTrdEILZC{q3>#>HI>3>BAHeU; z@B#7cRO*T+E-yJRTty=gY53p@nayj6NvZBFuoYU8BNC-*nITb4D_T4D9eUAoOCza?d#dz z|L)Sk{~o5IxBvaNiTt6I#!Kp6T=rtmZHw}0-=!Zue*LU$w!iECZ+5g_*Oxs|F<~ch z@c}0xb}7^y3)*EQ7XhErIILr!Ig8(`pf2sXbz#0xtp{hT`Bzi%#2tUXt(CO=Hnco` zm-dG7r=Z>qqy_%+L;Nb{F=%j0sBvojA!-fqE*5yV5!#F*QcD_wq%esowG;2-_&zsf z z0A?#9K>O)<{B>RSiYu;b+I;lZN&dd=2VYw_^`;fmlIA2-*(`;{<6P7CFDXi$xS~40 z)0Mc|V5F(<25(Ktv&D5k{QcD{KRvQ*PL4UJHu(yROslnMq8hJ%Yjx+I+1V<^_r~}T z&DpDmX|4d83yHn@F#kmT;E8&`1XtBj(mJ;Pp)vaOnyR>p5+HQsXT75?o0|t$KM|eYEtc zcvIBc9rVLtnqCF<7@!_+h97*PUK199w$)%0C_p=mcA$@e(D)x|l}WfmKQ0X?@V?Y6 zvsZyL`7aV}x;XKd(HV}~dj1cGa3wu84gbxi8+<5NCrz^tPLaf_r4-U@26qVbAaX;K z_E>07=m7dEZs486xbg1vdqN4yG*fperLhJ|0 zbzOsTti+J(q7Tg!~BmekqX8tBN;+3LBA5& z5G)kJ4$z6iPyh%DkdpgtsVbhPMWjs_{nc@iI7o|_8KkLrJ-sp4Gw?9mPe&d z&rmEgo&W124+t1jsGRGdUQb%)TGL^r(-x=91;i=nY(#86EJl+&6CMwQq7z1t7Hvy^CgfA5Y%?=0K?_gh=} zL(b+Ebv^qR<~bTy)RQrR_FeMvk==9idJleg)g_+@xxn{3IL25%1njDhEU5I=yzZ+Fc)lgfyope92&;e8h;_3hpC+6 ziKNl^CAP^v0)?I4R9O=Ov}I>eQA&?{-RDh{Lhw$zquiy?8?6adm70H%?md`VGxI+y5WJ2Nc+8-wS-GAdx8;%)*e-8sa}J8aZSN>IO6_$mRAS zjvL}Y{8W9@ncSJyv2Fsk@c+$eGg0fqthX-AiUYjt3>Mw8@Qp(^X7fu7pozkG-z4B| z9}{n)*j_%bSx({oir!*wgC8szDg!JtWx59+jo$DmpGhlAe-k28tvvt*VB>Vc3U z%xoe;267+LAcSCGr+P#n8^U}~Lm!DVYc-ynnhZ~cN8_%Y);+z}UAOJ^wMA=}_gI!m zQ&fpr#jS;tyWQ2(W=yMgS8sV?W#RI^7Cm#VMq@}aBzOv~$-WeGa_0C2^$T9Ot~JqH z>D(<>+f(h`UGCguV^aErr7c~LY;8*L6j=pW`F#Sc9b>|JF2maIp??<&B`Y7EFCEjg zF7Wnr)F=K<%z7Wac4|!W7?$=`5_4+4<=hBkh_gV*B$12}p@D?tL@=A$R?u6Q9x(@3&XLc3;LFXM z-?$=6J`3(5l>T;%QYWphr)Lc8-*oi$j*i=pZX)^m)ss?%x@Yir3Uw0+gj&Vkv5hPb z9d3(=C=7;ubEGXB9-hsdWp))-U-slBsj)+?7la^V`v>+fd2#O?^_k|Fw=Y%FdD};8 zhad_;D!|nW_U1vr8SJwNSTHw%LRFkL2H1mxnf%8*EU-H=M7v|u5_M_yD$fJ!W@K9u+2F(c$5%2i zCMzQOef(ek4Zb5U+eeFNnK2eSL~28lvd)nnu}BojNE4zl$7qZ;0SAs3iVHoXqJWo{N-XB;z!AA{{^Q4^9bl?`RQE={0mD zb&p)hXDXEVHZ?JOA)*GcGod|V(E%%m+E5dNi#V4|w4#zfQo&z^&5qQlYYZ}lC*fCl zb_$kKse|uQPWnna$B&y>XPe;0PbRnl{&#`j?}PdXzZ1yGtbkZ=!1T<`v?6+tqh@iZ zjz>e5`s?769DSUfpiGjV`sq|BT$mU#rm4U#|Ao=RT$EUb!!snpbU=;pkO0a~tqD!3 zs9WnU??{i;S=Hv^oHV($tmu|$*|QqbWb8Zf{YUQ z#f9Mgu!ZM0!YqeaQAOAnb`;uD$$SN9N&bd>i7>vw=fp9hp>ifKF4j!6mStHb_@t}C zYl`SxR-{VCrT*CqFRz($TZU!g^xpJ4_G)|`n;yHAj?B)_DDipC278pF>y^bb*KtJ$ zddrqiN{>rxTKDKmW@>9nzB|d3q>&{?;b&N*Cy$$wkUO;uA28)l%!)ADTw05FaG7s{ zS37BHYPm~w<)zNHmYSR-I$>%{yguHbp4QY@RZ>*xs_V^3svTF9VPY!v-z6G zd+L`tXsIjX{>LCD25FU5%Xf|M?(j}pUW!+?Om}zQICINSN9O0HMLO)zq@Z66z`Gk6 z9YpCNYe+$d24;2G{WUa<3wDmc!gU!_W-Kh5ymMxD^Nnw;nssAdPgJ5@spC9W&!qAc zts|RD%X8UuK(NQa)uk$2a!2pluO93jSGP1uE?3C2dUj6DtoJ79IGqd}DbW4M!0!`a zs3N>D(smeX6u6f@&#*iMG0mL|k_Kl(OGnn&qj6FByxQb2Dzxfs7^kIGdUT9!jFI=+ z*y{P)Cx(zCeVGV-IZ^0KGIR2TCkDby!H)&eA0c@HyDF$R^y9*v$yJo(DDizq1nD35 zU>E6ATluubYsyOc?4`6+s}Q=gJ*{PN3H_&&cA@|#O`8k7I;-P>U6;3KIFf{@QJTQP zt^zn>V1}Oykc^o5DlQHzwqbZ?TsMbLzDO9)m^u$;T_nIEx;-Y)E$eK$Sw<61P^831 zUWADg$4kAUFE@tdAwo9hX1r>hawIF{!3g z`$iCR%eN2CNH#y3>aTy{1;U>c(t?ce>;WW4g`v3=n1UheRxM2Wz1=fn5%WrIHUf<@)zWQH>sP;*xl_Onq*<6{~?n+4T3|>Oi zVbRh%x|{c3y}Ttgt-dpD-0~^KadT!2DL#M+#;p)cMCwn&gkkPH=BPF76F(22<9D^4 zHF6bJH*e|kT`c7F)0JnAV&2|VN#)|bQ_hJB=&zz+ByD8hgveR2NkVgfq369Y?>stVdHnIa>4{IA8`&J)Bd*c%%}u zX;ohPj=t=O$bAX1O?~MfkiIMkN| zSIn$?bKoaJ4)4G(!bK`FbITpD?%D~z;w~l}J0$7T0Zp0Z}+7``3y*cn-0)1xa;**L@rseiCkVqdtf^!Mn zgl`W+|K<(%E^$@*LT&<*y%5_nb1L_@l+3L%M33iR8_zOvoW@vQugUDWe)`~i>Uu|RlFVA(l{fe)Ymmg8lSc)56TZ{}+z>H4%u-%DBzG6W;C#Iz z#)CurQ?qUDd`Hy7TvU9iU`iO_)f56&ZaVmv_g zuHoP5<39|kx{cW;D_+#0DxW?@7NJ|?;v=GpQn#_z7zidAAnwhwOPX3;L~R_M$D4Q3f;Mea$$I( zPcPxp0X03eI@@|-#>XHa_8~jv9>vhY?fGOO;?z$=W=U8kx&&O#CljImxkzq1KW{;s zMWDZ51UeNHjvr~)gotrkDV&dNAeOlFY)ycv8Eg3ufpDR*XcPbH1qLN1>P%Gu`( zPLMIlckVGs=x?yqL>~g}stFz=blLg99x^6i1RYW|cETKBXNj2}s#5^|gXw~z*~tIt z0>F!K`3N<{4ymCxMyjF03lFeoC?|}r7qk;aY*F!jfL|ekNRs~vhGQ$O{~ek`DlL0V zm3HySo~7tQGEZ>6Uyz3ecmTSNnIv4v^TY6*=sIFmj?!)C)pZxi4 zLwXY;+lEwb?f*`53@O&riuj^biJ%iBfd)j@fCj%`m;7HSkT72e>ic(hJAjP}`J0(( zpw~0uMp&T<2bF}DY|b|VGSgN^_@{4acNKz7mtf+YiLq=q|7lo<=aE^{7*-z!P=Bmm z-<2H^aX_VvHh7ci;*jRf7N!xS6nmK0_KIEt7(u$n;x)lZ99o(i3HASo!@9@9>68EY zxOC!7R7);mkP6L}euFs&SxY_J2oa{VLdXxyLc(!7XRPjeh8zI+__-$UikYeeqx>VK z+l1Bp7miGoA?6+agvlAbBPu?T%jVy@-Bx7|O{vZ_ONJ-#15e78I4M4!-=3+LdlLCr zjUF$Im+@JwFwd?2fbbT~ou&XDlZX55;$gp-neB)JISNMtdWg{C|y5!Dztv8H+=`sF;y(taW=AH=V<%BbP z$VR*eQTSv5^F15UGt&lMBOpJ@4NAn3&@SPrA$@&DTNg+0-*D-eP<*a?C*(KTIP5pc zA{t=b*?tp7l5!@9DQEgbGGos6iG*-~F^Zi5em0oV01m!9OcM`?lu`~m3}F^Xv?>G} zfpuOC{*d2+)46dw?fyFL^XbH0?E2qxWi&_dkR5*BwSlHyqZO;H4s)m9O^{EPShH_(KFs}#C_Y_l4}oI{YeV! z%Z5vwk6I^nGM_L7CEZAb86>} zv&+Ph+5~@Tg2CRfvbp~HrIk8}76m!gzn}jX7JCUGp-5e?AjbHy%3DJ&z#9Iwny92y zV|lSZu8@Ci%asXNXs}N+7%NIoxs#qYzBaQLTzxlC^IFSn6>t>)iajpuQhWfn_uIyf_mElH(bBP{p-$i(18Ye~9ZpI&0M zmS*S^GfD|<--DQ6Ql}11IY6Ly&Se0HW7EN3FD$)K`*6nU)G>_O2{?_kI06FF_*u3p zdlcHYjf4ki3i#o-U~di$SAv~@O$c^^f3SkT8J_}J$-L-ntM4pgyt(EqJ8uo1HUhFC z+WhAXV+XeQoJA-swEZT)Cd6-yvfS`kEdku4>jj|U{29bl0N;>EKk)NI0Q5PmAsoDr zRqzD+$+?I2PoOP`uVu;s<_ov=O6ss(rR2X#$x`aTuKKUZ6}2;LSFK}W_)SBWlb4gb zb*C*SXaU11I*8f=c#(J%l~P9fPn?x0#6eSAl9#vfZ`EFzw01nsD4|b0oGMEjbWn3L z58Gv#)TY6I0B?i-pvmHX46Ig;TKNU8qy|T<>khvB7|wuo*Ael~C*jkRgegcp?2n*# zft$S$*R0l`5p^+2MGU*~HEV85^Of#wXj>Lrap%mES>-zL*1t8LrDcf5%>v zhlY|7(SOh%!#I<$?~%>sM?~k%-ZNX5l4R8+h~n)MSkH~l$&QRDVb2N7f2v^-xDc~q z(RQ;QQ@D0g9pxd|j{uKCBv#{}!dPe-is=>fB#eEUusR8c#8CL7%%&V;L51))WztOx zize@VebJ;{3yb0UQPKSCnih8z&D+_uu>0%Wg$L$r{l~r2$aTvlT=1cNnU_j|Iuc{g_|UW&<`cXO8<|21n%3xUCDY7m7&#%Yg$Lp?^XlL1eHe(L*B^kzsY-27rZitPp7t>dVn<$4^M|#^p^eG{xxC zlX6>gP5A2xmukA#)Ffu&RAJS-{bq0Ni%VNKPEK`Cn73|Q_0+BIl85GxTi)#PU-gfJ zk|~X+SHP+1bC;K1a#xR~I8C23`vzRIdZolZ(>ds)4` zvb4A=xvHn2a@pjPxOtsJ3*&$&75ssJoKXRuLQIg=K!Tgj6%z#NLEygLGea~qRS$I! z#RL`4w5Rd!-3`1S)Py5~(p#34;MUFsLlHp^3%`n;2qF+}8}vskoaBWr(6*Eo)-y)6 z?WwqZI35YwPNEb>XZ#Ca;EXeyU)nTnMDw31EIPRui~ztNV%i=L$FyBkJe~h^_?k(G zr)$sO**YSg?%p@_Nh%R_I$kYf((*EF9;~csIUP`U@)ad#1(iv30MVhCQG=ZXI)K*D zU~CeFClLB(+r-J!)3S5Ao6EG>{5wS7(f+c|EU}vZtClHV*TbiVl?e_W1$j+{ek5z2 zA#MbZF|h0TL!u#w?Wk0%RNCD+)`~onucE5LXDVEF*Ua?J)=G7q)T)b5a^$9#7MpzK zRpmZY*6e+=W*x|)y>YQ|nz$^7&Sr==Cg(Qz$6r0OKxt0ZEm3N;iQ2qmW3pb8Xw7cQ zt=clXxC$IT09NoQ#9k2?$@=D5FrFvoYJ@U89nC!^=xLKTG{%k{2W=ZyU#@yKc9 zPlh==9+|ax_Y}K5w>;Nw%P!5f)vUU?F{P=lG`>Y@*TvgxZcc92#X5`Yik+^Kx)Rs8 z+T2M+Hc5{VQLv$otVJ^7_5+vKmUb^mFX<@uq__+T4p&Cy)Z*TodNN3_El{Yn25p?l ztxL*udkUKJ#&wO$@)xJ(R8}m!wrb#cve@B?6LZ`p0?z_|Gza*>o-P5u@XU{Ju3$SW zLJ=wdjvBZ4rYT9eTp}#P+WdB{Xte;-`dR|hZl8{Q^^)qQDRW7uG zQC9Fc^-ngJti}36^J~zvMf7oGA1-(&k6yZ68sfI-Xvf%VL|MQFLdFck`4S_=kYbvYxIn4 zx8Rh(lh1OiNQRt3=kq2Q^~;PHfzKgda2iD1LgJ)CJVN%|{s?oN3OI9eco(Mcti_0n zM3Gj6wJ`42A&2U*s=HtL~^gb~J5 zfQOw3@U)zvH^SU=kv^|6J8CJB+mU?KD6rGtb$>fgNAS;${W7e89vo(>3wyK1>LkDy z@#S<3)`7BQnuqTmCaTLfV z*nbz)73U}TStJ!*!+-RDOt1edVvsQcqjb=d;L{U!qQaDMC^-L&U1N-K&He?o4^Aza zLp%!D2fmCrqlP1n$1>tl>noksL7a`$&cOwaT#L+F)|p4aE<>Sy7=uXt5G7_Bn~7~> zwh3G9E;)<&#!t;V2N>A5=1i{1UXr1z856EkKN7fLTwqcFE|}ktJ!KHnGPHM$IMJ9C zUc#Ro05_tQEsuz1;vDghMY(h#|DjRCr{*or$yt<--_;nQF7T6xq8Mpte;Tj=*<%V* zZ!s-`oxCt((kO;DXN}yWM%ocY@f|1PG;AGg9+$`?URJrkx&M2Eoi&K5xMbDC5gy%@ zoSn{>M6*(3+)jyGfIyo_v1+GA7ZoW9PqZZCdMV}u)zcSd^JjLZ;h!P@~( zQ>cGW?@gn@Ofi95jerI*`aZ9TI)X9(mBA9Ro{bhgA+zcE@9~Y_;zWZkVrfj=mV{)S zKzRq>G`X`XoHQ31& zfAbw5#IOh?>JUZJF$vP=qCHwB=H%b=@ZEHPQ}ZSIT)iPrkDms@68;JP73QG}p(M7fNi+^;s=mHiKVj_UNx(vWy>@#Z<#q`u0FHIO@7nmMP>)J4fes4 zb5O!TqIMd;Jrs5IF8jO?-HF9e_70JZ`cPa8zEc4bje=Nvc8p(B8MTVYJKm9NmGVgb zCvhzu5f{s!z@jKP)f-_vhuJ}25o#kMw5$T`O<%#E(4=q=>{g^Y+2{G+G>V_}p?<~d zMKbzSs2wOzoG4%=(5LvvV^o^>*tg$^(I#*zaV`J1sAv&|rLl?#O3){}pdE6i3-Rm< z{YIQzLt&+KV>q}<5+fRp7~LTRg-WC%AuJR=LytopOTu-)K~^B4Moc8Mh3ret%b9P%{BH0nNt*I$@^+Q}{?Ycg;UkLfs-rx|>iUHA;4<*yb9jcHKNccLhIvp7lMolrf39)MaXL)G$zB*`bN zqqx||ej?8ATqBAyRm`bQ_xaLGW>v#-0HQF*Os9Sj#f9ZG)Wu=HxL+hxMZB>hY!kW5 zTV3u6If){Xr(&YVRqs!{l`+~(PKLFZY`{t zWxu0Y@#Pn6V+QLitWS1SXU4Ovqo~1=JkA?`O{fjVY_g_^4tZ*`^!lt?kE=Q}F)_2+ zHQWaJ9{B$kK~@PxVK9J2P~d!1SZ--AwdW(1i(9r?p5~;~f(UPZCQ_y4R78m5;tv6i^>%>2Q7QP>y=%6KyiLd50p`N#*fB#HVq4p4ApO#nyi* zHGfIu{-sj?B|-3eV)z}D<L&gqNiqTX2YW!R90iv_n zGdw|W>tte;)u_y}FKBJmL`9jrRT;1rnhG?!jM+s!!yXdk&7$y93x3@32(t^0#s~lR zeu6W55Y|0ld#?5LhI?$n)2V`;61hZajiuI{TnE2fll&X?9@mtX-pmd7;S&KK_=;_V zb1=wgYXWw#z&Sx=Lv#2v3`#@8Cix-=Ul9&@!*J?~u!k8&;y>UjC0mlgJIZrsH>9pz z-@3NN!R6GuN_j^{hDeDkWfe2aO?^i&wQtkA+iShOH*{h8c9)ORMEW|ncW>I2J$u)* zk{RVGlEH6%uG=q-pSWa8?WP|N&u-cN^z0dr?O9BgFM~gWtx^Rx1?=Up3i2CTD6y*{ zb^^u}!S)rz8KzevFH4cn28~bV^QvErNx(4i<6f@!7 zOBG3a`Q+&}6D-cDDeo5NGk+Ppr+!*V9<^mKdl_kW5Psq4StgpCStN)Wv4;&*9!LzB zAfcsjzeUQDJb1>4g0qmQQWNtK>vzwUL`2B7vJ4q*$ttttPs-6Lj5fs=@tL_LwQZRS zhgnU6$~al*;7N(O=N(tp0-j^|c*ovP-qr_?YDCzJk0tD{t(3kbiVpX}mZ_ zEqf(z(+7Lj%7I5GY_k@p z>2ztuR$FnZ4o)6>Ve+HXr$0KGDm?k`q(YBQ=P67|D)PXd$Rgk^v@LjoUI4sdBfD}( zc%gyvBb?2|^cvmlHv6O*3kqA;wK|-ojrD~x*ITLMn#QI2N>j@+Y;hWORNPs>IE=m& zO3~|MP#2u%|Jg0j0$5; zm{0T67Pl+XoSm%Jx(jUXQkRM=npW^joHjPuTbxWMy7MfsQ&nrss<34&Ub4UqdoOaJ z&ZG2?5aV$tEN|23ZnT7Y0NRQPo`7FEs3N+`KZ?#Vqw%@rEP9eNnNF}z3*Xzx8q4T9 ztfT52eScOPRPyLn&wer*j-*j=jlL%|T}3~IzZH4NxgfC34dT)?RRKlqj-~Wfpw{{zd}RkdoPCF4WY6$2W2hcvhWQ)LB0Wbe3pL~wt|-nFd0B1#jrj= z&K@nKY_NCPe=0d@G)%Z0VA=&H0)Z)3Ry+(7sf)T4>M}z+r2Pj;`+#>Ix(t6yzW{5A z2u>y=h9)Q(+K&N!F|JptVq+R)O8cxAL^x?m5~HQ+4Y9HMPc8X!7v5>bJ6y5(WMCvQ z5trfj!}W-903faDEP1ZOmE?<+{C}kh< zrJWq_CqoOW!(UUK@Ow3+EwCBq;Ga1@n)>(zdG{3lg?^QKap>KL)PEBOqp26)B=4H= zFYK(-@8&TB38$FQyWrpW52$y8+sJn;9D_o=s~vP`mmE1Fe1{e?X-p=O)zK&QHjTgX zaNo?so5zpee0XNx;VZ{e4LyO4b#)s9J>7u~b#)s8&~5?z?n{vNjP-qirJyl2wYk7z zDQHejZ7i@*E$)UqvpKK9?VdocaP}d}585 z?y8e0bV=H|e?1-~eT9Q>^N->GgxXTTd>GCthB1j4LXi}R2}Oh??z>2cOMs>{(oj=V zZ!bazWno5GE>RO(7_USe_f`>oGAKO(AO_71{fcQ@5;j8!3qp8Cd^ie zVSy*}Q)1~f({%DF9gFYepIdBjvd0|yC8RwYe76I>tArae_IhE)CWR$JS{$7Op6cO)&W$81dCfqpvstiU{P8e25cn5*f2VGp{=L@*35@-fuGfw zu&}HMfbs!Q#^TPBwFIDbGPP9PSmgs;TmmlYImOxY<}J+gm55?gvJF7*^)R#7Lkv8` z&=4&PN|0z;yBb2fEPfvZrOGfI-wR--3d4fN2C-gVIPj9p$TieTA?Ytkk5~=G&HHi%XKPY8igc#!Aiboav8}F{1eP#gn2`F>IxD+U8G+&&e+`#+iht3=%_7waV<$cJj9k zysLLN2p8=Z9fY*dT@~$e14S_kObVFtcbiCSN<2Rfi z56J0w5PU#*g4kaIdU(3MxWS><+F-V;PryG*6O}5v+h?_SP4bc%OJG-5iS9`H+(o+f8&0@*?iF7Qite5JEQuZ~NMjMT|jL|F~T@rKvn zup8xfT&`Z9%YCOzr1}MT#^d#jk2Z#VQ(4~dJQ&;)DodE6)W>O=C*3WVjnA6eP^KG^ zr|v4uZ{0H8tI=zQGX%%$=q>n3nB>91*210~0X_wOGRY&$^t$YSgV1C?Z-04C@4nf-)aJ!yiQ2+t zch8!%h0cUy{aRM9|3J}KN3GAitSqHGU1v4%UqvX58f|`2R`=Bt z>ozT(V#>eNH)-D`71>i)lvu=Z+#F+Or9HXL%kP=LPG{a3oGIW_8kDkMz;BaE$w`Aa z3?!Mu6#;~XaQK>V(gPMwQWvIoh46-)>jc9LhOs4d=K8QS4ATID_dtf|J5{Q*X*Hfg zh23hBej|^JHfZb>nFjytJzZCPc56rF`o|Vmubf_?OiWIcv+9iHoAxv&b; z?rocS>-_9RFY!O`-T3O3%2=&FM#@CTOB+qu4o%-vSaQeeZ{K`iRr#db{(AN0pBtL9d77bO?1wXc#;x zq+p^#&?b>d`3^4aJ+P#(>hgQLmfr1cl0e9qJ}Jx9J5!fd zmYnKON*L(L>e_Pm(=%s2d)HN6Sy^3I-SzCunNQ!nr7P?1_I>ZKy6nUK9VxYQHtcFz z_5Qwg$`BnfySBc1?fo>JKM zJ#+162c}Lv@Y&kdeVZ4KcTT(Oi!)O`v~R&9+Xn^vuA9oufMW8 zJG=YJ`ua^XvOiKM`%NZ)vU=#sOt0C{nVsFap{8nmXHHJ%`btxdQ>%66fIpo43~c)@rnTGm?%l14*Qjsaw<~1|+$Zl5?p1p!8hrAcIpmu+b8zLKy#Y?zQ|{We z%Q4lP-jTBV2DsNKZwlWh?`kPwXteVg3V{2dAl2b9?7QL_#Rm4#M`1N znbsJ`e-gcXTFHbgTf9^rv8?&KZOa2IOU28TJ#ajBH+^X3^INL*zFN=17==ugppsp4 zWrxntns>6F18N)vp0i!9*WJjE3t5Jj;JY)d~+;OmI8A6@1Q>{JS6}}W-jYnDGzrT20Z&B?v zudPj_Vzq|Y1@7#*oz2Dt(iDx><1cqlEMC)7SabEutK-=W(*oz5?P(L0Nm`lBlV$w7 zZ1$wAA~m%|%(=6TS>@V1Wk&s?rk=ysc0_E5iC09w9brz*HE)uu6RfsqyhV}Tu(G4$ zzD+Hn#fi>8D%&#W#;ar+Eli3DU$p>^#mo=jpCu>T38-mUayp>kZy!bl!q7*eLX%$A zQ1gnWEjv zS#6Wj`B4Sa*3`9LqOWx3r>L3riLSR~wafNSz3ihqx`oTr#*% zl%P|F*0X|N!5Z{_80$eO$Y4i!32b|Bh?QUvhgd+cVe^Dp3mNIeFwA>kPy|njiM}qx zD)%cS4qJLx8YPOQwQxMjK)JSjT!dk#On6~dF8w=*hch1!**IV`QO{b@OY_w(rwtglP1?9Q!MGG;ZWj95PZD3OI~fcF={ zWU^zPA=ZC=mp!l(kq23W`Np3&nlk5I3TLD+oma zDzZe4%HnR^Viwn^NemiejIm>4+%;-zVq*5i^z>wUy8G?v&UEL^WO}+gTJ`@uzXIGy zCdt3w_tP_9Zw|NaInO!I^PF>@d+s^bp1$hF%mGFJy*MdeO-f30)uxO4As2gGt#uH zd-c{EZ;dhNBFyTsK}CH+at7xVm_mm4-4*6|^x*WO&Bf{I(;gn;x|&nhOYM@L_|mM< zfg$Rlft6*BzQf1oW@p6shEzUNnUOVnOji6rPgCz0CZlZ9}A3S;9fS&z4rOwfHlfq;cEg71(cxvCkac?g>(=af3*4C0tpH7`k-SVa+ zjF_1bWsf)B2=AMpJv^5J&^JY(?ri#_IOjr&FRj2=K%TQSWIh9v);!xw=i}{iYCi9- zjSd-=;JOum`;Q^<8iVF@HEf6%aBBtXA`x}bAJ3L{ zK`X$Kc$BMs#GI8Wx+cR%HkDUgpsv5acfm~8yCY(Un`dpA-K${Fr%MOd7Edr&MkR+P zWsI^9F3jpNJ%8HNU%aC~`bhtAx4b&#lyA&y{B+kt;i-cyOJmJ(=8XJ#+0*7&QgNoX zs?N0-@$_4w{m ze6}t!en^~QMVcy2(CH-A}L*gJ8_I|>#6kkc4+G9U$)?-Q2YINOP6N8$g41N5= zdIah+Rqt0vV?3e8WF+|LI~lyDUcP+@0=R#NXN=Q)EA3-xvm11&?RJBp$DIc2D%a|t zBBS(vx8L&7bnpIUPg`VQP!CghSD!$f15z7#sIJdL+1LkbaP;D+LBS`Z!X6nCm=ti? zn3~$FyUA=ab?N4#(FQJBV9p$AO&&X>zj>YyqSPqI-`s!Gj7B-I*1X+j?u|2K8fh_d zSkyiCqK!-S?>Av~M)s8Ku=K%6N%n`T($gmoPU$iywr}UoF{YTrtRda384-r=VIg4# zpKhkGAdLa<;zG@7gCYk{4GtKPI1F_rof&m=v4bV?P9)&Gl&SZ&O_xLe+(--}F`=)?~OAs9Qc! zH@Of##qSnrGIXI@Ux|@R+#L(`H??TJ<{8(k+tiV+*S4wS)V|wYSJg}zjB2rK)04X4x)*W9lTIWL z^}hF5_rDx;YJU}aD@I)skulsFX}6lpnZsk{{oK_16HrX`RNTd z5~2rZ#(D*%ZXT14|I$Vd#D97IHoM3cH8?ZQt6Q(lW8_Zlj;=vQuh%n^aW;g%u}9}) zebU0B!(5xYB4T|aJqg!cyPG;6?URAOLj<(jW6C+LOSeXmbyecm^mtii(uX7RgyEUi z6`~CdbA6CGWKgo|+q0WC^tP|BPPgV$Q=H$9o?W~4+}S10^r?EFP#&f#+m&K)i+ zhaVp4nkr)plai+^)O~~c#VSB*15R#fQ`g?o^0B(1p{@+8j!D?;7HwkLor`p_4 zT&LBcpQw{vhebvW_Ls=RTGT(GT+%nSN{P<1T}(8wE+SYP9`E|?fDzICLsi8Rqz%5U z*BM4=6T)tNqWjakCR^7!qn~#-!(#sg)4OV8M8WOzzs9o{e9l zi2f8GqTQr3+&U1fjYv>~BZkBb>El*n1GT|w@~^ew;f1cocTEZYiw#(4W~}RKGrf!Y ztX0ExJz#Hol$v5|Z{CW&T@$QbFI_*(4*3_k|D#hB=5Gc@*;`jIhT&C6Yup6tg#lzt zY+IN~XNuG{#*JMtYUsiVNt#)=_odH%bZWnajv4VSDU0@8U3SFvhbzw1>8o1atXg_~ zUwvMJ?mL(E7vq;bl-z6D@^LoT-n_LX_8u9N`_+tGI6l7OP1V1p{K5gmSo)N0I&f+> z%M|1OR<{XrZqJGb(RcO*aQs>Q_3fQnTLCeH;eZCpr?n@|d}u`XsgFDRB;2}^Fv04V zGp%;RvjwB(kFgZLdTU2OSVFM5U%Cw^CPX;a?k^m@TVr~0q*7`Drsc4a}KvmJ(j2$bGZy)D9yuz7mSPc@flvad~oXc0lkAl2ae899Xx-mq|IG6I5lrT zYEbBa(Ni>evFT>NaeczDDWsn{eNOvTtfb>*U&*5rC#|1rmvcYm{7?Jb^^+z(TGIaC zBAW(l1isdd)1QTG=;h_K$#!9koD@QwPOSrWzDqy|qV>ye2~en)qQ{IH8mj9SnGu&c zv2TpG!JcKCI45A#(z$icg%^qv z=)enmD6WiJ^fPZ8Zf&1viVNwYGpO^-ar#&voE;k)p#H%(CA`ytzfaTD8bXuIMd8N3 z^_rO)J1#-Dv~@kR;&2_;zvk(q`JMnv&m}yj-@g5<>-rhjX7KFJaJ@ly_V54Gsk8k5 z|I7Ng?s^?Nj(FY+MBZ5j-5E0+lu!4^+Y8hw23JqbR`Yjzx@e7on#rzwzs}k&x;eVn zZXcR@`-Oj$8B+o^7d5X3^){AC9cz?Y_eotk;$y8lQN+e|^3t}>Y$1DROl$gI?BVa< zKEwq!@7s2o0R#8^s{dY{@*U*;1D^9N;u}NY`SC&H_r@}q1GHEMd-n%GVjsi4V~l0=_v<*8 z(M5eB$TiiVzR(&xJEZR@BGUCS&7#>7A?q^#!RSWyKK{v&a&I)G0sapoLYztaGWr;< zi&Nq8BE145lV!aY{jqUc z#iXD~Y3jnJH|p)nH7`zczNyYh9hG8qJyX1UULRMscHUm~*(}GCGyKs8m}{$Ue8-Bh z6KY*+@@&T;`)_EJN$^|Qm}_Q=jIG+T()$OdM?a*`ybF1tuhQ{$x@_8n%~$G* zpIOi^Y;gJ5v17)q`bFu~EoIr&?^}n@vd8vM?9tF@!CE_A_t*iGlfttTLt+Nxr-o-G z1iSnbo+z33i{-;IOCHT1zO*#AXZ)(dSnt!=~?;my6YEBfviHDEL$iz-`OqC7*KzeGzUk*$#t<2Dq+ywv@BQ-# zpTStlcpXa_2OheA-J9#UCZOo}j2Xv^ZvRDh=DsCve78ACyHazi(;{fczbW&yE16cN zU8;G5X}?kCx2C;-`>H!FzmHzrW?LglAcMB;?K?HokgN-?a3ojnAfx%*n71w)N{{3^7G%&px0GUSe0?rT5s? zT%``a?FVh<$J&ur5=xbjpfZgJN-DVtRz3?~EZa!`I(fr=CBO zmVvK-f>IaupVgRaE?HEfYL2YOodd1@o;zm_=AHUavtR$!w}1K7lqnAv42?2m)joQ7 z!A>3ZAsyKnN*Cl2I(v>&wYtS`gfAGIMZPUCQCW_7rEYwNz;IkJ7@n)aQy?`)j=z;3iW z+ro3GMe8Qp+;>_UMD{(Fy=Xr`oJK+1=zGfd)3#^%Fw9@%l9uo~s0u3nq3KZ5=eLz4Tg`GMWDZ$0p>RKfk$C=c$xSDyd-tzGq(?-uy?|BQWJ z@2L=1>d)Ww6?KAMT>A{>vr+O@pZIi5x~3WF{2pEZI?|W3jyBd~{RYyl_)g*@em~I? z!uypnd_SR4w!%K0KiWP&dcZ!P`Z@NAe(E{&Q}X?46v{5;S*u)R|8;-*dgVXm@2&S+ z@Xp@oSrx-|eO_9w0l`P8e6tgY-Ed^}+udvaBDJGOcn5awkrMEtHsV%7O6Me3K&4;5 zIJcrXq2|8#Zs#DA$tM;&jOsh5=W}o0b3PPCCBTY?J*l!I`m>4u2&=3=91n8-xH=OBRSKO&Fdo6PO=WHEqsYy zo?&#Z1(RN%G4=auPIEkKLLaL+)Zf3me&I~lcP;Bb-a5u!y7|b}s)=i=^34kk=HP(P zu$a_gDMfqh1}EiKYWj9upSJ>nBZ32bz1CIN%|7%WYnFX^cDpk>0!KTp#5a&w@a>=b z*p0^NTjyrz10SeiIV-149;`UW%<;#_BbyRXY(#kF9a`GY5N4iRasAhYcLS3BlXRW5 zLH&Jtn2g>(T9i)lu0N{A&cV~Xx^xPj+NGLyJC^`d4Nj`ok6+xMjaJZ2Z>ubc-J-Ep-Xjsjq>b@yD#9ebz3~ z41{_lkSmi16co#s0yPiI(e%teS+yHo*HYB{Ex+40MT&R>Ma+Gw#}m2VA+Ki1)wS%H zYl-eP6k@HXK$@mw8u%=aZ_`bnUgIqoeZv#&>D%v0U#~pPGNSHqzXk8i%;*PLG!zdp zD8|X|S85}UqBpxrlQa?LTRUIXmY7W)>#XiI*S>FD+rHDk@|`;E0j-q&^iIBbZ*zCP z544l!flR$SYMZ;V)XeXoJ=*I=e2S-THY<1PW&(YRC;c(0oA&#~r+CsIzb9Sv(38GH z*$O@M*xHab-vM=#(doTjgG-Cr!Zi|l#223(c@J$*_4i}#i&i`~am~N(eJHDR^UH6| zpT2F;j2LI|$k^!q14ksz+_P{%O8%lzIkOT&mxf1Z)z>?23C(}r-W%UHwp;O$KR>$o zi<3_|v!k-dSXV@M?a?FJDtT z)1?kP={wZEZkMEEyfFmpZQIg!s~9hN+FSqVU3!Li8?+4n-%+=tfAm$?iE+2T8Rt6j zsycG4#&7Jrj-``>yET=!pTMV|J2Yhv^f2)Me@EtN)cXLIf2|wiAWz$BYwt>5?_S(i zPK^uY)XHwRvLjDN@{;)?!|HHhn`?wU(+;@Yw3nloMVR=!@JF*mb^Hq6{3CuV{pV4*tv-#V@ejqj2x zo5mUZPW6oRZP=nc(m};Yy+CKyv3&SK6ZNuNxzR4?I<}FF(=^KZHaT5OwVwMu>AQ>D z<%f>RxTq(evtE_w(brJ-jFgj8TFkqld-4jvB=NZrSsHXtmj@L*6r0lBrPX#Saeevf z;qGC^Za(;eu9I%goQ~X&XkyPW?aDsMw~pvv(fS7Y-&z_y5XXtCwGTQYk1n80q6?m~ zZjz4{TI=Fb)`cg1w~Ez1NSD6vZOVorDC%gfn$=4r#{fm{vMz6HtWVC z>n4$@y$-}qJn5U&@;m9Y6HoeM>dZUov=dMIVO?36dTPSqI2&fe5`z z57w$EKfG-&EGe#|8N|tMQ9Vq_*`rgFhb5bm#>^<5IVNfBrneggG}M(u*ZReG56u`j zrGH^@(x@48W{gT2wf5rT{&l63!~8qeD&0nt2@6Mpllxn&nekE9^xS#l=3RVjN@&_} z+jhjzQsRndC-t#L#Pl9tGkNwe)=$K@|CU?#E7=`c@o@lTo%oYwePEcP{kekbJ8JQt zC8nm^gRX{cjo3ga-Vutok+$BA1)cJ58T9%%ykHhSlE}po1lAH)jX(x$ObxChWw9H2l0wl@-LA5@!gthH`6gXRxu5YZv6z7A;(O3 zV}wt!NG>i5>rMi7$D>e;34tB%dNOE;lurMO%k|xaj`lx!OiJe|%WU}3QtCanLJ&Wy z{GDaIKYhKb#oslGC*1-sEi(&PzUF*rS#y0w zMt}qV)j23@n#SI-YGY%#hn9}h&bhT`)xSPdQ1HyZu9E9t#yTN*t;w0 zHd)qshzIn<8AP+NhNAWDKIW5m??fllOPLF`ZT98e_4X0hXR8rY@D22F;j`_pR3#xz zU#jh-?Hb{)CUi1}#{`W{=-qiiCm)?(ut7EJOcAj`w@%)>N0@ZS+U=(Fu&{K~Er#I3(XPfALfi2wEr4m7Ac@7YsK)@%JdS+xAVLzaI2OiBLx z-fhT!x*+#$TLvBW$YMde4Eagzf|GL}hzR{msa(%?tn)urybcDC+E)1@A>UxxNAo9W z-u*AP?hmT}OlfZ$ABgomuy5H$9x7q01)+@iD5A&p3@E*ZR zPm8`w?6GZQ$h63g8d@7T+;wu8Yn>XEkm9=`ylY@`@ZSRL@v5KecO5sSCgt|~8k=@C zzAYJ%KQ?xJlKMt)(u3{QUQY2(o^ozhu84nfzmNXt1(qMHxS_Y}AHhEulX%iCSc`%F z3uBVIH)8CdzuKh@G~7089Om!7HsDh8Z@1qtYrn4SsOQp;4~hx+?!UjAg@3TYW=9=Z zd%0v@CFRm8JCuE#S9Qle=(3ktl#;~sHS(P?H=lF%Rsr5tDh}(0g&b@Q|!mR-LoJN;??|y}?vV>uu!8RE;DsQ#RI1sV# z)^s&g!CKJP`&I0-*LMGwyV7Gg2JqC?R=j6#yKhvEJgDL>|UNMAGb zPWo@|N?(Vmj_9P^e;CjALF9Uv=oYrHkdGhaqqn<)P_i-zlNC()BoHi}?tN9G88EIk zbk?H5Caapj6IhCN&hKX#RvRJJZI*i{GK!OP{@DUsd)%S-Pd0K zlymf6ey|b$xku~0aBm~Sr}A7uwy`KY-ldJjKkez#HlFnDo;GW}|5$ta)AHR3bS1*I z3qDxxN5md&FiX9~bYIxO$FvhM5UsMtjW)&oW@Pr}UFqxG1Mzo_`;Wl$D36vqeIho5 zKJosl<~eSf&JR|WXK&^e_Xvr+FdEk!pzrjQVWS(uARQ4?%^~VB)7601bSYaieW&OC zEv>OiNq>%Y%Nhp>)3$CEDh>q*~mPrCF;p7f11t@oomaz0gC`tDYH7vK9wK3^UHUn)Pt^Y2ez zC+R4!Ctd6}TK19jtha36`@`c+(c$m~j=cQ4Ur&DM>@RiugVp`R=Yi?=-LF@k@`?N& zc{a+YQSI_bpUiYMw6$J5_ltk@+`r|Xbg5rY`qn$?y3u#l*He=`&zE*BX8L?2pq;+F zlRky|=}F)4?@V`pf;g?5;}oSxI^w!+#NnU^axT+mK4$^a@f-vGfelJ}8J^QuzMgN7 zJ;@^19}Yd?n}G)!;b)!U)V5^gt}UE@^07{Txu><-S6aAOjj~oOL@*ulv3+SM>m8DQ8KYF?4NK}z;Nuf_+t**`Tpah)H*p`;@-n-?mHGJ zt-7yYhryO1!*c((vw|!(uhB<@n zVlJ)spSml3oyN|3k>@;)dQHJv;{W~h1gJ>+i8&9b%TGLe<#!Jn@ed!3(0-`N+WXX_ zO}@kI4?Oh|pusG*RqiVG2cG)aa;Kj3PqJU}q;I?{eI@nGlfLy%x>r8ydzq)cb=%sW z?-js$WxBFPx1ufG+yAcgb-Imh_3iZsJU?G?{D}HSnCu5mhQ6ycT2C>0piTZiIKSdw zermh@`13vPZ&*+Jd8=$!PrV1=yVBNn^}5J*_0;>8yV~QAY*$bE#=Fx0lkMtB-`e^d z&w3@9e=cYHtdU^>^1U}5<5k7eexCGK@b)B0#tYwb;>Lr%^oP#i_``!W`u)dp+&_qD zFRS!fltB%xzgq_BvplkGdHC*h>9aiPTklTiJkpc?#9irC)MZclQ?1WW#km?ik*yjD|>r~996pgHh#r>}!#xzhOOiEBYiUEC^bL2V&!=znq;HpWj79zv zv$iUIhx?Ep`7!&Dcf;>z;GGM`kE(og75$_4A;0+l$3Emr9QGk!{Nwi_U;IzmhaBzZ zg|Ytr);*C&>fVIqmGLdB)cOqmZ-a7E^-*)xr!w>G)ST6Prj61L)Xvi`)gIJd z*XeXP=~L&>9o79xAFD6bpY7z+$==D?>D5ku^&0DS$?K+<%RA9~k@vIS-*issJh5|a z=VLwwpRGP0_y+kd^2G;*h7!Z2E`D8VyBzW}`W@=psq37szx9vuuk=6b|5iYsfZ+iX z0}coLzT4<-Cj-+12L^r;_?y5#2Q3KtpnFXB-A2W@-gw1iHErz?)njLmt3A8*9NV+L z=joo;gMEUNgG+*U2A>T6b%-^jAmm`kudyHA?$DcIp@7A0;?Jd*fUQbJO5 z(nrZXl9wcZo6;jCC#5u{F=a!_x4oKsxq2_@eW|xAb#m&7w1l+gw43S1^xE`S({E;& zGZtmEWc(r1FLQEcedft5A8e+Yo8`<}l(jSKS6ScK75ilS68p3EEB0@(@+dufdG<$r z2KU+B=d-@vePjCO_FdBV-M-)COwQSovnS`b{YLgX-S5x+{?=d9-_Sq2|JMHd`+qxN z`+#Q$92poq&^hqSL7{{C4{90o*TI^>euFm*-adFg{&#fnSA+jHL^ovOkQqaqL+Xb# z57{(i=TOa1$I#lL=ZF4dSf^p#hUE@hJM4*J`-UAJc4Bzc@Z{lrh7TX!Jbcseox`sV z|7iG^!@nB-w-LG#{v#%jm^Gqu#G(-^N4z`Y=7`^q_-2G_WYI{+$l8&OBR7oPK63vk z%_zT7!K1c}){XWbJ#=*5==GzY8vX3(uSee+<2@#5jCoAr82gw#V|8O|$Np`cZrs>$ zQ^%Ez+duB;xYOgV=0@cv=l01Ro;xvjMy@mWO6~`_zs~(*?qA0jjdzT%9p5;9!}#sv z_m4k1{&Ze$UO`@I-om`)dF%6@$~&KTJ@2!;-{yTiq1S|*2_q*=o-k`d<%C5OR!-P5 zVfTcuCj4!pZleFh(23TG=@SP|96NF9#7h(3oA|4Vf0#6O($q;MlNL<+XwsLHzMAy6 z$-2q@lS3z4C!e2uee!3Me>?f>$+xC>PnkGn#uVq2`YFv*Hci<%r6u1#KQ!N(KQDht z{_6a#`FrxuKIHe%=!d3?iDDL_V6B^)aPYjMbQ$n9JgnAz71WV>_XS)Bx<3YuWDL_S zq}6=_={EOKu*Cg3*yz3it|0fguP7QdOzu>}$q3R+Mv_rvG|4BcgCrMqDpRJB1*AiA zQOijuc|~$je@R{?Z@A~c|7cKVt+L9!7F_LK3O?tSZ$f|J{sKJimc2DDGW{L*bzHwo z-f&kbI{sFt%)-9!IzB1+WwL^Zf|4qHLX@Id6i~AVnwDA=hYMp_5$2^ws1VaxLhEn*0n*C9_C7S)}wr zdO5G1WCi(}`zF#)2vHmOEowu!h+IrAAs-=^lFP{DWCPhqHjx`}nzxs_5$`9x)J@7* za5J>R3pFE8-bwBvcau+(d&s@yKG2)8cvBW{=!2w)EZ&O9;!Rn+6_LeT5m~$yk;R*` zcvBW{%HmB~yj79KTNPQnRguM86tH4iY(r$$kG{p<0DW<>fsG=f)B4_U<;km;&NtKg8MRP zb8iEip&Ol*{g9}$(n1~}4?|BnD=(4f$O~xq&hR97K0Jvqf;5wnWE2@q#*l-^sgk=o zjVvG?k~=g_=mdROavzr52m1LsQl#WQij>@kCHG;;eOPiImfVLW_hHF>6e+onA|>}> z$$bSaKhh+((s?`>0ZKA5}{3qe{trR4KU+e4tQD?!%J%s8Vtt*a%9? zlKZgazVs@-^eVoJcokoI6<=u4r??ic;!CgMtB6O zzQtD&-{Om19X05lEf%q*nP$<5|7aAxO-{K1m6pC;0 zg$4@6xA;N>h2mR$>05m1TYRB)k}kf*7g{G2-{K3c6N+!~h1LnhxA@YxV7D5i7+4zy z)`o$#VPI`w-xx?_U~L#!8wS>ffwf^!q&5uj{JEgiiGg)uV4WCPCkEDufpubFofudr z2G)szbz)$h7+5C;)`@|2Vql#ZSSJS7iGg)uV4WCPCkEDufpubFofudr2G$8yv`DE~ zCkEDufpubFofudr2G)szb%MPeP%~Z7qkRf$@hxl@Xt+@CE&&7G4lv361ei>wkiFge zk&;TLx%c5Zoy;IJ-8+zy#lPCgZ1>wp$sq@jBgrXbJ~_?(IPRJ0J`5JSUjR$VGSWeo z^Jz}9f~;ivJeF!cuNSzV#&4_1g?w@iS?him>2+j1xf~;tE=mL0>^_a_l^8R0fz8eZ zTgU_CVZ3|k0-F^c!ODa#%FFH#!K1u>h1bV$@?{savee`Wq1scP47)~s!mfo8q?wE) zqsVA7h8!eyu2Ld(zR0C6AgjrRWDQwM){*s68_+1>B62aggnWctN-iUplMQ4e*+j0A zR!~=yYsj_adLRaU7_%wTw6X*+=`c zkM>vQF{OsAMehF4Okuqct&jWB`oaZdHMx-Fuhd#z*O4+}@n{n?xQvp4r=Z|=|D+@HOW_IAIDlvFa!eGS*? zWCodu_6>s1k$dc9w)+yUbI1YYNOB69PnPq}3UVHES;+JnvKE>dgmw{%eFZ7YFz$x^ha1tE+lKnTC$F;ml}Zn2p5ry$tC0?v8xtn~N+(Ygq_mKyshM`NsldPpvx=Hb;5By+_!jw&`wd*bOWttzQ@TT+Q3mKUY7+V^j3cdN8ktUJkeTEtax^)H z97~QPbII{!9ywL&AER7h0a+-uq!y9W$r|+^DDW}(QEmmNp6&Ps+M#OF2K#Ev_5pkP- zijh`eq!k!x1x8wdQ57pNs$vC3Rjk0MiWL}Du>zwiR$x@c3XG~)fl(DJFsfn&MttQg z6e}>QVg*Lb^-%w`0wb-!sEQRBX$3}AtiY&>6&O{q0;4KcU{u8ljH+0HQ57pNs$vC3 zT7gj&D=?~J1xAc~#(-i4Mp}Up^Ax#XtiXtVK`2&W#JEBzR$#=qLMT>X#JEBzR$#=q zLMT>XL|-5jD==bQArvbxVq75Q{+(bP$QO`}(a})L4L_IfA z&rQ^G6ZPCgJvUL$P1JJ}_1r`~H&M?`)N>Q{+(bP$QO`}(a})L4L_IfA&rQ^G6ZPCg zJvUL$P1JJ}_1r`~H&M?`)N>Q{+(bPO!My%sy#3dadW@4pFt7g{ldIh17%Wtl@+ z=1@h-9Lh3>vdp0@b133$A0u7L9I8s0LlI{aN|{3uXOmw^nL}CTP?k9q-V*tu%t9v^ z#>i3_Jiw>8mN;7&{D53boGlD~;0sWq_hIk@LW#45F|rf}KOol`N$tH3G_LB}*A48Nr9IYmQ-AV2ucau+(d&s@yJ}?4p^Z}?N15v67SlLC; zLR!fL_Zg(v5DSXHsTiMw`+0v0q>ezX3J=3ZB2cR!>J!gIeF`H;GZ{%nkXCe2ASzTh3hQ-)lQa^734fV zL83{K@Df7Nu1Jm+A~{-!#EAEEq#PBp?~X+IQ7V*QSU@_YY$(6bN%G0iYLpgQEvzON zk~L&4Sx44Od7#z8MdV^~3Hb=Qlw3wGCmYB{vWeV5?j(1SyUC}?J>*_;A1U#uNcbP2 z%$_3IpW*-$Udy;KlKp8U`_oAFr;+SWqo6tOVqK99H4_D2{SlZ$4j@O8Q^F#*e+SfJrVs;L6Y4R-jDf9f0h8SEU^1CP_I4*DC6!Eb_ri5L znL%b^<`@G_mV4}EwtE+@bI1XF=15*oA@j*;n2W{Wy{847>8=2a-Nj%jSw=d@az4{Z zR*;oUpU1Mz=k)^jQ2e%cMH$o(#K2?VsgMgil`w)dlaXW;8BNBJgQPwYRYn`ZiiHcvYH}f2L)MaYWWCfI ztauQ(NNNlt3Q1XlelrFm3b|hD9tkeP+$shm3bZNuCP{B3o5)p|QO2mNrR~%;--dXnmj|ECC`!P$qVE~(F%;o zg_p?79 zji*^)Wx_OfIhamnkYZ&PSeg9QPG%!6YJrsr#mX%3Byv54%qOQo77MM+LMyYt%2pwz zlq@41WI3PdBrC{Drq5&9=JR@i`(gaHniMOuz(+}rwUFHcD-+g}%iWLRx`AxuZ=2kY zBBhz-S>axd>y>C13$4roD?5#Au`&y-%z_cf3S5hoShzT{f$%R>9I(7r6NFG+7Cn@F)Q3+xN62Ky4OCB?ohv@Z+o z%R>9I(7r6RFAMAowWmHsZX>soJNV?CUJ}r(GuN6J=$KXoD zwXE5Wekx3%rie zxK+7<_uy9e4U`0a<83fZ?uXwHMv!JQl8hpw$r#ci?S;6RFpjj6X=FN?L1vPJq~wSj z%l)ItG2~cs9GOdwC-cb3q6z90GM{{iWX;20K{w#9gw^CivWBcB>&SX(HTWyxBCI;F z!e7bt5{y->@K=kFwUk-N#K$vxy=av%8&fAt)>U$hSXO4x#t zuoeDFt`Ca7!CwhavaL^%r^z$qS@Iltp1eR_6rF^>5?&%NlUGDP;je_(L`&hRu7hv$ z`Uc7q4{z``sKs06cz6S$-aQ`-bgu!E$Ye5w?CoBM^i(np-ZCC`EzBS@(L=?bAo&unja6F#q(jUs8v|2FoHCbkz^DZO~#OeL?ZO^!ujL^vYK2-){wPi z9a%4R0;>@&A{UcO$VbSfx zl@Sk1L94-1gxkpN&@d4aqrtpLv~yhL6muSmPVGYe(Khz)-D4N!}V7G zq28SVdbxiAdXs)+AVyF&jLIZElnf)yWE5iEHjK)INp9JbJ()})d%N+u4s=zRMy8V) zWG2ReHt4GS)lOzZmu%2g;Q(?ZIfcw8r@7pM|9l=Z5K9T6{ro`z8!4FEXf9)mtU=9 zEy)^78%AYEz!vnyHjK)IhnfBoc?9nZY#5cvZ;$f&6<#0X6JEmz$_9H8z6~E@!>H^K z_zrql8*E1?BQzT<2<5>D4SB)mqXpsfg%PBgj3lGTXflShNZY~ggmI*mOe53D3^J1( zBxS=0P3|8}jv>dA}f2+f8Onp`g>WrSwK2yHspz?4SJNo{xsB=@Wm&A|xG0j}ZoT2e-6HjL0t zg3{O6(AP)}%c#tTz6LsmzGgAFjn~`B9nzYxYkBf6ayR+3djeAS@Om$zOgKV-*U#`* z&yo8@>(JK-WmINEUnAECMc-ii!jqVR+7RiLRz6LhAnWagWUZv=YbT5?Zj?#awOnYkx3_hjat%-oZidotE1;0eqBC;^}GYd!1jAVYM~X8^Inj2J1B1_ zdqLhTFcI^nUg&W?16QN`y&(HV@E{@yy&(I0;2~bW$m`?o*N}1s^ZH(p{R(&in$`=l z{}Q~0(LyiCF1!J|>xCE&N`e|d8Bhbl0ldO;u;ti&-3hWKJ z27?wd7A?{nttqr(?A;qO9s+Id{@`iQG(XA-D3*$H^zix0ELAPH+RU z?@YA9XQ24QEc%ly`jafQ<7Y?_f09Lil0|=#MSqe-f09Lil0|=#MSqe-f0Ct$KgmKX zzX6Ir$wDsgfZ|WG=ufifPqOGwvgl8;=ufifPqOGwve5d-o&F??{v->nFDc?rve5cM z@h4emeWCc1EVTYsQ2a?2{Ye&DU#`WUWYM2w(Vy5UubuMRDX*RKBEkg!X{Wq)%4?^* zcFJp~ymrcKr@VH`Yp1++%4?^*cFJp~ymrcKr@VH`Yp1++%4?^*cFJp~ymrcKr@VH` zYp1++%4?^*cFJp~ymrcKr@VH`Yp1++%4?^**_g$AfzwyC@O#;q#RvoO&MO;{g25o7 zM4$~jDrI9la}(T;_R7Y{{6p{nc^Doh8}U-%G4v_f7)#?h7)uKyNHZBpMv>8E3^_=0 zR7)f;buL*-mXQw09eeu=o#cA#@{x@gU>>*$yNP9Ev^f;qg75FL)f-AbC5Lk5P_7)x zl|#95C|3^U%As62lq-jFqdt9^rXVqc?xpF914#rd~kg^f+nH2XYMt zZ@_y_QBL6t(|mFobaevuMYNDs%u=U8KYt0@5D%ONUBX|XOTq%OME(k`5SEfVE<{X%QtYqNGKXw1|=xQPLtxT0}{U zC}|NTEuy4Fl(dMF7E#h7N?JroizsOkB`u<)MU=FNk`__YB1&3BNsB0H5hX36q(zjp zh>{jj(jrP)L`jP%X%QtYqNGKXbPgn)i#;eUr0g;=2hx26+AwOGgBZ(AFquptd!uFN zVAdwggl5jctWB=%WI5?1E692L)e(%c<{t~UgQpWg#~1Z~2Ig%T&9gBUW(hIzek0a;BhBx^`n$2AA51cmid9?a&1i^#>~67mspDY=YXPBxH@ zq`V!QgBhG~C%KEbaQpT+DhdW<3|Po{L$}#jNLIXvjxO zG3&XQ^;`@Mkrb)tV%Bpp>$#ZqT+DhdW<3`peuBJIspn!uHHA{o#jNLI)^joIxtR4_ zj9D{Eh*`5x>bV%RW}(z`F=ov|spn$MnuSu&#jNLI)^jmt%90}WT&zkx7h|R@lzJ}4 zOj#)PT!OyrJSd)jE=H&FEnNXwNEVUPl}$*WLCz#+DZ7v|o7Z!APYF4ftRh!o)HfHS z(|O>tN)`AV#)oq;I$Z+3fU}q8Du;OeBCmg;yn&SC7>CYnEzcR{G_KEK&-S?(qn-gT zD%-$oc-~x$QH3{@k3qNOh%u^g5l$4JtFDu>VWcYDNNyrGlUvBGy#I0X3Gyk_!CbWk zyV%WD-$IXxl~(X+rSxp2^x>uSYT1H9BC}|lbEu*Aml(dYJmQm6&N?Jxq%P46X zB`u?*Wt6mxl9o}@GD=!TNy{i{870L!DYTb^k~%1}YJ_aV>YnpOMD!cL~V(d|l z2*!ut3iROR$|^*z%F))BL5XIRqXtfaFJN3(jvA2b7kPc${W7j4no*8=xB^Nvqa5`h z&%Xu_Q;vEN-oWaqa*SP3D%M6hYonaCQ4YCKD##@)CCf;Mln``t`rT%?QaPRfo*Kc42K>`uz=r0h=0?u6_g;IAUPld?N0yOXjz zDZ3M`|1$n6vO6ield?M@yZlyUcT#pIWp`3`CuMh1b|+tr7>`uz=#JX9?OWB>29V`A2AH!-XQpRHy)bI+_0Qx`Fz*bNqbrq2DV^AV> z71ZzwYIp@Tyn-5D0U6)GUu9-p0U6%`WoBJLJ+FX_@8Mb^brq2Dmr4bsL++4HD3Q7f z>UjnAyn=dOK|Qaao>x%ME2!rc)bk4Jc?IeOM9|NP$G4ekVPnw zx=OS!O2|lEB_nlJl&*@>RZ%*uoPu;!l&*@>;Vl7vTSe)rC|wn$tDRZ+Ss zN>@ecswiC*rK_TJRg|uZ(p6EqDoR&H>8dDQ6{V}9bXAnDiqch4x++RnMd_+2T@|IP zqI6Z1u8PvlgIuF9MzD}p==?m$bp(`H`aG2IeefJ2Jo8YtFO+%69rq)5VF6hp_ak>< zDOpBJ1bZHG7fSqmKIZJtfI2b|Z}H|McL!)8t!Vf8sL#!y&Ak##M4QgX{QUsff?4o< z%-@BF@up@z=I_E|u#WjC;fLS_jMe93E{|L=mlsBmW-^kDBBRL|a*&h+a-k%UOIScU zqzov(&`DNEc~E=8D)I)R4htZ~FwjC;@qP-cGq93j0i+lVK8M;{fSP<86f0hU(!K{? zfQMgzmc?I@JDz~tg#~1ZJOQ;TlodD&(56C%JQJl7I>Bn@Ud`OGb_uyxGxuudUd`OA znR_*JuV(Jm%)OeqS2Oo&=3dR*tD#XXN;Pw@X71I@y_&gKGxuudz7S9QOj(HMe6G|e z)3JuK1|wDBER1h!Fb>2uq92#Q4H)a!U^KWH+@!n=ZdO)-TbS|~q8l~pvv})NgRyY~ zc0`ZCTkKlMCA4ByPc7s+1KRMmu@(~D1SR)clppt?{K5jVMD9fSg{5Q}>5$)|{6Z&K z$6V@|OC58mV=i^fr4HvRW#OLVh|<(y1l$)qhc)VT7!UUYZy?T7$K30fdmVGHL+zbG zy5wHR-0M(#axJ;nG50#=UeDa?nLAb{LdJULUeDa?DPuiltYX}PDbE#)8^~_~Cav6nPl*PuEBbUcOvGL`|B_9+UUyfWp1;xgfBQM;Eyo6%o%aIrE zM_xj)@#V-%C^o(vc?reFv4S4=W9=;|c{MPv2IkcOt-wkz=Ged-8<=AQb8KLa4a~8D zIW{oI2Iknn92=Np19NO(j*XZ@eXKOXw;Tm^r1+Lblw=}kA+3h?%S~g_N&28!P4GU<-MGJdAhujqp6eW0)5=LW&Q-3vxd^56S?~Ba9%; zWF#3yMw2n5c%DYcj&eeFVFBro5<*6yldO=^!t)5LNR|-uT*-FgNz>!-|V0)Xz|Mqs|hvm zxzfZ4Y7--uiGT z!YZ&CC7%mQbfOt0zX;m!-Fh?Q63vWDG&3&IjJU+dNKYjt{?m-OgrwNXa?(jk4L36` z(ag9+GvgA?j7u~#F42tAB1e=~DDj_WXe07PX@yQwA{)(&KQuG`(9HNlGvg1od~w!{_=9iP0rTDrCXSm>73et)g%L-`4KG23W5-VsmD^Sn!gk&;>%;eMN@p?Zz z!wTq(@Bn!jZ?spyYJ|rSFb30a;BhBx^|7+i(S1=VPpViNWfTm8cD&6@B7L zc(XS_8@{$!2`O$WD^U{s6(tcCkR@^te3!74EF&HAE0j>^1oyCa-h+{04X$4#k0YYB z2U_Nu(1sOU`>`tQ z3$Tu?CmS(N+mH1sSHKmhxBVCc$AT|lP0@agf#v!|USD&k;QB2gRy?9?Sa~IkBduf_ znNDVqndB&PG&zPGOO7LR$?;?!IaOpqO9>0eLXikFBjI#%204?QMb0MYkj13TCibI! zg)*DikG@IhklH}|3gxSZ{a6o!n!$P);YFzptZxxsA}^Cyq<%1e6kY}KT^h9adDQ#~ z(26fao=0te4%)Cf@pUH_xH&$Hi|=A5>94(XGf?!;j@7%;Yufa4_X;}TC>1L9!GfM?b&1C_PhNLJhQLs z3rUk6KHbmT-G1_Ad1=<~cVG9tuHQPZbzWDro)H7)gs=|Q(`KWhIEa2SrjQ8)(2;hWBn z?npGx!gJyU)viVSIQ)c;#V)9J9b%E5bi1J1nI*7H=cz8JcIHNT{DNv{ZiarZ#Rb*Q ze|-Wbbi8muwJR0_=7g{g*3)LAMvn`so%yE5(hI7Zc@AFG^Sl?d%{AZFGmjT^SM7)5 zyG&nVdPX_FAXg5GSKvJzlU`88rArkzSHKut30J|@a1Hb`N*7dX=~b=GMtBG|K|g1G zL3=)?p8&m}Js;^+t<84W0gu2=*af>`5A20~uphqST&dRPF?bxls`sv6&{5|u@w>X~ z<${hnw~0T{9R(M(4!GYzI0T2`2polDa2&qrJZl{=&%$%!B>tVmzmvL4e2eDTzmxcP z68}zW9XO#m_OI?sg7)tu{+-0Xle%hlRdej$N&Gt*v41D=?tVmzmxcPQftE6$Rz%q#J`jHcT#)i&6;ojPHNBGw0|d~_U~lW{+-0XllXTM z|4!oHN$t(5U+vAB_V1)>YTCb(s;OebzmxcPQdiSF$Nrtv)il%ooz&Gd)Bc^*)il%o zoy5PB_;(WjPO7HLL)8AAjM~4G_;(WjPU>2lm$H8+qxSEluCzf<^k3jb;=D(6n&-zlBrdPLLq?-c%>!oO4acS_GX zeW>~N?-c%>!oO3xEB@z^Df~Nyf2Z*8lq%k$`S$OWDsI}pQ>wUW|4!lGDf~Nyf2UMy z#i?4G_U{z_ox;CU_;(8bPT}7v)mrLQYt#OnQmswRNze)}D{~0(=p^1oy*gcmN)R-t)Q0p3g=0d@gE_*K@q*bCErti|qMaWY6a! zdp;N0^SP*Zl-<>D?l=$H^D!62X)-@e=BM?H^A9!0nV;5kG^R5@t>?TsSrZYdS zeNNMvpN=~7(@|%BTJNtjo%!jgGe52O*O|`zwD!^!GntY&r#9Ow!Ezz{#ble`^Il8a{X12n@L#XzbXbZ4KvVhgm_yqn4$QN#?K{jjjoTp zqxQciuGe{Tfm&nW|#pb^{GnW*b>C9YGYzIVV z<`S8?r0YQ+Y1-%3E|Hl_Wabi?xkP4Ww3Qr;%xEiVenMM{8EJV-EYeeWGuld;CD2>R z8Mcx$+DdBsq^+d68T!4}Gi)Vi*hU=wVHekOEATS?P=hfa)zzs3|q+=wvsb!C1==5&ajo7(NUtetU?(x zlhE&3y{zq&={F2t)^^H#3GRn}!|-Kor%bBhL@T&+BT)`&wI$i4W^+@cYX4+u|cS!}-2O(YxZK zIzRlrM$w;(zN6-SjRU_DFBHy*Q*cS=*4|f!MUA3rQ)`aeBoFVChxesOZAy`uh8bAv z_NB-Sp`Ye^U!$m*6R!~M6{5XDv{#7s3ejF6+ABnRg=nu3?G>WELbO+i_6pHn(U^Zl zZ93X3M0hL!#2wL9uD;VEQWz zvpR+{{S}5;9YdM^3d5|n4pObHgV_!{;1SpfyI?o$fxWN~_QO{rsi^iB^5o_$Pj1fg)V{x9P@MVOYqC^AsB;2IwG6Xnq!v0GK~gvT64^eI?A5Y9)-CX zKCT?jY0dFppMbiTU(@?_(e&BE zIjxPR-(NAOwb5*ahn)wljb=OSfJa~_?1J5}2lm1~=q=iuj@&ciYkIX|1=OUJKVjf2DC=>#gap zAkFJY+4OVq^U<&CyNB~yZ?}qnqBCIgT5mmn8{7^n;10MG?t;4^k!!t`Uahz0A=m_) zVGC@9hhZCRhaK<;?1Wvg8}`6n*a!V&{k+!O1ESa4d9Al=#UD7gT5o?Po`eJN6gV%iFnLq^Cx^u%-Pv+eYol2L%L;ciT@E+uF5;V78_mt| zaqXYq)Y|CZJORDGeUrCG>ON)Wgs=|Q)26>^byMr1Ia=t9+|==x;?eP!xdO)EO1KKH zhHKy!N2}v6#i@0}Y=nnk6KsYpuoWJ53>wqScGv-rz)si&yP?1LbW_J)W*_ub?3+6N zl13eWnaAL9=qn31wa)ydc$!}h!XY>eN1(rZds9bP<~V%Q*--V(v+$g_q)PRQABUeP z?9lY*bxg6OO8vc93`?LZwM3x1=gd zi>hp{fHAldu7a!K8o0$uRb?qvmCZ(Y2>Rt9q_;Df&0M-)~8^RyH&;=&5EZzNEb@ zFYAgg>6qGd#g}wUZMx!1RD4N(S8i2t({G_%(pl(V=~)_AJWs{*+M4Xpv@4#c;(02b zmpA`jb6oK}70*-gJQdH&o7Xho70*-gJQdGVaXlHpQm%NOisz|#UVAw1-4)MM@jMmJ zQ}H|%&+AHr-UOj55vD7ir{Z}ko~Pn@DxTNXhYurpDxRm}c`BaQ)d#85)d$lR&qrPH zeAE@s>xf25sd%1>=c#yJW4`oiU&VCA^He;qeHBl;;(02br{Z}ko~Pn@DxRm}c`BZ# z;(02br{Z}ko~Pn@DxRm}d0l<@sakf$^He-f#q(4=PsQ_8JWs{*R6I|`^He-f#q(4= zPsQ_8JWs{*RQ#U4FTE>rPv3$zKcOw=Jsl@bh!5+Giry=!`+4*(KpoHC(|fY^iI3`i zBlmQV>{{{Lx{i5IM~FWXr{I$A$GfK^L^1l1+l+n%u7EMP60U-);Trgy`_-|enS_3t z_@0g>O+QV1PsfsGtz*!!q!~iLU-e$}C_Dy_i$9c>pNc+rp?4f=A6ReG(fgWysN+`6 zQD0^f)-peUp;(CMX}IXe)WTnj4;QAy^@V>BA1Qn&K3X^t{g~R(U)7G8gf;%FVm8w- z18ezx07LP!+E4qbs53m`XA3_Ub)HB3uS|ad>YR_}=$wzJb3UTZ`G{)@f%tIY+v3{7 zkHmFwec@G2>*;Cn(LyK|74l*+EP-W(A8JlH)KRdebrdY>C|G>Fa7X+qe|-Y(*PBp2 ztGzojU``0@U_EW>XjgyL(XOa7W6{t0I9F8WMV&Pgb=FAKStD_S)oIVo(>iw~>fDj2 zb4Q}i9f>-3BfEk*IS=;&aZ1s$eGJx2#3yj?5R}i|{45A6CNy z@F3JP-TJ+r=@#`&x2Pwb#ad@l>zf%uRBMz_ZZ%4nhhP(IhApra>TH{S(+1mN2Rs5h zVHfO%J+K${!G8DyS3%x)YlCnI4#N>R3di6$)N!`ANNRUz||n{vz$G;@QG?#B=a`;b)qjgcq4J4QC2}ulbh?%c7oy60gG>is27+ zAK))V9kYl!W)YXQ4t!C4{Y2FB7owiO5Z4#JD?U=VEb6?as51v7*v16_u$w-bLNtmXFs48@03qZ{HYh2!GULYFupk3ST7Pcc6v z72g+cGXF=a^+S3Cp1EAeY4rE9Ut!s=u~&-1DsdvMX42 z1Z`NEE{9l7|X_3Hpa3mS#~AM zu4LJjEW46rSF-F%mR-rRD_M3W%dTSCRV=%TWmmE6DwbWvva48j70a$-*;OpNnq^nB z>}r->&9bXmb~VecX4%y&yP9QJv#h_7aU;5hW!JFm8kSwdvTIm&4a=@!*)=S?hGiet zzT7XPev`kcF9?fIz~}XrsE0M?drk=J;QLxn{04hb`#<`tMmDn@cEBUB6L!IF*aLf^ z&WmcPe)u;Ly=gT1-N-k^*CG|-_w?rUhc(vuH-m5p4#N>R3df+%bVb*qWi49PqGc^w z*6OIRRDZRWwP;zZ{ZCI@%UZOoMax>WtVPRO?aS#m+Ltq}Wv%w*Olw)IeL2%w)@onQ zw3fBnThsee(XtjTYtgb6Eo;%TR{L!JrM0ZpKAUMRYqig2TFW}LtV7E>w5&tRI<%}q z%R02IL(4j}tV7E>w5&tRI<%}q%R02IL(4j}tV7E>w5&tRI<%}q%R02IL(4j}tV7E> zw5&tRI<%}q%R02IL(4j}tV7FswD{fczl{1F@21zW^=R=M+CA-cY&}}mqs4DN|0ud1 zEq?pA{)!gA{oB*7i{Jijx-RR{;(R0v zE$h*;9xdz9vK}q#(c(8_|19b^W1FAQHpOqo_VgN!U5{w&y&-NWEQpU52E=b`g!g-- zKN8QvbMT_JV!A5?>guGXy%q4=q1Bp>T+9_P23NvWa5Y>5x4`GzyGD333HA1SO$RU( zHxT&-BHuvd8;E=Zk#8XK4Me_y$TtxA1|r`;)~2a zU$_(Xg*$Nw4#N>R3df+naHrp#cT_qT_hHm;0sV#OZ1^ppzZ9JfzXjBEHvAS))7f~8 zY&=Fb9*Z~|kC6?(1=PQHHvAS)&v!N+(-~U#;%xXWpr*6Idp@In!>4{vHvEQ9Pdgia z!>8$N_zj|42^lCM10`gjgbb9Bff6!MN(M^FKq(n0B?F~o zpp*=hl7Ujzhf>yuQnFD>HcH7xDcL9`8>M8Rlnj)Tfl@M1N(M^FKq(n0B?F~opp*=h zl7Uh(P)Y_$$v`O?C?x}>WT2D`l#+o`GEhneO36Se87L(KrDUL#43v_AQZi6V2Fl1l z85t-e17&2Oj0}{Kfif~sMh42rKp7b*BLih*po|QZk%2PShcecOGO|%dHp<9G8QCZ! z8)ampjBJ#VjWV)PMmEaGMj6>CBO7I8ql|2nk&QC4QARe($VM62C?gwXWTT91l#z`x zvQb7h%E(3;*(f6$ z$woQZC?^}`WTTvHl#`8evQbVp%E?AK*(fI)b+t>n8rX ziN9{rK8faQpJX|@nZN3N{GR5ooB8Wz{`xq7eVo5O&R-wruaEQBuj@{+DqW$x9@!(_ zi0srA%J(8qiq|85A>N2=iT;`P(0(N*w2$;>IzMb4g~#A=aSOlM!f&>yg~OV2O>d!#!{>4ESXo)EzAPy}n&5 z>f5!V?q(EqH>0R8T!^}QBI+8Ms4rZI{e?;K<-(ZwHuK+w?-y=r&K0OHTxj|q&FCNd zuhECCQD-U5bfTY!*$TJ8?XUvwfIHzXxErEHXA7lBXA4c;jU(!A z98q`Uh`Jj`)ZIAZVP`-dG23AWJOVpm7wm>Tuow2he(3k0eN$JEH;Sj3GYE&^FdTuS za14$^ec?h&>25&r1G01#&cbVO4qk`z@CLl;D(L)}c^fXkJFbh)kD2=*)V-Rb?$s1^uclbzdg%k4YLG()Iw3TRs26cF`I0a4!+5cN#~u@iQ|Zm9c7G++0Vh<#A^lW6)h)OQ3l zJp_m02polDa2%d@edPkvXVIVHEc#QNMSqI3=udGL{VC3(KgC(}r#OrLl+F@s9gqvm z+i(Hi@me7ln2TZ@7sPQv92dlOCFq{!+XZo45ZBcoPum6hcBpb5#|3fU@vCXOAdU;- zxFC)T;&)bn`m0?K*BSdi6YYYy&e(g}E{JQyo)hhYI4+3e zf;cXSN9=+)E{NlTI4+3meC9uBzFiQ<1#w&u#|3d*5XS{^U3*gYa6w$7x~J`exUM>x zc0oL97sR7>L0ngzOuHbit4^j}5Z6^F(=LePf;cXS>&Y7B3Kzt2K^zyvaX}mx#Bo6! z7sPQv92dlKK^zyvb%y_CwPP2=aX}mx#I;>;`*uMb7sPQv92dlKL0tPz{;ORO*S?c! z7sPQvT>DO*whQ9gUo!22xb~M!yCAOpCDSg5Yk$eK3*xvSjtkn=(J4{fDhOH}wl~P2nHK^@UsF z25m34YTX_b^_>OLXVtcHZfYy%rnc(b)Xz0%8eVq`IxD3%bymt;0b_6_Tm@IdHE;_{ zJ?DN^Uo#2yb#+Y#Fch~D^EP7MM$FrYc^ffrBj#oW#6MYtdkI zJ27u3=IzA1otU>1^LAq1PR!ehc{?$0C+6+Myq%c06Z3Xr-cHQhiFrFQZztyM#JruD zw-fVrV%|>7+lhHQF>fd4?ZmvDn70%2c4Dp|<_co2Am$2Ut{~G4Cek-Nd|`n0FKNZerd|%)5zs zH!(k>*nSm#MtdFRdhO>wqu4HrMLPa{M#qL`2`tkUkY}{lVQwt^Slk3RL%m@@bH2)7 zpMU|ZgY~qaH)HEJdIPz57<%vG8TKxo(SE`|Yx-T2ZT&NfUr{N3GYM-Qo8mV^NXt43 zQ=B>qGj&J3*aVwl3v7jl9gnuQW;^VFM_?!Hg59tO_QF2c4^P8EI0T2`2polDa2%eu zQf+Nb?{hxG*7g~;w$HG&eTJ>=Gi+_2VQc#gTU&j9UfT7QZ0H(QQlm<0R7s60sZpi& z3~%VKu2Cg5s-#AhI)4AL=D0?c)TmN>jQ)*lRH^+y)0wQ)9^gl!Yg9>%D%k_9q(+t0 zsFE60Qlm<0R7s60sZpiYv5V14YE(&$Ds}grTBb&o)TojgRZ^o$9Vz>-u2H3qlug&D zk{VS~qe|@&d5&vTsXZdoHLBDek?9&$YLCctjViTAWV%L`+9NVuqe|@&nXXZ#_J~Z^ zs8V}GrfXD5jVh^8B{iy~MwQg4k{VS~qe^O2NsX$gk-mqbh1tMUAScQ57|+qDEEJsEQg@QKKqq zR7H)ds8JO)s-i|!)ToLYRZ*iVYE(sys;E&FHL9XURn(}88dXuFDr!_kjjE_o6*a1& zMpe|PiW*f>qbh3jtj6Sjj6SQn{ImEqohy4*$4cgt@M*XQ?uAXT8MbK8^I7HG^d9@O zIvV;=^#1CzIvVL2+#YMiq^ctZ|=fHaS!q6JDmFE9^%|PsH); z(XpH9c=qT>&2&6_v=01SbUb^AXAkl0A)YW+@$4m@y~MMZc=i&{UgFtHJbQ^}FY)Xpp1s7gmw5IP z&tBr$OFVmtXD{*WC7yl6qi>BWKl_MhAMxxXo_)l#k9hVG&pzVWM?890tCa2|o_)l# zk9hVG&pzVWM?Cw8XCLwGBc6T4vyXW85zjv2c`o8R=$_M7UhfCgR^HT;4&vu^uhesL z`Xgd7EP-VOeUnd4H#Zha#Z7QCd|YR@o|Du4*C*iD3PYOy6Zj-;KF#zVxECgLzUVnW z4I#c%(EGUc4BA044KvX9wmqkD!!3uf4rZBOPizfLHx_int2?yKCR)>*STx;I&|6cL zJ@YW^DKu%i7xwASy61Er!2EVW-!o7?9m!u6z9qg%X5P}7z~{7A^NM&5US$3>e7m6c zXzQIb9pbx8Ut)Tu@Hd+CzV1nTPUi>Ad*u9wg}c$`qJQk(_1)DG@gcXPJtA`jjKP&~ z6T=b}G7d-}#!&h~^;JN5`bSC^cUG>l&o9<)rZ(fUR6@L)< zbMXZIo`eJN6g*AKgK!8A!;ylv${INx!x$WgZ?M!E=QBFN^qa1G^ex?)`CRmDLGS+4 z-Q%8f-W8V%%n!)Fc88C0d1$f76h}>i@!X>XQdeUu3yvOvi zqDtVh1TIV9vIH(m;IafROW?AEwx_x?M%z<;^AeXOa9IMECA2-&_Y}1~eNnW_61Xg( zkz`2Ic3DCr$@fLOETNIaw966^yDWjr61XgZ%M!ROp(i~Zr(Kr7WeHrC&^Fq=*kuWA zsU4eLme6w$I-`Wk61Yt7qNW$SEP=}sxGbUVc$4PXWeJT}`kn+XOW?8uE=%CD1TITN z?6L$dOW?AEjvZds9J?%`JpsL^9+xF>Swe4i>d+j!EP=}sxGaIo68hfp-Dm=rC2&~+ zmnCpn0+%Ip+@Y3r++o^f2_1Ksc3DEl9m*#zOW?8uE=y=%LfO#1glU&0v@c=WWr?U= zmcV5RT$aFP30#)IWeM#|Jgwi@WeHrCz-0+sme9V0Td>O#xGaIo61pO$I_j#T_I_|# z0+%IlSpt_Oa9IMEC8Bm&LQjvHc3DFECvMp;OKAVZw969OKha(zp4OhHwdZN=d0Km()}E)e=V|SE zT6><>o>#s8Df$Afy+CU((Ao>M_5!WFKx;41+6%Py0C8P?WeWqts%fp7)~ac( zn%1gmt(w-VX|0;ps%fp7)~ac(n%1gm?EtMEptS?Ec7WCn(Aoi7J3wm(Xzc*49iX)X zw03~j4$#^`T02NP2WjUZ?Hr_?gS2yyb`H|cLE1S;I|pg!Ano{@argA)(U0lAiyCbg z%uf^=#LpLwiAAs&mcTMSA6KL8g1J%8!qjNHU~YzwYk#0d+Xesi3HUWV8C0X~g83wT z8t#F6p`W~~(H3D!JXkm@>Ki4ZzEL99LVf*E)B5_MSO>GruP3SorW$4SQfO?1TOA6?haLgU8{k`a(>N#`#CZ*CJ1g-_spRHM%e5 zN%4g9uW{ZSfT!STmK}sca2SrjQ8)(2;TtS90pE1aHNu-`b-u1fBfO{e#wSs4d=ft( z!&l)fyawmsbvO@iz$I5r6fQ_<@5s}3K}vf^rd^Q21^QYhQP~A4 zT#&*A`q~@6u?teTAf^2x|Hf-eO8Z5gwhL0YAcYH3+AnhZc0mdkq;NqB7o>23zCNM# zHiZjPxFDrbWmt3Uf|N!Tw`muowEuHev~X&0ol&tuvJDO`}k1u0yR(mszgYM;ln3sTzWG3|ns_IXUZAcYI` z?MSBWf|T}oOuHbZeIC;;NNJzPv{Cc8lV7jqT zrr#WbP1>WYm3Q24i_WIj$~)#^*i%Sqx)=5pPHVcqa7z4k;WhDPmijBQ^kyNYIdAFN z|5|xUUv8GC%!|yQhHvZL6t(h{mwlJ%OH9wu!uz_fxK^Gr?`dmZtMf~f;*WGiuU7X@ zn#+-*Xsx`asC33jeaUgEqa0_hfHAldu7azfzT>9fJnY)(u1j+r)SJCEy%BDLo8jYd zi(`v!WqKRj4lCdexD)PzyWz85E24YgUbqiZ1vy=7i=1vAf=#d)w!l_+*cFu1&Gy3I zi5*NI(G{gyIo~ot-@L(6 z6Yx#1b#l6SR(smDa=NF_dwrAB%@1_$w^mMfm1p5KI0vu8d3Xcf^g5}tTjp)J0PlGH z)Y&a_v2b2oqMCUfFVt#GaAlVjRlt}KFeU_y34ykZdRm4tAz(}hbkDQigRE_(z7)%t z5HKbLy7SrdJthPZj|l-|LZI#G7c}iLA<*{J^q3GZCIs4^dfH<`pzW#YF(F_~2pAIr zZBK_a$74dkm=I`t>S>P&fwrfn$Ao|}Az(}h7!v}BmOb8+#69UErf0g?+O?ylTw1st+ zJSGH;2?1k5z?cv)CIs5f`mY`n0>*@ZF(J@)*6nyq2(+EmHx3yS0>*@ZF(F_~2pALe zwQjAk0b@eIm=G`~1dIs*V?v;*?ucVc^v$Amz4 zVw)Zl0^NyidQ1oy6N0G6gdplMA&7cR2y{QT=`kUQdQ1qS9utD7$Ao|}A&7cR2%;Vn z0&V?O1;&JcF(F_~2(*@ZF(F_~2pAIr z#)N<|Az(}hwDs2-sI9;0F(J^_-}IOe=#2L%(PKium=NfUx2HWO_zUc&$Ao|}A<%xp z4>j#EAz(}h852Urgpe^IWK0Md6GFy>kTD@-Ob8hhLdJxUF(G732pJPX#)ObDA!JMl z852Urgpe^IWK0Md6GFy>kTD@-Ob8hhLdJxUF(G732pJPX#)ObDA!JMl852Urgpe^I zWK0Md6GFy>kTD@-Ob8hhLdJxUF(G732pJPX#)ObDA!JMl852Urgpe^IWK0Md6GFy> zkTD@-Ob8hhLdJxUF(G732pJPX#)ObDA!JMl852Urgpe^IWK0Md6GFy>kTD@-Ob8hh zLdFDr#a?4V$e0i^CWMR$A!9le5gj(DxPB$ysKfp4P0BvzEk{^{i-}yxS+3ToI2If^z%4%s*&PXjZEJmT&EhDez#klYGlqqzuT=&H8TBf zw>s5G>Qp21He7&rtXDNM7sV{K$Wn_ewa8M7EVal|i!8OsQj4s{$scPe*CMNN(sV7d z)FMkQveY6=EwUQrZt1VCMV4A*HOhUYY1bl4Ewa=iOD(e0B1qZT=8k)swlYLTNBIckxk7CCB>qZT=8k)swlYLTNBIckxk7CCB>qZT=8k)swl zYLTNBIckxk7CCB>qZT=8k)swlYLTNBIckxk7CCB>qZT=8k)swlYLTNBIckxk7CCB> zqZT=8k)swlYLTNBIckxk7CCB>qZT=8k)swlYLTNBIckxk7CCB>qZT=8k)sy%x_|pm zqxHIf+gz_VAJ*%M%ZsAl=~u6}uKh~9tZNzdk?UIj>v=O$y`D_`C|a-ktF@HwuQrpg z#>?vIKQj$8&_@>ay5rRJ`~4c|w}E~e=(mA>8|b%zejC*9NBX7vZJ^%<`fZ@!2KsHF zUtOnFFAenDK)(%o>d9>)78|k-^ejDkx zk$!b0P`&6%2(;ct`fa4&M*3}}-$V3!h<*>z?;-j9?7Fo9VZiew*pHnSPt;x0!yM z(c4VF&Gg$$zs>a9Oux{wuZJpz|0z!Bj{U>x zOTScKW)gnOzt?lV<_qve_!8U?tKk8tZ-3~QHEvlEnrWDUweCw1nxWW6gl$CFMucrd z*hYkHMA$}zZA93nEZxyk*R{=UQJAo30(?;!FHBJUvb4kFh%LS?&y$UBJqh$4S7dPI?%YqhQ(QRL=& z-M4u}k-siJT39I_)e|U36#q{|-vx0*Pv8GSoMd{6>B~BAez5ri@FTwq=8XkZLVU6RIUNa3du-1`FuNjJ+ z=4+lk&z^md}R6TO}2?L==UdOOkE8L{3@)$t!h>+M8uCwlco2Q?(Y3uDo zZzp=Y(A$OHF7$Sxw+p>p=Wm zyp=1y*=pd zL2nOwd(hj1-X8S!ptlFTJ?QO0Zx4EV(A$IF9`yF0w+FpF=1y*=pdL2nOwd(qpA-d^#==uKYIJo+mGIU^!B5-AHDtP z?MH7vdi&A)iu67ceMNfB^@R(fzLX(8s{3H|G@Iuu9y1B`Jqu0idlsU;XCdl)7Gf>G z4`3)BrRAfve3X`t((+MSK1$0+Y56EEA63kEqep4^C@mkQ<)gHGR57bf#oQ1*M$5-& z`4}x9qvd0?e2kWl(eg1`)}5qkS@*|5$9#;IkJ0imT0Tb0$7%UEEgz@l4QiFi5km*Ta^pNZFXrtZ7Ek?*_uW|ZISy#(`cS?}w6E%JiyXnig6B76z%k8IYQ zYNn4yc4&G+(Y~e_D#S_nUgUpj`m)|i{hIoEM7%DIuc@!c#G8uqHTC7+M8=F56zo$HG(0@(nEAN&*#Ym4x@u6me0yZbt4v0m5usou4Inn_sW-nD+3X_$evjz{aK>HBG4*VP2Y zrmG2NBRm9~U^DdF5?0iG z4wv;Nz`u?7yEcCZPblX_(G$wK=_7~}jMyjS-y@p#cVtc||Ng7KMI}z?xZngM_6bJp z6O7m=7_m=i#C~6Yy{@B-6B?^O6umEfLSyx^n1{=H&gF!%tu~cyGYP#feS)$21Y`9H z#_AJ{)h8IMPcT-WV5~mDSbaich$2*tOnSRxP&$Cp0hA7)bO5CTC>=oQ07?f?I)Ksvln$VD0Hp&c9YE;-N(WFnfYJe! z4xn@Zr2{A(KV?xD30s-~v352Ae#?SuOM^^Y{i z+6U1-sA~<_nUu&bD6^0(ehtNKR_95y%g!Un{521Ys?L%lE zLi-TfhtNKR_93(nqkS0d!)PBy`!L#v(LRj!VYCmUeHiV-Xdg!VFxrRFK8*HZv=5_w z812JoA4dBy+K17uFG*@`A4dBy+K16TjP_x)4^wwNeWfbv=@aO>52Iao#;NYQ7Y2Hr zA4dBy+K16TjP_x)52Jkq?IUO(LHh{WN6 zeFW_zXdglQ2--)`K7#fUw2z>D1nnbe*Bdod>k+h%pnU}GBWNF??jvX)LHh{WN2vP< z+DFhng7y)#kDz@7?W1TPMf)h)N6|it_EEHtqJ0$Yqi7#R`zYE+(LRdyQM8YueH87Z zXdgxUDB4HSK8p5Hw2z{F6z!vEA4U5p+DFkoiuO^okD`4P?W1TPMf)h)N6|it_EEHt zqJ0$Yqi7#R`xx5C&_0ItF|?1NeGKhmXdgrS7~03sK8E%&w2z^E4DDlRA4B^X+Q-m7 zhW0VEkD+}G?PF*kL;D!o$Iz~Kw5aZShXl0W$Iw28_A#`Np?wVPV`v{k`xx5C&_0It zF|?1NeGKj6Xdg%WINHb2K92Trw2z~G9PQ(1A4mH*+Q-p8j`nf1kE4AY?c-=4m-fZz zINHb2K92Trw2z~G9PQ(1A4mH*+Q-p8PTlp?raZ2v)}Z}9j`nf1kE4AY?c-=4NBcP1 z$I(8H_Hneop}XMTh`yn_;LOkKp3FCt2i@1JJecdX?S4ZU_@4M^;jhHUG%mfNd%ezy zXLaV`4c+BsUeq0TZ|E*Bb4KU4-_TLs!{T)v+rFWrytUCcbf=bj(Vbf63K)Yc;VQTq zu7O(|k20W0lmXM<%X>pg6^WFZA*^#$QflVlvX1P|pzaLn&Y

    dv6<4C>CH?hNYA zpzaLn&Y
      dv6<4C>CH?hIPapydo&&gibQH=<{B*O_T8XLQ$@X)R||&3@5Z&Ypk)FrI?`69CeSj0mI<^>pk)Fr z6KI)0%LG~`v^M@!OWn{h=>)na&^3Xs33N@MYXV&p=$b&+1iB{BHG!@PbWNaZ0$mg6 znn2eCx+c&yfvz{D;?JXRN`<*zcZt6#-<=g7)s?I_<*8pp-&FhhtJ*h{u*ScU3rs(A z`lei9)_N)RYlh-mwEq_EzeW3R(f(Vs{}%1PC2!u-FMUPkEoI}!;tlP)z9lFABC2-| zsmHhI{VjTbOCCI{Iqv-}dVh=F-=g=o=>08vKTGdt>HRFdpQZP+^nRA!&(iN%dO1rk zXX!=HC98csPYJE@EWMnim$US8mR`=$%Q<>EM=$5-%YJ#7Fgf!Fl!jk$7Eu znCI1texqK@B&_i-)r*;i8CdIO)r%R57wF{zydW+ZGe1yY`n~!x{oTwD)R*b|TRu=neR+rLU{>b(OxZ($`h` zx=LSH>FX+e>4|W)tY=}N`?^YBSLy32eO;xmS^Ao#uUYzEPc(=*ERam=&x+(iy+FO&M+#rYxH%EzOK>NHTt?nU)SjC z8hu@(uWR&mjlQnY*ERaOMqk(HYmUC==xdI?=ICpVzUJs_j=tvTYmUC==xdI?=ICpV zzUJs_j=tvTYmUC==<7OtU8k?>^mU!SbmmmmyiQ-&>FYXuU8k?>^mU!SuG80b`npbE z*XipzeO;%o>-05GU-R@ePha!&HBVpj^fgak^Yk@OU-R@ePha!&HBVpj^fgak^Yk@O zU-R^JgT8Li*A4o*L0>oM>jr(@psySBb%VZc(AN$6(t8e6Up?myy&m46uN(ArgT8Li z*G+B37NR$`6*E6y_*>CWYTQ)srr(o)Q(Lh~@lic3a#LHekHj~1ta?*hG4mX}$SY=V~`^CE=6V%*1C5^ZicYVk!bs6=EPfQ zxrLTnXt{-!TWGn3mRo4Kg_c`rxrLTnXt{-!TiPPuQ)||8OIzf;Xf3zUatkfD&~i)L z;swpOmRs5uo7Qqm+hWsNZlUECT5h4`ma6cY=3C1xwCL_#$B&jU>rxQ&+EXt|A++i1CsmfL8#jh5SJSwPDIS{BfFk;mhO_JyJYFE>fWXK&eC17 zbXRr%nWmkkyJYDuS-MM>?&|uE+i{le>YC0^MaOWLEZrqbcgfOStrZtF-&wj#mhO_J zyJYDuS-MM>?vkauS~n)6ceQSq&eC128>X{#SL=r2Bujd)p`#^BceQTlybM{oOP20x z-B3Ja=`LBitE)er<1F1JOLz4wiKm^VyLy(ybe8UtrA4x|NR}4K(jr+}Buk5AX^|`~ zlBGqmv`Cf~$)qKTrF4+RxK|p7!&!pQrsi?dNGfuPyAYXrA`-w4c`&)^pr`p7!&!e~(f&Q! zzeoG`X#XDV-=qC|w11EG^*$}Nc8~V&(f&Q!zeoG`X#XDVFRT3`9l80+-7?ocmbvz! zV^m$aTUKA^L|?gE)>)CCioSBUtg|9N6n*dCvd)Tl+V{dOYwzNH(O2%4wQhVU`pVt1 z&W9|EzH+y$Bb0^cvSL=7irMs8pk=OoEOYH+nQI@*T>Dt&+Q%~2K9;%mvCOrPWv+cJ zOQ|B1Qqx!NmZjA6wU1>fHFfPH;{S{3j)*8zk;pCmdw)6_`7ipf`_sP{`DElL52imB z*%bNZgXxb)z7YL`2h*R3Y>KXWF#XBM|Ik~k?=Sl)eHpy&!StsiUyKetnEp)UtI_u! zOn>&{&C&n+!SwG(zWB)(9!&p1J+JouOMgGrEJrns@B>M5sDBPo; zs(UaUjeO5oNfKl7yr(;tsK_L-L-On*Z2-+3_o$;gJ!{vQvf zKNZ>k*)0#IKOHIktj-|O*JmR2pZ%u?)1UqH|MmM%KA8UfNa-Iv{9yVIBISRy=fU(J zMvwl{u?N$ii){MBA3m7=uaW=$g(OOsCd?Xe>5~OO51P5d5Yg<|xzg|+(*49?s($UC|iVrsAN*;-| z1ueC)%2acz>2Rth_7@HHEwP=|xm0XbMRiNVs^VBha4=QhtUtBZ*QAn|!EQJZR7{|oA4 z-^^AYtlQdBoed6_7fZ!AB%$IPzxjL7Z~grnR{4!*D>oHwDlRQ9FW$WQt7X6W;r)hU z_gngPAop8ziZ&OOK2cQq_%~v|m4~c?NK0-riTF)Rzul#0#)9Tpb*!bSx+ayYZmNql zr2oS-E4BZA{{MA3$oZC<>RjyEw(6#uhJ&>+SM8e(EkQ$UXHeIWZ8=z*I{Yu)H&?3! zO@X^^Or@(2ref*pT#)UE)uft(Ouee3TvD3WTuxPz{L?yqzxlygwx2%e_)oR6Sb-e2TKtqkzdWno3Xl;qLv1Coq+?cKIxZkN-&II+< zSr;&9Y5v`%v(-%*C963&l4>rFJ*zeQV79usIXI}_H#RjiHZ-Xo_05mP)OSm8uvNcT z?1zKq;6OI@>x{QHHl~^mDuIv1GQr^#Rmi4VT2f8vhNfKe{XzxRO|jbQrd&gP$NjQo zQyFKbIJQNJQ^(D=TuYEsD-N?cn@ZJb=7Xwd8yf0jx#~LQH+49uQ65-GD}pDgTQF3t zt-ATwHT+Gzy&_0J>add5qReJ$o#UDYwN&5G5=%E^vkh$uNhN7*a)Om8tuXhq(VWT! zMNJJhzSoYH>LA<9`mccROKiTcnH9A2lnp>J$ z54N;6X?7gO>ZL@p|6S+FYM%R!z3ndsW`(0dCV{4>YshTWh8%Ro$Y3 z{AL|rkFVTWZ7SR7F#dCoJ;EB>a9HcX#?sQ#M`M|6M`NvIdQN>%pNh4mJlJa0@jw|c zR5`L1C9o~ltnzC$X^xe7S>++9f8Zvq`I*-0OiJ0`tUo=aF*~bO{$Kw!CLwL9Y}Wt& zWs|G!kzniYEwRShhWeCNy9cW#IcB_y$qBLQ!>UHL*Tb}yvetuI!7{1;Y?#*18*=~g zF!)>J%<{i*)WBOG`WVe>g>ZZf`NR8%HL|P+t`mg555&c(O3?eE0#s41E zob|NbqQ1T!DbfG8@&Ee3yIN}et(J=Q>xM{9ziX)&|E=A(s{&w5H z+rne|+g|;qN$u%nEBv-hJ(X$xzgE~RCC+N2`f1j0yhK+2HfXM1%BJ4_LcKonAkO~~`N*BSZk7=OJMZB{?}3_N^X5y$?6^&$J9etJQo zvT#3hzg{E$ZA|}>%3uF7rkpjauWJ3TMR~8*8ky3%QmyGa&1;CH`OE*_+I)Yl{oh&t z|1)>|%X+>=5qfQosXA@MS)(Wq;(=d#?VFm@B4rKw)lU6erzt(+&ad>+)Zf(Zx79bR zt@|$UI{9nWUfH@VU)~>~ zJl5UMiYw?}-Cx4%`2XA9nZQ+5_5FS=M8H`DXGH`x98wuXO>@>XP0b<82@!D?OU2n7 zF~zaRMs2VnbDnyz!Ll^O4q*x;96;1W$p$qlyZ3$H=eF45}P5G(DwNO?#r)06S|qkUx^usAz^o* zdWw7E!nTPv^Ck74bcIzkOWt*!v4CQ2;?2{gsWcuxCm0@x6iG=*nRs)a$A9v!c4|l* zJ;|?VDE9Am&D%h`z^A>M%v604ld+cY^Z33ZL?#HkF&WeR?(I( zaV5E#_-yNkytCMB`@Q8}j0w5Ox8r>-_e92ceoJiK&hdDj6djpm{E+w+Y4T2z3&|VV zp^<0jaEME>T(d|8c}LMLTcaecg{zazc?NFcOnjAUi^!P7zcy#&UArT()DO`Gn?v#* zawTDL$L4GkewJJ2-rc%B9sg#U|HSr9<5>xv*orAepX_|p{Wi8maQiJeljxY8LrJ=c zF5an!rOa_laa#mC1;j5qZ-_mq0eS67CCL)C;t&w8us4c~| z)+}$qdr8U&zr~-jJekeE5+?gO`&T?~HOIV{xU@O!P8SJ`cQS(V%e35puNTn#E*^k0%L41ICQU^9ZEGUWhL-qi^FjQ$J#P}rC21SaS?rh1{dTU<_9U#5 zTEc7b_0OJ_bhg7RaXXz5*uNh#DP-%qn+g3W33kVY#D(xncwYKu!?-K4QOe`e@|8%H z6qoZ{AmJ0f+012GYW|adZI(+(#BH7btEFktB+&-Rv83j4ckMtzA`B=EZE5}B-cS5~ zed6Bk|Hy~`UpES*bo9TwZghLP{d2V{H_z>}=xJ$f>h`(|E&LuzS^uWgZ{d*s9v^*{ zR&@{Bs+;I?YO`vpnvrGRr@m!`o+m}a7R;h6&m1~0)VVd)y33k2eif>HFuBjFgP5!9 zRIu8qNcA7I@mF9@Tt(H9N^mFDSv{zF=}Kz5>TN2s59!Lfiu#WEfmN9WSWQ>gzPg6? zQ=e*oT~pW6wRIg`SJ%_^bpzc{2k1sRP&d{=I#@T+O?5MUpAJ#Sb#vW9w^R?S{<@XE zpP7HHRSq)(+b}<|tt!-^n2ASq7!|)a)FBf01_dhi@l^j%YjrrY8Y6T&9jV*v4!Wa$ zKzGue)#Lg>^#n8YMzJH-81<@pjrn|C)CS#^evhwJuI{G0>mItN%GbSAf$ps?>OShc zen?$Vmvmotuzy(h*8|ix1_=FzG zen_MB7(G@;>2W$*kJmBm+Yzf8s*P$NGZRm#{mclR$SUhG>VL5AvBj#CQ|Sfz0<%iL zrApH?Sa)frep3B+{S>SCu+EN3SEuzH#dv5^dQfF0$ zI-pnsTrbxv^h&*oxxK5Ib9;sPtZQ{5vo*8TSLz%yPABUP%+K7UH_J>&y@mOB-!nt* zDD%{cn8C&BkrW7LsOiiCdKpFejaeazeyOL(N@g)1VK(FMUt|3BcE;Jh$(Yf9W0d9F zdIwqD95q+JqvkPMZqGjmepmlpC+j2nJ^jAA zsy|>f+)@3J{#YN=pXg5+Idp=NDJl9Sefy{M=k%JU=`Yk$^|V^1mg{tVTGKnI&*}`F zsk77%`YZLJKBvCX**ZtPu3pqm@A$YWv~0HZ?mlx8EsE2;d)sHvzT=~3dH1t_cnzS{ zer8;`-f@#WhspinF2~WX|0kILy(YxWni)OEJJuy4s%^Uto_uvIH!*4=7m=az6((O1 z^3_hhBIT>Se2Lr0j(oLmD_^1Ic`9m(T!zb+JknksX)lkomq*&mBkkpp4)RC`k>5e& zcaSGKL>LLvL%@iQh)kDc#1Szcs{>qR6M!ou5Eo<_5AY@GCxO^NZE zZohSG+@$i;X`Pe;+Ih#j;~_Mh zAcuw%+RzAb6%p<=BbvC1lWSfnG=lJjMu@z2BC4H8X(!LLYi|-LykmrY?%vTp_vl%b zj)f^RC(!*yXF}`*&))H~W_m`2iQi#i$P5eP`LM9|6=G-8a}Yfzc7i+^78)AvIep5k zXs;*f)SDA+?uCW6^PE0m<{bIar$e7UJlCFJgtaHEVG{Xa68T{g`C$_IVG{Xa68T|7 z{s5lzik~xO`h-{$wzh41d3U#8&#U|RS#&N`>RB4?6?@`5I!1!+)yrm0FT)zI-sYEg zZ`Y%}&7&22mpHHVP#Gx?mE1Od68V+-mj3P4&kjyMm#luatbQdAdGvd@(!-_hZ5iQ_ zUIU_I;^)|}5gOjZYoPh*HP8;3aD?RY9^{fb$Vja+XmWhqr07}kGp0w!&+!^!KQg4u zBkdx+hMK#ThTh?2SZD{YVWlp^Lc7}`i45}^Zok2BmtVt;U*(6-q6ekQ@Y{SGF=wihExy{Ir^!W5`6d&=xePn6#E8fhF>99a?>-q9{kqKzk&VoDuXj45&D6>A5S zeokSoSF9bUu_X>Xqry8tj&RYnaCB`_88MSeT)C1f++)gAFS_-FG_cc1oML-Fwe&ex zy0rJAAGkDKdV0l~pI&jLQ5PB!={?gWXQq);W#(K*S2ZM+F>`FNAE@wbI}o}IGu>_E;d4P=FRB`Le0^sd)JKag-lC12EoMJ=Sq$7=KNia@wHy6^JCqLb(_@fQny##v2~xUySwhex~X-~*8jCZuYg$ruYk*q zLK?L;hzPvV_-t?&j=sU;DW8?IWW?I%tkZp*F>B{kEzpGDO#v%5Fy82(nqa-hdZA~S zmvu(H#vI~?%(n^vjX)r141z!~;916$onuUqj3<-PWHOfQAftZ{GWO>n^Q6u&OX>`B zq!@o>ji(&yfzK7KpHy{F3q)Fl%>7!!7$;f%Dp$R0D2e49ytdY@(5_U!FCU1C?H@r#Q zUgU{i7~7Y}tdRoV>>MMs@_D06ywOb~&-hJweBeF(uf{v)Ame3xt$?q4krm4d;pZ6< z_y((Y7w}Z1UdMc!^=1W>07BD>)j-Muc&4-r_5$3hILfpdknZ zA=ZzKJ^KkJe9u@#CnFV|j8k-~w$?S)uywLphm%#i|0P+ykH! z*PS^(2)c0Hm2)@H9rOS_K`+o7^Z^fnzMvm?81x4Nz$0KF7z74`N5K#<6bwV|aL$i$ z9>Mu>&QDku)JVcP3XBG0tZ&s=5Cz78XfU4pG1fP*{F;gd6SHMC- z|8ZQ;bWt;=dDSVnzk zIkl&i)SgyZS1_H|bQMsIv_TiNAMgh?0eYcpgSysbR$0Hv8tXS%Vf`lStKZb&AOf@l zk)R)V81x4Nz$0KF7z74`3CM{B6Tu`f+4>&s{2uN6o)Mi+#&bFu&FN$;r<0MKPR4OM z8O7;j3@0mRf_Y#*SO6A+MPM;l0-gp-!7{KMtU&%sunHtt7xZfI3|Ir!THoqKunw#T z8^A`e32X+>g1-?TTflSRdFvbf0(cR;1YSn|RJ@jT)E+StTu zcUaI%gm>p3J%L{`%T4CE?Zl#bkatB|C$X1R@k4f8K14i6V5zHM6I(E>pq!OSPMAq9 zC^Ix<-i*weIYHc9X4JOKvD(6j?Of(4|A2%{#$;zOB0Gce*k3Xl`%6N6fzTF`J7$tQ zW|BK*k~?OSJ7(%25Dc1t?v~8HkU23jBjyBgbeTB1OdMS%jxH1KErfdu;oicS>s&@$ z=Q7?p7i)cc9#R@#d##@d!O!F+#2fkHaY}6Nc=P6|Vsf5ha-L#h;3#}5AV!PPxqm1P zi|SAc@UTwv-&pMOW@4x*ypuKdr}3UE$yHt_w$`(6#A&m8d420uY(RHx04tI*({QoX z7u_F+?#sT;{o&_O_?bfN4kmUx;X^<2!Fq7DF)`g6JspBxo<<)xppS2(1KViDk`R=$ zHj)Ax|1dYYA11a2Z9pg?3?ZfwP42Us+-Enr z&u;UU-K=DCpJZ|$R?Y&wKyT28{~zMqmvcYxFz62kfJeYUFbE6=kAfj!C>REYgU7%K z@HlwFnpF~;F;)UOO9DAd0y#?pIg9LQAp03iBWFn5qpGeVTX{{St)A^ zyMsuozQ}r6`&cb&AE|rZq;56lPE-eez#r5EwLoo9ml=okSzD$d^PK`fBM=B0gCGzL znt=am4nc)2^(r6?UCqe;XTTcpXKa1mN+8!sAlFGC*GVAPkzE~RPY2o2LH2VPLarlwIZPwh znMSUYVA%Z@=Ok-h3CrK%dZ)FGTxT1(&NgzLZR9%J$aS`n>ue*}*+#Cjja+9Nxz09n zoo(bg+sJjck?U+D*V#s{vyEJ58@bN2o5Zp90Q+#Pr-3;f)(sP11aDnNVQf| z=3Y&ido{VvQqeeaou%YD38t)h34NEGM@ow8&iPZbB3an(u8giS= z%5_7r3Jr-f3u}-~7{8W1L}*!NFLHbpd(?pN?ZH>tjLECmSs0&k@ue=l6e9UaB%eoe zOC$#(xi6AKus2c<=3L{e=eb>eM(kyM+udUh%x z*O$B~+f}2;qkb}un#sNXsX&RLki7mJ|7P;s2a0+6JbRjFGi0_1xyUK<=>(XunqRCm zMJ!yP6mS98M{q5(YGf9h1J|c;{i)$o5w5S{+KH=FT%5(lSGc%@i%eCH@Yg4`>XJIu z7zEdrzJ`%t6c`Q0(9e;EY5p4ze_(zvig)&Gnik_?2_Z^C_Nm{(PO}>Am9wG{FYinpAaqjYP|{F zI?fWp4V*WEO<*%1#H=p3h86eL(7wNh@?AB`chxB0Rik`Yjq;r@cfQO=T29=r zrhImS8lbF}SoXa;kvkQWI~9{V6_Yy^lRFiYI~9{V6;n4VCU+_(cPb`#DkgU-CU+_( zcPb`#DkgU-CU+_(cPb`#DkgU-CU+_(cPb`#DkgU-CU+_(cPb`#DkgU-CU+_(cPb`# zDkgU-hTFx|TZ+jsZm1Qc=t|D3tY1mh^Q4*6@aF_&PpOqwqr5;Ff?T1PT%nj;p;%L% zAXg~Hx)$q|U=>KUZeVF{z}p*GnqT4WuUML2Ni7eU840_RVAf$6_bxU6WO|K0rbp@% zY|L@WEhk7#(dtCClGtxd><=dPXA=9pi2Z@Yel6xKJ@}uN))i?nNR#z4WmQa#v@jT( zKpmJFRWSCn;Wcxnc>8lM4LE5^Nm_XjrYcC#)Y;lHz+)sB1xBkw@Us>C)bO(v{A>lE zTEVAQ^bR%SsUqIw1D>RJNUg)~*7$uM9<_o;t>95B*28E@SSF)uqv^dGN9`a{?cm7= zcvAKj-^7zMcya+xwq^B|X1Jb;RTxdrRHE^N-X|50%Qd(hg-cnjb1bfcjjJeJ4M5%! zT+PPSGF%P8m8|AD8&_S7&(i-V^^4bW*$$WEaG8ip*~NAiE?eSrBV5OrxbWp)J1$xh z7cGg4mae#H>57Y%#6?Tuq9t)5>%2Ba?p5Tz&yyRFn~2=|k(*Ckv?MNC5*ICrizfIn z30{n5*uoe%G8RPP*Ep%`f9f^yPxE6_B328fe&nhEnA^AsJ zdXPtgQDC&%i_|Vi?c$Q!U!;HWrqU#eRp%-!}(qMev{F8e8vi}Mus9M;p&89 zB}$%3183AZ(jk#_NMuim{-lMhl3SOw*l6B+17};WWPMy&9k(iJkw{u3k`{^dy|#q~ z8?e*9*lAzvv@dqr7d!2bo%Y90`(vk9k`k<_hz&St^0;@2E!GaaBY!(a41QGNGV>2y zW*V208(&0D2I(PnS!v%pZ)&3FO-ixS6P8f&T(P%VxX2}CLnx=PG7ryv!9S9gl6z)j zi>~o}4zb^nRDJ+-0-eEwpbO{@v zhJc}97#I#710%rW;0f9TXK|hl=D?|VFc-`N^T7hJ5G(?V!4j~H7+r2%C!hI=e5Qal zg(9^FB$wnh=Xt|I-Y}QE<|=v3Rq~pvAHy0brGfOB1+dql&*^?T^CWhE~0c@MCrPS(sdD~ z>mo|mMUG?XP=j-HY1>|W3~CSy?YOMmogCbP?+Bd9q5e?JctfdMhAk>fgp6C zyV2W5=DV>e&o#d%w?v!IA>Tfg33qIibAv^AFaqoEAr8be6%7Tt;k0!^3jTXv?3p^$VV%7p%tlU#13Y0HzPjp zqou7Gae5zd)`mE1gEkbR4TWe!A=*%gHWcbwpf+gA3a`z;eINvcg9y+LM1p?cVbC88 z0FQuyU=SD#9%qHOC%{NBin-yV!5AJ>5oAZ^U=h7G%+7d%tsUR(ZqZ-F%?ZrMH5re z#8fnK2b#D8P252lunG0Srf@uj+G%sx+>#cJU0BIIz=7pWvo7+6vZAM~=P9ds<`Vi` zLZ3_Ma|ykyXDF)~zRvh2Z#d`!s)G8U0cZ#UK@;l9O+hpGdLIa(ZKb&-E7bm<#JK`E zR{-Y<;9LQmD}ZwaaIOH(6~MUyI9CAY_Q1JQaPFPEIOo>ge~x<&xaWX-4!Gxldk(ng zfO`(O=YV?-xaWX-4!Gxldk(ngfO`(OC+j@OJ_@pnLIT{&fO{EmF9Ysnz`YE(mjU-O z;9dsY%OLe+1>UWso~*trYw!LZ_X^-%0o*Hqdj)W>0PYpQy#lyb0QU;uUIE-IfO`dS zuK?~9z`X*vR{-}4;9ddTI|cVn!M#&(?-bm72kyNC_uesW^G7KcJxXurL@Z`A{QxZ( zoha8+VxnBq0IS~+t6zhXkhD3EV#MNT7@LG%zfE1^u=PBx2ide9T%ZNxB2RVUsX^o$ zk>nc>lW$0CsUH%0k!N`PB~mojx2g4-`QAjStQ`FH1m$VV@v~UJ54+wH+;1h(zM4e) zY7*_M2WVeCpu*uy1ZW2$DKEC?UI*}m^)5YUXKB|wOS|S-+BMJ8u6ckqmIJhF9-v+G zEbW>}v}>NFUGpgInn!7;JV!g_IaA|Y#rZYsIdX+e^#<+phkqME8{;|J7q`;BxRv(B zt+X$0rG0U$4g$fT3FuC%@nlMR>@Tm`Pg>&#?S)CS7bekOm_&PF677Xav==7PUYJCC z;Q`tU5707mKra9b!6L92ECEl0rC=FY4ieaVd^LCmtO1E?IO)=ybdh$J=K6X1RbK!v zf|tO{JhK&S1FwKr!E4}kupPXCn>WE*Ac^+Vx4{nZ4)~DwJqkVoAA@6n{$Sej&e4{4 zj#~6NYSHJYMav2vHJIAhgqUgyLTJ-!PRz9=w;soc&S)?P4gcq?KrU9`BK9&Hdzp>B z%)(w~p_Q@@h^zu4t9fLiahYgbCK{KC#vQ?49>HE7ftg*g@_&`4T}0C^qG=b=w2Nqq zH=*$XRY85w05k-Fpot|roovAtXJd=Ai3QnXP*zT6dIv3K@n9~P2j+tXU?Erp7K0^V znRSS_Pr(L$ObjFu14+bytOdT6JT(iumW5r*!medu*Rrr{S=hBK>{=FfEepGrg&wIVyMJcC`!#;#>!*Rru|+1Ryg>{>QDaP# zY*{+CEFD{xjx9^amZf9MQi$OcVwlmNAe9vwPl3;Qe-C1FH(Hoa8BoS~!~%<&WfibR zc9r1wd{QKj6v-n+@<@?9QY4QQ$s++^r@$;Q8_WUmU@mLN%>(nn0C@HAKomVxCUk@4Icsnc(w zt#`8uMqk=uCDO1GX;_IgtV9}CA`L5%hLuReN~Dq6PEy-RYCB17C#mfuwVkB4lhk&S z+D=m2NoqSuZ6~SiB(Sd=_0N}kynSJoRlL7aUC zQou=YM%vS)Udp&`#klh~s1GMGD*G8~?0cxw@27?$JK7wf&Gdba7id5Ih&sCV_NR8B zsIS)XNc6nsRfD6m*LT$H%Tq4*MmK#xRZt%^01ZJP2*Jme*s}X6`?dycKq&ec2ExfN zBS1S42`k!juLBrGTf#V6Y@z`>Sd!=Dkmux(=j6bo6qu9(lTyfYa$r*`c}@;_&KdHY zGcYR?W@W;xOqi7kvoc{;Cd|r&S(z{^6J}+?tPGfy0kclStPEO1^U#b-|gI z229I_Y1uF>8>VH$v}~A`4b!q=S~ewtA(R9LF`_?$5&iXHUN+3jhI!dAFB|4%!@O*m zmksmi5mzBv{x176!n=R?Bv%1$KiyU@zDQ_Jaf9AUFgLgLlE-K{7Z3 z-UIK055R}S>rwC#_!t}m)D2;526IWR5<#^u1c92l1a<8okJ4vfoz zaXBz98^&eBxJ($A4b#rUv|N~$4byUAS}sh>g=x7kEf=Qc!n9nNmJ8Dcz_flatu;)m z3Da_6S}sh>g=x7kEf=Qc!n9nNMtz6Y&?#UlAiOZm0n;2X%>mOKFwFte95BrR(;P6( z0n;2X%>mOKFwFte95BrR(;P6(0n;2X%>mQKmtk5nnAQ=d<-@dmn3fOI@?n|-ra54m z1Ex7(nggaeV44G_Ibd2oOv{I9`IM3}VOl0k%Ya(d!=hAJlnRTE!J=cZ=olkQY@Ji zOD4sVNwH*7ESVHbCdHCTv1C$={er=KumCIsi@;*A1UwCvf@Od<2gC~KXftR*W!uA{8Aj&?;Nzzv za-G%aa{J4rl>5zlg7-r2&u>3`D!PtVKCOI4-f_(Lv5ytVy|dN68X;XvNcRxZ4~WNe zgjROuT1#lx656%I!8zjK9C2`tI5pC|Os6Z+?wYve9@SHu=c>AO1TTHx+d_!N9u zK`Hz+rSQ}EmWXe%D*9BkgT4Ad8xTrqI}F@j9!y0$($S7|>}wnBYa6s99qmX*JJQjP zG_>Oa+Hs*wSx;=Dl=E&cowq|o(8_eQG99f1bX$nwO5|rK5T2XkI#+myYILK=Ur3 zc^A;U3x8JLqqkDVR;{qUQ>&?6y+!OMky<;@t#`mq7`==8yE*USyqA0Xz+sD-gV-*+ zk3WreS{X;^MECO0J!uKfHto@N4`2&=idv9kwt(da=oM<=>Pc%s-%ksAa9YrV(}MQ# zCRl>9J%DQ|mq-sFJLvKM7VsQ+8y%D$zy`FozesEQi>}u8B)Fmt=jYRNxsVx_ODJtU z%@fO1AbmqGG9T{|e5r#kx!9X)%*U&ZHTw_d2>J`>dM?V^*eoNRk7%I^{ipnq@Pqqvpj%Zn}R=&@HP|hhtVupo-@q;%q8wK(aFhZ z%Vf0WCfXt+syCo5$!H6c)9Hb44cdUVw2p_;OA-dc`5gh;f%g3F06L-(4}eafGk6em z0bM~i&>i#uJwY$f8}tDWfxe(0co_5t1HdC-AQ%J&gGa#-Fcb^}!@*-<1b7^bBz&X5 zXfOth1&nxSB=s#uQr}`E^({(Dw@iOxEa!<}5||985dNuP8ko-S86b{#o5^_=vS))i zw4KL;xnLfc4;FxhU=dghmVl>`u@q3-qSTZ}J>H=buyw1+d*7l2wUfBrMLxTm^B&I0 zTe=FUh9*@9e!w5p1hqhIP?ugH*1YFx)^T*qo$$7)>1YFx)^T*qo$$7)>1YFwx7{Q_<87xXHymUl@6>%e-j0c-@D zz-I6)_#4;)o&(Q=7r=|)CGaxxwt{Wo74Rx}4ZIGvgEw&VCU^_%q^*A!*bVl8y0ch54;aP03RavDEJ6`432?Mz^C9iIDzH=45WaQAeGYMDeyTs z1Ap$_)9UUa_yB#AHU9I^H`zVtk9r95NV7cBERQtHBh9vB>1EHK?SH{MmA`tH$RE#8 zxpR(()bK41rORp7mDLq>MMiN{!7i7RIq=F;`{}yMi&^jW8RgPYx2G*wS9-;iT^4H( z4j)iYw=&mV^Z@2oKgS{e$U*PSZO1Q~!=r}lsN*5W*1L|6Jj_w9syX(SlOwa-HBfr| z<{9YO15CK%Nc22kKCFB%*D<90kn)e0KjziM>oxCQ-gCV_^@-%)FrU7zW2#Tt<2j#W zK0j2b$9%7m73PB%IQCXJQsL8z0Tt(0{H~IJrLmRPS9*cmM&`%J=!>su1sO{J>~Q*L z2bSFF%AG#k>0WZjk30U{kyUpi&8SLyJinxt8QqVZx%Bmh;BFr7o+1zVUpw0W&bddW z&K7&zdJ%y?5B(ymC+`p<3=Tp%Z}tM;@?|v zv^XO@u9%g=WmY&{pZG@`qN%qhcadz%9wR1W7eUJS;tkz ztV0>I4wkJBwoJy&WlC4xNZgFX03-$=QOc2>8DmrxsdLffJ8NWO1@0VwRTsZ~ z@!J=_eev5DzkTuBmvL0S`0dNske0N)w!~Hpqvdrl_F@qBVl4Jz1U1Xn)Gb>xE@U8K z^d*ck63?G7`4T2y!sJVs+AzDUEhXrYU=)y1)Z@Vf5DR7ic2H-Gl^^ZAPvB!U#f$}f zt%k21sloc;Q(t`Qi%$~24e+Uf%clnT)Bv9v5Km)hR~rkWz&L!3=A6LOtC7V1>qxJI z^kAgdL3%LKJM&Ht@lM@%r+&tIvIjf9HN&@N_|}KAd}ZRjGG+P7*vHDme`VwICeE9| zv-r`R_w(cZ{CGb<-p`Magb&1LdXUYvH^r@ z03qr^h*}V$=7gvvA!^0@KS7AP5TY)GXe{sV$NT#cvJgTRLdZf0SqLGMvF!dZLq?p- zF6*-IxgYW4NBsB^&ef_3z6Ii20KNs_TWx&v$2XaQ+8Ey&<69Gakv-%6X%`;{I}?b# z)#M`VJjatYiNQuZU6UAWgoF-A=!t}~BZis~UiXM0nSJWds9N@YCx$|Zp%7w7Vk3mu z2q88?h>Z|@sf{l)VL>B&s)kP!@u>kmO~j`L_|ylVYT%PUVQhpC!-$b#gtaL#5<-mF zZ!bH)%f9dI`fhT<+s7*Y`3T#8ef-@?Y}N@zqRU9V&t0`t_egYmq+TWJUbm05dl&X4 zlM?KpMaiq+& zcMHoYqxio6lQDko5r9ANtXRyOJo`<_v-ck7=>ZdEHb5IQHn%EQnzU^TdrE8OEnt=( z9JqJwJkiw5yYS=!*gO(8Z-dFDwemNyraKs!kj6OoGirqy1^us#{4F~QT1Ni5M?v2? z@^>=4Ys)%LBf%&znsK6IRDX1^zpEYK3DXWRp8xDI*O72J5D-ym&!dJ-+=F!488Z8({9}MGNd1?bst>mfAJSC%XrB=TZ zmxIs+dsK3L!c*TBo)8HS{?_N|Bls($lKUY+#$(H<mE76dzjT(KHNtOgOQLBwhhVJsj7 zGCt)g!Y5q5hfV59~kH5jQoks9oh8jRFnqy{53n7C@l zn_ockAtcKP=@m$p{)4ZO9*p#0qzCJ_$!*RMSHg_eNN$Z}8B=o@X7nT_db(2LQ5Q2> zyL@YnZ>{mIHNLebg?jQHb6hEO6km_yYZkt~jjzw*>mht?jjyfowKYD*m5i|;MmQ6A zVi8Zs7<0%rtX%6C>wDUg_*mB%VXWlZ`qBCf%PaSO1V3Bf zfS;{=&R4Cktjj#{ll_diDf{7mk#!ME&Byu{>nrCxaD%4`I2Tzz&=P7slp0=Nh4ojQ?NFw3ebJ)LMO-q^OukQ=@ZBJ6KUwry;fI9x9KZA2^2MEetV`U- zXRh*T50i7Q`MyYvNdCP_td zcZT0C5%T^eziA0A`Je|bUgE;$- z2s^IQf(tubp@%8P?T^A4`(yLpbuBuYZSxWBxywz7?g;;`7%qIt`$~$JaMdl>C9%21 zd}6t_w$ZyO=QZZLt!N(_FxhI&`36TP(y5m<)SAc|1Imiw*JefzD{DIAEK5Ex>IawZ z7m2^_k7zG$MQ24W?@OG1&HJAu2EHa;3bA$h5<9nl(8m)J_xyX3vG9CszF9NqeNeSfIJq0tuP*I(@GtAL|(_U339G&7@b84fpR?5EuS zS+%f2;){c4N6KAhBFlG6Mx-k1W$PuYrTpglJ}gwI)y~?;>|JF&2K#16Tv+TpYP&G5 z3egc;W6z4E=YO|7h56Q}_~UvTVW5kJ=u}zT;g&`^tt+{9=_6}yDA@cM-z6IFc5~-h zT-cno-IC_hxl;^JKZmW@Hnbv?@0YCheBUC)uQ0<>F_w>y^{dNfKfsbn&Wn!Gr)i`bQti67G0F)}0?#$Z&n!p>Y4c`&=eQO>Ciw zG046}h|b!6V1c@F^*5_A-#1|$*DW zz9(mx`*vy0X6}3gTTM)shQWH2>r-gK_wF3W`p#xaSy}eA(QFgDl2`HEz2eW@6KnK) zQcC5ToYb(&Wyh~!y$y%UxMAJ{R$wib#KawPvr7NH*OkP*{UJRT;{HeYcZP4_UykhI zXT4*-e;_?B|5+-#_-slaxQ^xN?~uzXIVLtv8A;DtLEQft%W+=Z+c_9KF!m7(#y$Bk zE>8)k`F7>QXn@OxmgIAj`S)v!8Oh>KKFHnVx_ZMtyMFD&9`2G{8aKxJqi^fYFPDGj zx;OvsuzK+Q6B=Tqy25p<)DLlKe_Ul1qXp!%+e>-o`hNtHKF0D=a&g@$VWLaK9Vb)n zwB>!xDj%+oTL-Lu$lGu1OUWC%-Q0OL+HKygT08iKrUu%lQ%`$Mdlc;kG~ z=B?}gyTo6zo$tF@KpCY>nM&MQ(cmgJ*f7A{xxuJo`R6*RS0>CnyM@wJ8UB(}(*GxJ zOFvlgT&uuJ1n!hCDS4E-DtlGRXZ-xCw47qQu?BPZTk?_%?q?*` zGJySI#E|(=uAhx1>+ZVEiLz$1(qHx!>&@KpvCERo%W{2~{b4?^oYAYIIr4#1&0+n0 zT%-UtQ+ss(=GT7XrU*N2@)7Gz<}_f_Slh77 z$NkQd^4QoCd(E1Ely1v7na{blTn(P)z&dC;m{o>p(A0?BdfG4}5%+HmGD)_j`U&as%*p+l@- zeT3r~GroKct;}i60+rtCb*686J$=))ncZEN9_lTu!TyDMPFfcj{pvy6U3m^qW-oZr zD&}p*u~(oyuN>`bmAPMqqda}tRr$Xft#{tE&-mfWpQ8fpUovV@RxkIaHLn5BH01Ck zya7BN$We*b`NqfyqSdM@t@KTi(u`KP>a=BqP-bY(QG*uM7D#Q$;ZNT|E9A;5^|fe? zZG&vtMx!>{T7=Fkx zkK_Ln9MYpR8aHETU1~_XS`2PvyOl6n>?d=73T=gf#O*ZXPp9>(Hf>mOgj+VIY0O&V zPw^(KD2_DQ8m>NbI~E{kAxAK6l8d;rnAB*_93n%z1y1fZfnvz)TDQq zN$-ZFw;wHotjDjyG%NDc0w`%O>+grqzQo%5j9O@^!x*&?t|J+>&|Y^{-m*qMYZmp; zJyZqVQ?tH;?ydWBzn>ngDzP&CP+DGx=@InRJ+4R6nmS6yFivX%E5_H*lNlH7uctBo zv!;&I@vJm5S1+KyaG_pKn>Q=J6P{Ii72!$HYiNy>_S}Z7^KNP#ER>$p@m$An zG%{SQUBbm_JSAJIG=hmUa3fqSXSmqNaIqdMe9T7X960A`I9I`Nu7=^9pW$2s!@2T? za}5pW?qhZeF>9D7eWkn5VPT%^d9a6TVP2qNUK7K-riOV<4D*^A=2bS#lR5Tj#IjhL z+GZ?FZNonwV{d$P9bJcX66RH4L`)OL2@3zJ!@n@@3-hYOylz}~hk1=*USF<-ZPg9i zni;lv8@5$4Y}1BqRSesz8ny)+wv~fz%i-S&80KRbR>v?bz%Z!+sr2*qNiPj?|qcJ@i05j9yaltu5~^=aKZ{$ayTj$Tlkq)>k;+fdjq{69{Ade?@g>9;lXHEW^}O&#VWqHU_(6^r^P5>z0>pvc0f+w zyJC1Fv%9tu$2-uT!^HA2b`41*KPbohchrZ?c?@}j{2q(8$~lVuC(eZF@8-NtC!6zn z_MedZ8}t!#-l*R*=S}cb?r$dNAujZ8zQ>Tl5*G{jjv^P5ciux-6ZKxc*XezHuV<$V Y-c#@Adm}qv@Sge*-<#o$#Oa*>35!Hb@Bjb+ literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-BlackItalic.woff b/presentation/template/lato/LatoLatin-BlackItalic.woff new file mode 100755 index 0000000000000000000000000000000000000000..142c1c9c48d42989e9829318ea1024fd2e08c370 GIT binary patch literal 72372 zcmb@t1ymi~mM*$+2oAyBgS!O}?g6rKcXxMpcL?qp+#Q0uy9IaMxLp2o`gWi0drrT8 z_q`h5{MKCGoU3-#s6AG#nl;KrUQ7%C1^@uSaO(l6A1$~{_uu*-?tk6HzsoCqB>DmX zjLHCjTJIE?2EMow@EZWYwDh5me+*tLeotVPS7KxV09Z;s#%q3q<=^x6*U91%Sc-wLjv&3<4F5&sxvQ=tHacIJ|HG0P70hPrJ?5#=#K)_L=MB zJYE3+xS9(~n=@N`qmQw;9~!{p!@}<(Um098)-zmOe*o_<7Lhsf0O+@^~E2`-`^2h1TugW++VLZFpL>JO_CBa&@Ystd+DwDp8ujV zyUqdan}Uwd{VU&O2j{`#1h<3nMZ>-JN!v&kH?fq+@ra;g!ttvO9@F>qm@ICm_97k7XN(CuDila>Fl~*Gc%SN0el1|JO`HW8IsAtyN8(FH(#w|!?>2Op!)oZ_T zEhbhwN1!$7aF*IE(XWa&oY?F#sPN5qqQJS48>$cSMmyoh1iF6nE?=lrpEQ3JoJED|Hb zD|E25sjs>k8EA9$Q9As39)<8qQGq;IQhlYT)VHShPSy^5uxj6d&BlCFbk!628ES-@ zow5mshhdk#6B8+R0h=<*o zf@_|o(m?(jq(@PAc0+eLDG-ekixGexyTaD{4}yc8XHXzS5K^xQ>#XiZ$I`A zdDDT?P?$og2XGK0O{sw9#pm-gh#&%bTsyR60qA~82c?#_*t1yGYHRpw!AE42v0(WnP0%7pZoM@9i5jI-%X%YmY^qDOHk~6gjj= zjmqm2kcEQkJJ9H#3%l@rTT~L%;i-dIzP(pqN@9V^>Q$;Fm68~&=F!6ZI)KQoF;~@2UH5ScM=m!OZdM@er2s9pMuiNpOjLW zSQm6*^Q3P^Qbnse*g)J8ds>Hdw_Q)T8PCC5?BKo!^AZxUg+D~LhHCO#?IGBbv&Cx0 zLjc_Sdh~d0d0zrtQFtMtN$>S0Vr&V2KPpVb9PO~Ax*>rH_b|N%Ai$7yOI&hc_rFd* zd8m3T5BS?@3V;m+zzwCsDt41^$nW1!YYGg5l%9CpaAk}tOqw|nE%@QHAZB|In9#?- zCj+p$Bep2Kq>KZ&(I^}WOUF_q)Nt_Pn9YfSjfvl>uvyhDT7j-U+&4?;FaRYlN-s`7KZ z{OSrp2WFEOQ>csMD(zFX0e#`?(qq3{1;Ejza7AuMR`#3Uf>@~lv*`KCYr(e!;P97S zsp5cuSpskLNABUcL|sDShvw;)yM!BpZ0j!GVy(vWjOM%ZW$f0jMm~kn@rT$V=6}W* z0uS+3A_a1AA!t6;kAR5_5_;C^k5Ionu<>hTTK<%|CCCl9yg-;PO+6F|j16|ZQ*|_c zw87(TZJVRQ#OFZ$0=%c(08wrvp&Ue`9_)`~`Lu-D@Woc+!L@}kb4pvx=2vbAk+1mq zWDj(8Jh*fxvtUvq<52&+gs(_bDA)rg+(r(p*ZsLw6ODSEWtmxbyL$qj*ch<1R~ zPQEfKRDX%5Ar?8fUbg*njb~ay&@N5#tB}}>U(E<(#T^(uHBebM%y5AU@q`8;w(}lv z`O0(o8u##K>-l2+@QCs<_O0zcf1NPWmddS~Thl74$fjSO=r^Oo)!^dgAm~9b7@w21 zq-eHA@JYuwe}ah_&Jj#2O^9tzIY7*r#r;YTtoawwJ{$qQ~7B= z>o9+sVYW=IJmoS~!fAr!on5RK%kaM?{6p@4>rT!|Sw%0D8Ycf>k)}zbNE(axr%)WC zqy7+TM__BEXw;0psu{ITzp)Ob20Ld#P5K?_LZ`wR`yKSaZ;4*UYkyN#`<9tZ;{eiE z{hH)XA2r6Z+V}^n77^MfkiE&_ZAleGuv{pRIN6QLJ6LN?cJ_ZB%_Ley7ff(*-=!mV z7E<4=p6gcx`H<}+Cf?U~F5z7G+9}w7g6~ok5GM9kHJ5G^z%;I(_YU2fO!6l2LHLFw zA$q3iSyGtkA9!lA^pY-)cTybwT56d2qgL*d8dXq5!nXxUW=rqv8=7idPeHthbqnsQ z*;!h(&bSlVuK^VaLJPyhCx)?3EJI&$3^NgG<)GE5{ySOi+rmFV9@26DF>Ndq5?HZZ z{{CMeI~i-_jjmw*S&?9FK7OHFlH^u#T$7qnF+Fr|TEM~mpfdx$xh7w(#*wm_yC?H- z%U*dPRTQ|wT+EL@;wQWrTllpvfo#bHr_l}SXM0!{7I6bgDZ!KjuRCFAmW|*fa_#}< zp-es%qXX~o%Nklwi8%IrxHxlUYmkBp%dwf5*0_XdBwGI$Fmi#QT>}X@L3>*AO}|}N z@_Vrl?>%%Eq9|`OV$w?|PWFg9aACUsl$-$DhLfI<14loQP=xORPx~QQOU=e$Z5XJ$ z>dSqq+kjMnL0s9b4QiBDevK!Dh8OQ{zG{T#H;I-#<#y&M_tBUP1RChgKvb956jJhs z$c7B-By$`y)sY%w_KbCk&tyt`jVUmeIQA>}PR^cyyK8CTVz5VA)scT$CxA0Nv1^_^ zN3sYr1QLIo>nm;>CiYg}ogvMBd1J4v9iA;^B8zgd7!KwcV&)Ml+7La#SLZQ1%X8wW z>|*nzDFmshW6g|6M%b8M(bIS42Z@(4znfNI1UcajgT~Gx?R??|j}Yf? zLLY1qL`;w4Tp6Ioqq`>O{FXL@UmmEJgsEBx=l+RZyF+3>zj(p)-MjvseB~nM?n2Z? z7MQj6qLaLUXO@3fGK*~X$!uNMl7?r2jn|catjV>5D49^uyafiI1sETXQozQfBD-x# znjsrl7iN2B@Q?;8fbk*|m>qUWjml5an}2spV|2QHD`RrnADQ`kX>dz{lvgTHJj|T$ zbSUBKVdXmx;t5$A2-JmAd9^c9l6l6heET1~z4+bBtW zdsK3t8HR~^RL(p=y+fkh#FRZm8F|K>xH2mj$jEwaE7o|2Rc`7=KrcRHk4m4Nv-d-t zlF43LJ%*zdwsKAsyj4OF3$Bp?%~FdzCj!zj&X)mgN|eVvQ|R2}))TQMB6bz0rT>r= z?C;^}Wag~ycwr-&=^XAGb2+x}W4|D#1-A>w(~Kz5Fwib)RXRU~F%sL6pn0&)p3Fg) z#uTXS##j`PIh+pR^N>2xDteGKq|k$`rD<-?O()yPZqA3=c~~x@BNrm36;G!dnO6=X zlSfUa1TXCATL*X3g#Z&M{>*xV8F26f%Xa)3T}uEKlF>XkV_ z6?Mc0ji|i&&*}{(7~^K#{;#_Bdq_Jx=Z*&xgs;?I`G98Ccjh}E2?7O7IO^z1EYWhhnYhX3#6m53s@wRYl ze7OjuGLR_bLePrILT6EbAHn{)^`wiF(w6C4ti*3Zw=z18VHmY}p4!4nqUZCOo-t5Y zUw(kh-e2XJ)i*%4pmHBmHP76TI9;(CTm@JEthelXoY+u5S@1+XIiP%ZOA4ZU^)h`I zd)k0>_s!Zeo`S!H_7c>YLS6%Z3ef1W+H$sqX+~dzI){en=G)S?C2A((1rS0a`}u9@ zUBY5R5<W`*EEA1~iZGb3m+;UB>UjIytQjh5r|DXUPBGAS+Iaos}9g zqcBX+@c>@~-Ld!%Ek{=z|Nr0=!q5(bZ=U{;*dl$*a0 zw0;*{C*c?Smy6P?;r;ugl17K%ir?K>D@5p`ytMf1FY-e>S24gO>=q6fFPX0idS{Qs*c3aEnJ!svGuW!6@RRQbH~f4DU`RknXn@eC8JWB7Ugwistvhst#7!2@>{ z2H3!EA%eA&_;NyC1_Pc?E$^0>PwVQIO-$-0CycW*$N71FdO36at3ads5615?em%OO zZ|aCpeciT9;E|9q0SdZo*!i14gC4F+NbIV?QaD}G)Irbv04QB_kMi+uutwj?E#YcJ zPsqlA7{7+qH8_5-G+nHR&z{iE0RbyvR9~+|sIm@!qjPSB;a&blob$C>Ms5t)xjL2O z>D`Cy_=K1x>R~dy0ax$hkMYYeh*oV|%2?<3X+)|QY8|8gU3uy&jd7P0W*;|JhC|Ok z5?LXOB2C62rDTbqAvG{oc4mXYXuudlGwD(pQ+Z%5RA+auqcDDu!V zlWwMUm32I38H^Jj209LLaLJ~B36U6uq1OSgNPJ07ui3KDf>PAkl+7@zeX9nM%5=3O zD#m`fJ&_w(8mv#s>#GtM+EW7Sw>L7y3Y|ZzNB83=CqInlw``og3r{B6c4W2YlQg&s zA5|<$q8);_DlR)htZ$DsY<-QD>2T${w+6%ezAxRpAiSbpW?x*`zzkC9L^+(3m+7y z@KA87OK--ki~b$>%Lnjw7UZh2KH8g0E@Z-ko*iD-449bJpuw}=9p^NH1)qsoxh*rQ z%X)Oz6*yPzh~+tGL?O0NFnU4SDdn!Q;}o=rj^Fx>>aLjd?ID4iNh(_5pamqvfm zQ=0cFez}ENX#Xb{i@qx)c~f}wB6sh8>e{rP7neRptk0V5^nXrjrd;rdCb`>m`pepX zN1im#SvPz{DOlwJ?*RC?b~Tvlr{pVdXv`}ERDpjabY}Z7>=uzoO;Rx=RI-rJIO*R* z6#A-Nv|hr$he-5ybyt!0SBD0BAUEV8sdYb{6)80RpJkqb48(m~z7!e~sppz>qVmW8 z0fiB_h{S4=N-&_3r@+QbLk?5;@1hCWhY@p&#Nv}mAfb|nz{U$h4wLxrq6pcC{(~HP z^#wJb7BwFZm2AS(qAuf^RuEbhZUf>X0I18pQ~+P&OtQf6dnHJ<4aEXW|Lj|ZR%pY& z6jA%-MXt~lUPL|%{DW)xB^a^4Iv1PcGdi$W5A0b{jhOUe6y`K!aTwYyjo=yc?sj!4 zx1dgVnPPO8HM+?NxeeqZG9S(~sWl%z6e~JExqz^9sCFane8*lgYO(#ZK}Z+{QC|># zYUEl?Oolkwspw7?TuV^pr3UX%uBh#=qL*GjXsrzlA&xC|7JmPh^x$ELo8LYP~eceY}igH@*Lv;s<+&4D@zum{bn~gXI1zr9#2i>FQz9 zjrj+uRWre38u#?lss4i~-`$I+t4BvC6ByJnq{VNa60^2P=JKd(gjq4>pQKjJ0**dO@^FJ@BSz8n$5T;rb>R9 za^zV}rg5nMcO(YXQ};-9CX=BJHtT1q#4f_Hub--nFdMFy4pZc&`*%Vv zdelw-pAuG)n_l|AB9($Q(aH?5$_(gH!aQYfBut~;JQ>wQxQLAEA-IUUo;OpHNpsC^|Bn6Vm+Q>FGganK7Th(-=>JAZpwokoGE)WFYy}Knw^%II_*my5 z3T^rbVIll;LXtkPGGg~@!M&)vMS+VS-r`Qg{4Rg(pqHXBbSxsS(qd&H+OjZTQ?;HvCdH1GMX| zg?LqtJ4x2@`OCWFIlb(OqI@x@fpfC_Z2=zr(^g) zx`(Bjkf`1pEHX}S_ij7qW%bT!-{ot>4Xa^JIt6kGR%xSl-XOkNA?65=d0cCV0x3>m zsKP{<<9wvTTd})v5VKU4`_K0J49`bGH}j}dm27F32CR4PF>em};p~^-g-dgnvrWm$ zVl``hc696mLS@#X7c)#!`7GWqqK6v+O_75d13UBwSC}VZ$BUQAGIb_r6#=f&C^m2- z>`yMdMF=s}eFpxnGAJ={f9Q=|rPJ0z#n=8XAFkQu72g?zyT3Cb{O@;AP+|}#_rGg& z|GvgeegBvfD6hO(QhQgjc6l+DCwwR~{AW5-M80WF5UnP6!%&IW(*Hx0azGCoF=7%^9+P*BdeNd`M9oD{g zxohnz7jsoKKtUoEM4$T12BFXzS;Cz4Z?MZM`KQq1Gs={l8zMJ1L}O=RTwbiR&J&9* zK_xeb48s-r57$T}iX~4BMN$D*H$%?!U`2;|9?;J>WM#Ko=kHtSn!p zAun+yV5$N*yU{KwKNfO+P2H{CZl9tRr3AJY=RM$wPnx%|I0GO6tHYN|; zSCK30|LgVZa@QBFM+?<{M##3SCdMmHfw#sd8*h?J16Bc!o4-gSYFyc%ZvNfRr}#Si zO@-9wmGK9|J15}+l8!@YSy35k%Sl-)S{^P+N_nYRSBn0ae)_uXUEWt4-V--Bc#FVzY4sP6$s92hcCu3Dzo2GB z&Td?wWgw<#AcnR~8fLWM-~d(eH4Z4yQ+B~L8PGBO`tj;gwU3ZfKI`|lMF~1IgE;Jn z->T#TEC241PM1-%k=cDhyAb_@ClM*CPls0dwYGT0w|IYhQRRH-*WC;7vq1=p^Oyfj zC6>k^?NFzQeoV*SfBL}fS;or|OGMz34(+7J>)M%=k>0T21)A!l%${%M>( zHuXn4HOr(w^H=r4aBh&hc!md2(xQ-chAfUSGl zr*DZ;@8nmnkf+xnl3fsg2aOL^Ie0_R=|x6YFlK;)>N;(2Mh}_tj{n+g;z_C`FD-(} z_;v+%273r=orJM7GHY8*8ltW;M5+R#@mv^=lc5;g*q1mQzJW-0=6vljQ?3(alh^Gr zx~#N*);d>XOdEkwLOt=w4=={McUqq73C<+TY$kbHomrhOzn?{&RV*zk z_LxKAS#V*V+~;89xiL;T8{_GzxD;5=WMtvF(Z0=q`w7#xA1Up;XAxS2H#EvU6N)kM zJShLB?DffAA*ncr(dXKw-A$VlXLwjbPVCy6_u1O>()!uMckuMUDdB879)~{dFTz1? zFb~JV23d=Z>;J&Y$7DSYiEQ;(5HOiD6q7anL5nBDDgTE*Y?tZA=9_lX;vsvsw#}0K zj(XeEV|{zob?L6@KDyN;)rR*cru2=r(_+9y#r2Qt2w;|!oLC5A>}|W-A9sX~pVJn6 zeC|^Q8Lt)hQ@F9%s&{qvQenqD%BwD_4RW0u5L$qS|6`| z37Wo9FUw0+E!AyfMPCeGaVHixWKLEhs;+Q=gdM5WP9jQJg`&ykDC>VHs%;$!5ipnJj0j@vVi$EZN?hoio3UF-VE0nUVB`%Y7R zxdOKMp2K6zTOu_w&?WYg4sD-w8`{w%3KSW4J*Ok_xRh+qqgX_0M4@O*Y6PZeEheR+ z6rkzF`Enrd`<7rL@Xj9}(mf|XhiaN;;>`zVX8Fb$JJ8pMJ`8zvy?I$2aclEL*E)fJq9v_zx&VIw`XGDH_h(EV+JLCtUlcbEKDl)rDth^wT4=os-Zo5l+eT|s zWJrT1MK-P*siIEN@7gx2Xf6OZ&+AW-4v%!}TY=ui?R;&pC!pB0P44}>h_@fl*nRFk ziT7`x9+S|zcHSf%fHELUM_p}sU9yu|R#j~p!<13ZixHYChPaZHqpH%u%5t((;mW$B zDiu5{?-1oh9Icm}lw%c;hkNAPHyab@pP(Ig-ZrA?N87w_>Dlsf$uZrL6Dk{%bt>*? z>+j}f5j)^4KC^?WH$nDoTEKwf=|}G8W6z{#ld%(S0z*!HvwO~0h=c60^_zuffjASj zE>DI+!-dg3H3!;;J+Fuibkj!|u{S8bj2WW^)s*4U`I9A(x{BHll7+_{H>V>;H?2~F zr-br}osd|OLorqhI?vO{=rFGT0iP~h`jN4de!!45Sm$+mZvGUP)v(|Lcj7!C1CWq!jI!GO}s<%>Fc|l=vfqI`tSf2erW$c7K`Fe$ zn|mFC2egQMWakd+B6f3*m^m^}&Q}-Sj;`9gb}wCNM|+XYQk6UjJ+c@fCtv#}Y`R76 z42N zw^gjvFzF*c^jSW8R`AnDk5Q7f1hUR5QzSGTY(wo{tYkalQxm7|{~6NG-( z0y%xvlHXq^tG1~vgy&NzR*A#v79Zie!;A0%{wc-S>@vjnV5h80teXly0P2euRwTIF z?KPamJQ-I51r(h`eeO(1&x0b$O{^0Tu;jLLiz}A~@Y}AResylxKA^a~Z<$w_y@n9< zeWDd3l}Dc+2R>5qTRKm~Yfo@ER1wuVA8J4R!Qovx*g=doh|RO@09QMisO;-#6!F4 z$uSR8If(oE`HxC*Bu8yj0Yz(611{+xvl4tN0yMJJ=z#_f=w_7Ls-NU}A~zgcJ?&rs zPe9XF!DGm4z4K`+KFx}h(7Lg#{={y<4n0JeQ9CRbsXnsW#Qe+FMX0#?_eLp z`gtrjV;}yZYZcOqmhg>~rsi+@l7;OF?!*1S7_ijAiW^O(CW!h;EvUT*6HDr0%J9KIMy7x}$c zh9|ZB`+y`D?_}Dy)1jN6FKr;{>b#CX39?d>8qEgM9gdWfJ+l_EqG52!xOsfWA<9Qp z?L;kn#-9hHI?R(3^lV+qj2vCEU1hyMR!J2F8mZ(m=i^Yix=yX{e6jolN9+ZybGy}9 zopo6TRb)2nEBYc|~q!npQxhLn2sum>gdsQ69=VQ%Kk@ow|+reV4A@X^O(oXH!N zT*s0Y(aeOy|F zcw|oE@Cv5e(C3>&sPvqY$oyx+AFVW_8Fj~=knvS4f*~gIDA_F@c})5NF%fImAwuCe zlUoKyzG402yg8lKz_9DNd~Dd**P#3snfPIetlnwmtX)%j`P^3y(|7Iy*@Mtz92Ru$ zI<7yvZqcT6*Q74m@yoaAebaLL_Nwx_69(%y+<$5|z!$8RC!d`3(N8wU;=Ujuouri0 zYuY3sPxo>}lRt*$M_3+6^sW#&SS>%}8eCXJcC_JoxUk+?`*rlWMSYiTp8dQ!h_l+% ze|LqJ_q9w;QI?{_T2aeMWmr*3tIA!PeqJ1uv{IIROyx93U)D7TY%1ev_9<@FIWC2n z6P^)7{1H%)>;3~VSYv_#UiE!9^OJDXGNuvs>WosGR{IU_5ue}g_XYQ>Qprcl82KXG^Wl^ z+)gpXzqA3eBap_d9G!9IxavX+6 zHcd+gr9B)&xd4ZG#Din(i6ESbAiRlw?1_1%3=2K3MIjE@boMcL_OWt{R4nsUl|`ni zBt317zINweH!H-O6`cKf&arZvRFzq#sx&vuqO@%tD|8$4atVyEOuGGf1^OQvVJt5e z2=A?SoBG-Ysf!^eolI5iV{HKz5mr%%t1Ebo^DLI-CQC&KtGL*W>}-}1td`}_tNXoO zZcG)8da4C_sug;wN`2MFKx|As?1dSo3T}keC@R&pGJ|Fe>tAHI?~YI4V!@W5XoCCw=HYFE2qK+p2$=WgmrG8M-tywqSSPeI zXI?R>VQ*+lWd({WvCh}~vyy~=HX(Pw;8o?OV=@8K79peWET2|)X;Lp<8F;evhyGK* zRp33MGFW38<1Wh~hh@?%qRiRR^ZDLQCaIX$B$`6`p_g;vVFKCvI%4x>yNbiK-q@nf zsmqp9Dr3Z$M*VYw84`(VawgiN?s&r_-7&l=fWw{ScW=NNN@)Z@m`Y>@%mNOd=* zwN=nIl+*S*wrz~sB}mUD>2(AnUnSB(5Z_2p#zAw;R(WiNl6jEZZfvE0RP*!A0*Rcx zc7E?$&dX6u(=!=lX19*#Gr;ife{}uAZd6 zwVtk#u5P6+hMul&qVLpL8+Lr^7!G#ogIZc@s%mOlDi#w{1+wn6GKbcHA!zkP#2B@1uoHTmA-|CJ^O za_7PdoHgyW6N1Q7z7bfp=+$lKk{bZcIPY>$( zF++aO*4N8YkGAb0ILT6<{lea#@gY9Jv!8mEhB&SqTltF2DEUaI*Heoi7P_mMwH}s?0wt5v*56OD#x5O?`=)HjOIIr9778E0j#H zR7=mtx-CmKtx;_FQAI8Mvq4m2d0Zj-2FGJb2Gf9Rj3k;#sm4MmN5hV2-R*h%=i)f zww}w&36A@MC?D-pOiHubeI8~xR;tzIgN#oaD2*JJ(o50JX4W`O{&;5tEm=ReC|l^) z8_%UU*R`;8_%|ZtL#qzBwF6aFXb*t5c^zDg(-sGyE9f7aKFsfmuHK#5De=zPqhov{ zYjtCO@=Gn%k26nUdBDiEbazauRUVlIFK*Uk7eNpMxdC?FZpk-%ZDr_M?JL1^cM% z6Xtz>(GC<1B=O*9TmK2OgUBv^r5qnW`#iy*a)UR|TOavYgGa=@cXWH#Y`)}Y;pB6~ z zuNemp0WtfcDCG@+z#Z7)tTGFKwA)nkW4QULoib5_`J%A+$PnoCyx{Z^L^c&ZzDlw5 zqJi{ZlX5T1*`1Y-mSun<&~JW=n$Wc z(mLYaT9v9wGBJ-B=;u)La4Mc}ThABq+yzI!@#VlYXd=_fBAW#fPD?q>(3G*LXEvy> zHz;f2$U9M%G|`mCG#)8fspy=27dR_`PGJ9@hMQ+uXj*b-){JDDddI4)mH5kA-C&)m zxEe>Xk^-}=%h}A=*&_Dtf#CCTwv#t{Wz)oHeIq>kcfyp)+0F)!j;$t5+OC8Zy{Kzs zj#@|Kzs)~_Fp@R6lccZj5P`^m&xNSy zf19%^l^-2u#Xcu{lFNOIjt{^Dsn*z~uh1qa!a~cy#v5U+^|h$ONzwMpxf4yX^lff+ z?GM+p-g3Uxd)pZO6pVKcHlxhHKRYk>x=$GX?jPCFjT~gk$7Y{C=|6oml;WQ}V9|8W<~hr`?Rj=pYn&`*rUTW9 zzeGX{@sy0;W5;P?I@OpsH<-1OitlD{W$VtsTH*F)V{x7QTN@f$Mb!<3v}mx zNI0T5#-Vh*4_jrt%s{cVri-bV-xtWttMls)## zecOi!k;3J5EUD-r3)uid%ckh`4czPQv^8sVizRbd8oGgT)FxKP?Xg%Iss%>Tspyi8 z-s_Q#0+)sqsTF1m_rH{6Mg$I0x_%`vCF%z$E9@o?3sGr_pmO$8r^VU66u2+&q8NUYeB%{{ zlOYU~-QY!~bC%13_ij~#yxs9yyM8|N(t z#uV>2Hp7G@yGHY`hNs=cc>~tpQQ1B5mjCn=>1qU%5Yg&89ULxl%Fan*@D4@pvUGA+ zcjFaN{+YZfXFyVF$t@_cox{Z*Yp9O@F$Tr9RXOeae0aA%dWz27gaI6-(mtkXRX!JD z#)7Zln-Ef``2jYM2V7!m)zm~Q)D}u8Se$2OW9rk%|NQe^1yu9Mt7DEvwky$jW~-Y& z*@OMGsrzol4cpxv6E`Z`+@8uo)p>r{_xMRmjM3Y3_Q?aD%Ec z-Cb;nT`d1Og{%P}0Q4He@tp+7KxdbCmb$C}+)X05`MWtBuuqvndKf+$<^zsytTDYy z3I}Y+F+CKPL5Su-eCYeMzAf5)CfDu^=Tk588YVDIk$WY>&# zFBs1sz`M&el_EpRS&gEUF&UP$cp2FXxT6BjZ=cNOrpg_KP*6}Xz)-7od;CfDHEN!l za>{?{YdNjY&uhU)7-7VxTx{G^CVgL9-)yo@O}jTfr@qf{nB=}+yHSOtjqWF%846KT zR!&VC7}2jWOzXa2)&0~Givm{Omn8`a;an~nsz#5bMvNY@7D&X0%_Kdh_izu~f5X9$ zF3-dbSv1nK*aX@e-4#G~P%iAUnHR!c%QVo=o6E_DhDl1WYba@%A7hj7ylZjuH@&;- zTj?unD##l*v&`dID6maB1fo|srzjXjhDV1Jd|@u;nm0EI=f0M*{L0x9pIEI*XL*Sf z`s^0UlTv6{^YK|C63Nz9w|NbZEh_`0GAq*#MM5)6)(UM4GUpvn2QMc@8vU3pLT&Y+ z5L7Y%iQCx7csxA62(kTu35>%@?!=$0x2Cj@JcV$T)!mW=mk%2@Xb=FVO!9pw$(u+& z#{9EHN&{6(rIVu9n(I)`$}WQRE;wq8FwNDp>+NRMR7zp+0eMu8gLN&9O-3{8F6@7i+VhP{5F5D zVJ}*Bc^hqsh$XGl7G1+V?-vu|%#fX(iqAuf#oG_yT%8g9wL-Q2V8|k9Dcjyp0qeNY zpY$@}?<8`5#v_7Bw8=MHgXF?r!`1uKK|%%_kuwxGBQ6~sdRsR;0vdJZ zUi-1KLRP&xg&ed2QQSZ`0ZNWa8tLp+^&)nw<1_x&&d=XqDl&Rl4cQ*?N9A_}AH1Z< zbkQX){lRXheM`AazwtuG%LlFb>cs??EAGgAtx*+XFwLLXY}o72DjeqHA@nqo0~K+D zilD#~#PVhbpFXwI!(bh>(i-1Ovx!9oPPRC|{fQ>qv{VN@4)d`pMQ*c9Lgy-0%#{Ad zSbVoTo6}ks3Pf(m9w_$jC*^zSx4lHprGX^X?Z(ln;pruDoxXq<+UI7vs2x<<(?qMP zPze0d>CrHB&M7j8j7Rvd+P+&b%*oy?)uz2L1#(gk{Ci z{VMd-9(L0aS|R&|JGq4ye9nEhhS%HCWI7j?t({aYUAou5nx>Yx@I6TIH4rLCO{x9u z!vjL2{I)9ex)3y0oNTSX@>Rf))0V1q3W2ZTf}nwDgf&&G0i|~xw?Ha*DQ~>5I|5m~DFSL{&M)=Zv}+#~$;d&vPg>#1d)x`Bi&8XH64`{ojD}{e=x`t_E&EavR1cq zXyH)2(O$vsTvRkBG$_$Qtyzs3F$`DIQk_{BStAE1v!I0B+)mIMMgDP z28Y9AOYC~vuS1ow)~LesVb!N^^G`i}fK0U-nLvm>YH;>;cJ>rP2GHQ!<#Kw1FxfAy zLQNxpD6~xIo0hN$-}C9C&eW2~+>Su^yXZs2<57*;m7p>7Ny%W0AE~P!6tqu1((HZC z+)t`36WZV4i84$rO54PPl&P~03ERy+guDSB+s*c{kmE={JnM5v$B{?JmS*!t5M$`! zoI~cCHwxrpD$^O%0H2uO!c&@3-~;9RQy(py{~(LGy3^wi0tT<1djUxL(3YlFz;1-% zH87O|$n@o{i?E=Y95n%IRMV1JPSdMVLEonzCW}(sIGgMuXd?5HpEzX)83 zfwVG?2=%u8QX~U2<Mu;0lDJC+mvCbguiXkgds$ z>(`Lp!Mw9RlF+6@Eplur%~*U=@2y8=Bb*LjTKOKoW|GZ)^Bt1nT9_gmD`8E`BH1_V z1}^_nc&A1n;Gv)S!N{LUFu%tQU<$@LYAOmA8*`{kd2Zt4obi+wf?`{WCYro%B#((u z3-EJM$R>IR=BkW5`1YsRi(+zf!4+=i2;M}hm^)NJ=-2h@4|vxbT0CEn5mDyt{sGe+ zWB%z7xs;)3H(z0kW%KaxZ{; zy;JQ9izI$q>sr<}?`1!*DLz13E?UgBQmjEEwHW@g6Ns6pAWbgTNqD|tcUl=VG!oM0 zLg-;J9nFZmpfHGLo}A=Fkot4KLR~p}0g|_VH-PGXOzMRHX}v+3zhIN^_H|+(&$wXj z^lf%!Uu#yW%%!U@?=|_bhv56Ccc`<{j3gxH?<^DHSgrsFoN=Cx!)~{nAentI1aB!I z7rH!zs+2PyIBs1xKSf}*?G_%qG`5I^i;+>kOUvS0ORHZ`6X?z}MaHJy>>QkiRz&}- zeuhk)ulKmjn73`at^whXvQpt7l74#U=19&(xV-YAk>*fUdk<@d4RM!Y#qT(fU8s0p zxk{=t;})OUmt?WezffJ|m*>$NF>m)}J5W0@Al08;JJ)TSTuwBK!|O|1%Ikoe{JsPjZ8eh*BqguJY64`0%0at zze@fu08K!$zdT0!f5;~o<^4r`KHBhLiwoP*G^)g6-@de;*FUi|xp?FYPvQVQf((_`O4kFCGR*vxv}G&K7D)L+&;v5X%5RwHf7 z4B$r^K%rkp*|9gW=G@e+K4FjQ=%~cyJ3k-2Xc8<82 zrrR+g-N>@b5FSH@9jhsvmZ4Sq%L9wTuU_-?vT#E6k}`u&@-FpJd{}Tm5F1;Z2ibvx zgrfFfe4bZB&tG4s^A{%UktiKr zM`wpSHO?5DGL_7*7ibMN#Pz7XW;s$E_jnp4@QQJ&}hd6q^ ziZ}`|w5BYC-+c~#S2W6R4AVcsad!fcD5)Q6s6SLw-z$OCN&nhH9Hs7lWMC?G$0MK# zU=&5KO&!o)_rP&t7>Pt{1hbH!cWf95O5odrrIuM{fp!NZ_)5qQut>h}b8c@qt8EkU27?Tgj8T44wwY!s3bs9;80FhJb6bEQ;Dsee^A0IsIf0&c;PX zF>tb#hFE!-Gl@5k9YqK=0$?IkMmvoMzDE_%>jSF(>Ey!>Q~wXPT92nL7MCE5Acj9! zYuxT?_*tlt37{_B3Tf_!_~~f;kc~n3q0|MBVL*uSFY$GtmHNbF<-JdEN$R9LNl!hA z#ZoVVIFpw5Y?KhNL?#ue$7A~cZj!@jL%^mmy$X-Q?v}`@fJ_b!Ddj^v?uGDVj1R`Z zP$IfzG#FVS^<)8cEwDJf{A~u2%%k~Lk{l0&n0Mf9ECIj9VWKA0m)R$~!4n!c#Q$w5 z@ApRJo#rfD6cH1l&=a@dGQofen{GOPMgZSpe;Ihfgr6ZN%VQF(DOpuxwRxl2~g~TC!6TCAPe*TU(Q-S0?s8LG3Bo zQ?mLly+g&ri}DxW(&#Hpkoy~#L+20OPR24vj_V_6t;`tl1nh4$JWf_CG!@Zkg|k@|jD=VvT&M!C##Fs)9Zsgqur&p z`Ue(;Ci~S5Q@!~v#WhP48f!~ZVsXvX+8BL|LD^beRg{xe=ql?@i7lO!lyX>;?Y?CMRfx#`r3={Kcy@pTfp*5t8y8uH`S z&SX=*RH97a=%7v(u(*I9H{*?4n^bF z;~}6>dhtsv%foVPx)>&v36-_Y!HHMnto+%faS>8*#f3PwCKh_MgnfdQ_d0R$oE`NH zacC}ea4zfVxkQoEP+*{BM4RUAD9xkARfe6?Pl`;YsURms4(@%D*8WNNcc3}7=eN#Z zotM+&$i;CN};Ue)At#$r))tOD^MSI}{~??0k^=_Sv4azJr}JpV?8Hli9c>ysks(;Abcm;&f+=q#!h_ zP3{uW`0FA5_d)%NqBDCI_9zoOE?OC7NVCcp>Drg&s^Wl?F`fJ7X4ne4R^3!vv#!yT zy!D^Qu%?C)-KUB=kIH|C@Ii>WerB*M)D1o z3Hc<9n$a`whjIU~C1s0%p99WJ4atl0SFg*^$CBc!IsCFEw=`SR3_8-IDxV@?zoWy$ z{pTM{$ss&KuEo3}t!ZaZGB0YsMqJ&K^e&pqj6p8@6nPfLd?gUtL<@vx2$=OkTwtu? z$Hy)*MDGOa$3c6EwQ(MgcUp6*jYfE5irG$zuHi)$EIZOyxM{^Kr+n|&WeA@+eudF- zMaz1N-|hbm(UTO-HJVlzPu{(-ki+AG^N!K06QnD1kjwKzy6RXxS4x-pqP#{yocUq| zvtOH#;9{EK545M+8G@4eA#N@8_GPGKgH+xaDQy%G{5Sf4Lf8kGmynQcHZOLJAtI?_l;k43k=!1K^P4t2 zyC{ViVwQUJ_HtrN%q%=mn=`A(AgG{Ts~`!fNoCB>3QO~-*AB)OnlB@*QhZ}YNucY7 zwt+d=4bIe9kuAR?ZQx_lz>U7BjMDr@a;b)R*Q3}uf{Y)(G72s=D;zK|BtIqF*UWJi zU6#7vA({l2mLV>WJ8=KS$-V+vWMmG`9nnF4%8DJzA6$~Ieyn>n^;Qq{9%Je@B%5u7 z@EVL?wf&FRI-5-f(xsZVw$i~N_~(Cy)@~H%MXiUgD&+BQ)(DLmtyx2RQc*-7`3~|= zF9F+(d_+1nh{!k?#HKM=v?kH4N`n$1yf!*2+_bz@=TicJCpZKhx0`Iz*QA(L7H=EE zXUO_Od}dUwZ%!h)gi-&qOhsLPg^OnNM8CCL|+ua0|+x6UsA)D=xT&QU>+Q#aZILhoJ9MC*MTqTS9CoZ zUYD^P^a>J5&JCrq$Z?-9OCA1}$`Lf^{0^1M;nx|04i(5yIRXZQ-=S1G{02k7q3S<- zMHG`_ozJFF*nGO7ACLP?{rOT1faFE!7LTHPC!#xYJ!#bSUEl{swyDFkY(slWj^ClX zq)o*~ws7%>MmF&3E-&~1Du`pqPq}+|lkZZxz&ro*kXsVbi4K~U%S+!CO53Gni(YrQ z>=z-QvWM;97-ozhacSc)2y!Q4$h0-odkDpdeS7tC_Kkl5d+^Nuv-Dzg@il2^{bauf zc~?A+cUQQA4jCE;KD3y2VeK^X@3ztW-9Y`{WmnYvQD%r7GDD|Eo1x6hFR){b6JXsy z&l85|P|4UjqJe%z*N;bR zUC-~db-#;S?4?&=1RwezaPZ1Zqw8N!?ZnUoY)>* zq`t-a-61T_<-|DENypxWZfOi9F+yh!WXf1zpr6V3Wh^oXG$le&dyh4UC-_ELt6 zN|-I1OVL5JuH=Q=HaEF4;S_1irUads?4&-9%tRVOexk(>qWWX;x{hQX?+%4rVDQJ` z*$lgrX@tj3Pej)Cv0s8XR!%Hy7s2{JlCaK+X!`I!m#(v8NzJ(e$zo!q-(bv`~-An$FsRf*XH2*{scy$;};07`(cfp;r>u#)g=>+xe zzW7R8O&5=NdE5-y5xRVEE`#`<5%{TGyFG@J0TW-*1pAX zbi*)5gNUPRC*o-QSQO*OGAy7p1osI53>U4pGlC^sG-o^lTWPvLpC| ziPYO~P}AbQF+8AmaCn?(;SFxLIjb?5Be!Mvz)?oo!_i3D)5fGlXdQ{-yh?tK_IZI> z_IqgheXC46=xCye)&BkB#0IG+$LEC@swc{RrACd<3vmIKNWJ+6)qPQ3+|NvL(#2;w zP&JxE_~4V&twb!LXNg!wdhZt{^3s9BPG{d`$lx<+J(P>*KtZOrI?&dUVmQ5xD^<|> z7%p{UlJsDMry^_wJv$oXN{`yYu`&=!hA+|(wpPeXYGhlTR;@`33O77^RrjH}>AADF z?A#p0wf3IUwAnSjw8alBOrP!9txia{u?3_A)4H|(0JhbhQRc`gvZj{B=az!A9Vv2y zDK@*gvNk2Ypr|rXxnowAv#2wrboL~Nh!dsOgmX0pN9FRG@*5TwYPGaHs8}q5BtN9< zCML`>nZZ*RO%Mws0u#<2OL2&Q^|HW`(=mqetWh}k+A?Qq{uAdflaH8-a z1GI#Ct%M)zHRflBrJ2-go3GJatpXv{fS8>We<$8rQ5xum;BLfb*X7v@I?^eEnD+QH z&&-OAr}H-^_z#!-EK(PYstCqM0&lLQ-dqW0n*w=OYjzU!h_~-hhv_l3EH8^CySM`kMjdfM;PwOGO78?t?PQRMAdbQS0l%;^ z_%jIKJ{lj$Q?w89CJ~KllWFQ`Y8c$rpj-=K{bY9WcST^WC8DW~L$LfNiCa4Y3qk-aJDi}+5Go>4 zAs5kg(7^y*2aRoxTii&!S$a+EnhM~{!OuSE6(tThv6+G64p9KxIPiB=PXL272fgmTySS^&h&gOv=47qkhn-EGp6{R;=JKcsqhnIs@tE@Shrx#!r3DR!Xh$fHH8OW zVcuJ^rz8)&LEA<(oCh|OGwvl?TkxaMtVKFn+sX$&^ao_9oPvu|may%e1~`<4y~_)BneEy5weZh9`bsTQG? zAlFH`Obxbn@C+NxjRZpAweC^+la$BlK z_K~r+S&MU*9PYAaC+bsX+z3imE*CixylSIoU;)|?uWqPn%$%{MeE!Kji^?5^x!FZ= zMO_(%i>BmAXSWaUCL{a&1N9i87^)|;U9u)_-KBvS9(1;uSp z71>Tqs$Gx+>e~B;HYlA|Y6V%3WQ>7L*J3y?3tNcO`x)b4dkSuwG75GqCNn0)JpU>1 zjRn83x^)!zPh?iDgkxdqEtJ$_k(#zEs;3K&l&_iT^0lV)U3H@>)$Tc^k5#a-k$N>> z!{R((87M5N9Vtya_ln$Pldy(-FdPs{=qEuNfU9u(C^f&uUO%NRF*&8PCQqGAy@l)@ z9?okIa+K6x)I|2$F3KA*CSdS0bY2J2kv6KXiGA6UXegGS3Dt7B!<}L)NHd2DiV8yJ z%teQLliKSFm1RPkHYV1Y>dnnIhw_W^L+0R&{nMx45ybscu~a1uI<{?GF-8> zH$!gmY8S{=YMnYQ&KRdx>1@f>sYRP-WETaPy6w-X{WOmC6XE!KOQ9!3J#otVD)Gd1 z(Dq4Le(CR^s9K~TIB8VX zQZp_LBN_Vu@xZsyK2F+rALmNZ!l#XPgic;5l4B2tajpnuz!E{eoq>Eyj_{2>If-KS z(Rgyu--NiXfY=GERVG|~op>yg;(w^W7F>dx^DX-2Ylg8~^LYD297VFjCGUW;Gih8+ z$)&Oo2z89kSB%dzT>Yswk~~;X9lk`apz+`V+d3435o)VSbIm7gHj@MN=KSeKIAmx!lb5!vT|oiP3j51t_&g!1NP z&Zb@|k%X6e?}}&;1rZHbh$Dj!Sr7549b-2lP_HoOHR0Wb2rca{6NMfkQe9Wma!npcCU+Mi*b7rE90tlguf>C8ciN`#YQtQcWZAQsPY}Y`a zGu0}x<+Z0_w#fK!4MOAlF4_mcJ|RpqjxV`D_$sERT?7pfT0K^3k{9?CB@^Ox{zrrt zTo;IVh?kT(Q#R@-8H(_Tc#2D%>jx~8jm+l>2&psX1mC4)@`pwh6J6h0)T@ znmC}r`~z>8lpupI<5B;RTQDE^SS+W0R%`y`WFe_~jBr6X3IvCZ+|cnXbq%zevcLY0 z8U$>!ncd8e!lO09X9XTL5q<8}lYOlvh5RjL>+k%2`kv?8fUrU0{o-nhJGKebA%*2(lTUPWPSMXm>ziVP}I zv`C;9(tg@PJQMqke1Ron8IdnP)(Fc`aLMF&z-QUhOX9*E8_IHKl*T7_ZcwCo3vDhn zhkU_N)RR?rZM)x5G(D$wbE}`S_D-9n50toP!?}5p*okc?pQHPr4A*XfKMqx0y-hyH z6i{*CcW-Blu=hBnFs`66QORiQ2Ec0yqgobq`&$yVToOh7%qhirQZaQFu=#ud>0V^VNRslW0CYzzp+G9E_Tlid(bRir;gq&^Gv0gAX2RgvN}OJ>C;+fB;Wai#X&@iqx^k-BmgGdcSfwS8a@@Jq zE=!8nPR@#n&+49JSLsw*_@>AK-!S7oPY&XDaV(59Kw~&OFbwgAM!rjKkn^zz*p95) zfWIK_|uuWUKq#6C&y*T8!q8Y`0zJig68n2gRCA^tKazH&LSDY0sHhSsSS3gJH)v#S!} zIN!1P_$E#)J@3pov>kw>V1}Z_m9g9pNoRI;i2RU~-oBd6Hy6w-P6~yRa;6tMke&h) z(T4rNmPYiHnTSYUJj@J*vaxJnXS?(3T<*y!IyT!=Q15Y-hjj-Dqurc9kXEzZL56%) zsYYXJl`m;>veB44ImzmFTkS3vgfW%;4ktOQE(>ECnUGl?=PVAykfbxK(iu0&AG3{t zL0HVTc=j<*X;7~ZmU>*p0i7;T>>7r_`X0*vziC}n&^u5OZ8b;q7WZR&Pb*xeMVlmv z37C>r;Y}x_6l#+KDRGPhDlx6gLZz6C_#$SDh#HO!jwfTRbYwho=pFXfhw3=frk%3X z1T2mEAtuqZ_Zf9Y0>}1Gx#}aG>7NSaM;Z%b7ix&b*faFL+y#<}Ju`m4jf}rw7ZQ!J zlKdC;HD}6%V|+b+4EAALZjw%yluM7HPs(FtbuYCa3$R>Bx5A<)uX?=r zDLEz+^hd3Tqp%s}K}TO*or=#l`-^;L8Sp|LT}AB1PLjuHeY48^Sl^F3A0c)F9m>5Q zKs1v_SzL%G%QkZ09{$&cW$fZgxN@5qTYYXV_Bn|A4SUB_otRW(>JP)8(D=Y#k&Wat z^lEEHVV_w>Z%Pd9RH$$>%Key`18pF7cvk}d11OS{IX=pnpE{$`yJlV8np&qRrQDTE zIek9192ANQdh^XaPXcWJ#weRTMxI1~q?$(@X`SIL=Z$hry zmd4aC*j&2thvPG9cRW2~+KIjM(e~xwFVI&hf<8qoq>eMPQQ}atMRY$eIWO4U^Pzlc)PN~vXf>1;BH75<*JdnHy!5tXaoi%8Yi|r!j%loYKaC%xO_#F>-TiFiCYxj48}6E&eIK z))vlqcwK38qG+kw784y;+>?CtLEnX$219*xG6h1QwTkDtA;C8ghPAvYGZ!#(~}LXqeWQS+};% znUGsmo+)y@>77(P$s5Y`=K1VWm69*L02!w-6t7CGnw4I+xHcm-*R%b$KvjNvRWh~!sBeF$cOBBc8&MmdMhS4ZSDO=)$zqAbaAO0_$~?#^{7Oj)fN|CXx7 zasKQ$T<1=+n!@pFW3a&Po4=sXJva#C`47Qo_>U|L>rOk`$GeNQ0J{&uiXJ=*=0I4` zR)xnA96g?%TQ9&C^<+9rK287Lfil74$FN=I^93-lxXWJ|k4NlfJ|mv4z@Gx&usx_R zh|GgxWfj^zWpjj>5*-YFAU-O*w5g64B@{&`=rAK+Z@{0bz2~-@azdmmN+_3zvYO}T zsN(sk9(y`|BY2<9fz;p6x|eu?uF;0$<32dPg>?_TPkIk1W<|b>o8Wh?k?+FafV1c~ zP#>S6-Uc3!Pvc}j$8H^H4>uIf#Ow|z_~+yJ<8cD{5U1VQ3{GNE_ApLpENm$p%L3uB zXehvVom0ak_;b#}3E&Q)C{$oqJ*u|U^fcW46IF5z&AdTmPpp?E2$Hxuy^`rFlqv$&1(T9V#;D^aa zQ13w-a?=3{VgV33+={jgVbYS2U|h=cz%iX;F&XQ#jm$B z`RD`i-gf#Phq|Pz5Bn0`Zy;VZ; zkx=5fiZEJQSY_ZVtR4Gc$e)}Eelbx3?1QuPnh5@lzlyy$bniXvC(VEWd+`l)uNwTD zoIY}IHqoy+PcZie|4O}!y*;>{?yU(UP3&#;fK$ET$tUUGvE~wqL;&gP_)fjm71tc^ z={>%wqGHqW-k#&vRA7}|4{azb+wf3V=R@nu%GN)G>R!QBU=a6A^!p5JMwQoFlVP=H z)OfvB8CI;;U72RFq*c1zlhNyB`1=5L0;`8IjyyxOj4Dw!6`3XtbRP^DQYH)}N6B!c8rO2~kkdgII$G^o^$ z0z007ChA%22wO(SoM>G{5t#^> zWoB$Y?lVt)vIFhQQ7vDAJIUMh&U2;&!+cH+#PKosyS&KnP*NZb&W2}V5LLKv7*7xRVOBUfqTzjZrXw%? z8lYDMKekhhi4{r?mXgln5I9bfI=B=VJw_1><6MatS0RbQ#EDJoY8)Dq#^zSqJQ^MV zz8QDUXUo=$6w&PJqHxEQ2Dg1ux=X;f`_halb7uFYg|a!&ja-{Bxi2?+ao_B)JLPUu zR(m$zVzUSq99@QvSqwf6@pnM{v*FxCWC)?mp{r8p9&gBPutEnW6G#7NDpL>*e%iHo zuW>EJ%Am2jVNLbGgpXnVX}8Y@{* zJA9oK3oYUQc-|JyRDREB#&d%N0YQA7#FZ193aE|1h* zm?0h=5Ra_Uc;Fl}l2gbtoIywi*+@^N8TzQ>QTuibYIXxy&7kC8ktJr(Y{^|8VD5vJ z20OL>(kQ=urd{o^D1b>wWg^_cbI~TCuz1w%XMp!YBA^R7xD~D$PqRdkHwjq!QFjPe~z7&LD8Z`|!m;-H&>`JFzZHLjWUITs+>f{QCJ7lx^&61pH3#R4N zwi#^c3-6he)X`9^t`*w!F*aAGFSC%oIi=ZX56wO}BhXfrqrzS@CB@qn@_@md6lYV& zlfYLpu}m$K7~+%`Us9;JYf|G)UQg>@M;XmDNduOMWUHi-;{1|cK+yZj@ zxdnJArE7C#`vV)w;W*oH7SRmHkq+gz=-`Vh{nXw$YqgeLgG`_0+(9AvDY=LxM4bjf1W6RbWkC#wO2}xz2P36i znedL0=|Ka=G@+rjVRZ2x3Yza!C=y#sJee|w%`E&{5+yLG90dVGc*fq2t3Nr|T)6JU z{Nm+p1#(@SPC_bui#P49J3u|skv?bNlkYED`QhzTi&h_*rVF_(ysWha!N~y)3|dy- z+Um?rNz&jdJlwK8r$uN?r4iPc+9zBdv0?uW8Jb@l^(W0B4BD38wby_o#b=S zwieLmphmXMF6gtx9^#FSA)8>@$$E(JNSjf*6Fk8cD7ihMqYJz5Sddw?>Yk2;cloQi zYPnn=8+3K|Y7_I~yx~|)e^;<$^IcE(_C9m?+Kynb?=Z$@c(@tPykdhT0QP?vxEcYLy@ZvUpa6$!0}KOIZAfR%wNFh;tPDgbQ|N42y^4?IA+ zo&Y3fiFs7dQZR}KNEC2SVpzxFsJ(Hu;J4EH5#$j$i(akxFsx|d>eMFcC(zz?{ZyAc zKF6(hNT|~na)9OxHYn01Xf+P4@M9`eb$Zn>32P8h)y0m#ONG=s_{P}$u54#{PCz0| zGT~b}(Yp4Ol=gLn=9C1rIw8euNkfm}NJB8& zS$`k`#AXOHJTm*k{f8aQQqFONnW)ndRxt~BSjAytV-;3nN=8rRNH(E#f;v77`gS{~ z_!FBP`}XZo#i*3G?B5;V0zb#?r9Uh7VR(!y)ns9E^A;0)rJlJ_saDE&@80d4>Q8Ep z-*Y4Utdidx`5d>0@jJwWXNhBQ%`QN3SHz(he((aD!=&+`t)(3iGh@(3?|)mvei+nS z^A|Z*AAWIm;ga?e%`%}*Emo>D_K>6ZHaGZl6q#hFx^NN$+Xa|NZIn_U3KqBKOb*&( zgc9DOn(wwRerS0vXR*8sBZ*G@*z)H#7wbc%p1IL7kwT*oZM&vf?N%klG@>?~H{4`R zu(J7!=Pjzb{*|Q%V-nR&&Gs*Y3B(rmA{HBZALTG+MT$n3>B1$$7%Alx(Hl;q3OH3V zCc%?MN4H4rA_mEU)pd0igyKUb9(h6dNcP(9tkP|-tgtJI!w zzPmnqbysG|)|XetkUn!?!pt3s_3~J?$nFUmzZA`A2xcj<%^Z_E*%-`Mr^$Wg^Qya! zU)RiA9~~nT{E=tzrdl>ilp32|05;2#Dwj7m-@CDvJztmbg1j*>D@GwwsdBgz;SMojraXJIUPVE??Ukn7sSL zEhb#7(o6b$rHd1rg<6$RXSAs|d$N6TO1ltG=V!F8E~{IjFHA^}R}$-Vt~W)ci}p>u z>h$d$?48ju^60-w^87s#QIuH19oWy-Xywd)*5Kb*EaCuM>**R`C_QK&7wr$wq7d5*E6DWM8??H|?{aT0k@NUzqvNPpjz2zIGbGxr1`*Z9eeGsXytd(>m%+ zCGhg8x8xM{$+`GM-b#^-6vk=45T(ZVW2+7|9{lR7gN=u9pTk5I`|F*~1|N7#moRiT z?NJC9r~8;%Ieum@g+qtK)=1}ID^qelR6WUry)+(v8MB>@y>x%c16WF&Fej_9c%j=Y z)xElOo7^lTxHS*dbBzwS>YC+K(d9>qU$cv{b4r^;W!^2z?_Yk6GFHjqG~qQrgBO>% zoj(V1TBwCGbAlQusgHGWF??`cD68e?>* zq#pQuZt<>GL#hO;hFt;v^zS_%eDDGGizcYuD&}&eQLDhp^N!*3hgpyo z7wxOi=Sb<6!gO+)4M+8Y;lwq@p*M}MNlYS@{iOoJXadJ_T2i&?x#`U+ZDHCi`srKm zncA|WGZ1K6nn%5ozBmy?2V4)d>$0`rNcQaB>1lQc`TX%Lr;(b;m0qZ}PG8BjKHc>M|womN1YI*!utr*3OaG-kA9JU!*6XM0+A z&MH)F)B55K9CLLrsUoD4g{Mu{)b?e?WH4B#6H%e;&sRXjzdOdin+~g)SHv+g{JnM9f{2c-d~x!sI$s6+v3r= zgT=|YQ^M-0^-YbByg@#6Rc3iVhn+s-y2`ch-_l_4<=R%-O%7AAzAvR|n$3ry^ZZL7 zecK=o(xG}3IxvG|(py@@HZj*C95}A2%=`$e*M^J(CpEEn4EfNiIyko?`WaYq<*0Keh;i)E8<&iz(RDk2D64>zrf)3qlmzt$gqrB4>1hjE zlB;&Uw77HMjF3K5o=DxVY6wu@;{R9QVlQY^QPv$mu{@joV#yI z<#p>&};RAD5**>#{}sROOrpxoZG08WciAE^Ndo@in1`D1W{S-=gbZhVxIOd#TXp%_kP3F?oQ)0}dVt^MDHb5?CLi zKBu;A0ZXWF9|BU)vIV=1I({=KqE6fl%0b#5>J<>$L&r@Otec2J;y(IpasmSbjPuyX zZw}7HKhgEaf)&PKVVpTRPGt%e+R^@8->+B2hmDT>B%R6;8fX}I0r~D= z4dKI|jqFu054ke0M3gQm!8dFAmtb|Lv7GmrJ$=>z{NKb*dN19N7V38g7QIXC>=(ju z)`Lnyfd9hM4#fayqkp)X$HC|WezEJB=Io%I84eeS1{5;Wrn+}c#+@U;UvYPru zBf+)UFW5#S)dWY3-WMa{%A)rQ;gD1#-5;D)NlYQmLjH;((!d!J*CaIab|PO#ZHqe_ zM{U!9Mb5KM;CLUeI8FTlNNPYeCOyAUvcfBxY z<*7qUDxJi63V&qsss>MD)9UgB>R{#Ou4HwvHe+GYg30l-UI5~|W;}QIwH?9K-tBik z)j{JFJNOf^9md>D#luKnd&rSYa(Gc2LXeD{Fh=#M$?mp>Ns7iBW~Ms(Uv^f-3DcVv zZM(g>cy6h!^LYPWiQcI(Wdst0fMuM%`OYat%bS9PK1EObwRrWB4qHQOm){i}ILwvs zJ6|}uyD!sQGcTv}!JF3xI@gxytl@lfTHV&JaA46>o45iFldB1^PLmw`RVe>fRw=|b z#1!%wm?!l4LXmdY95#&HM@q6Bk;<${;F5_G0wPLnk-E$60*x_NC9@fo11m;-QV}Fy zWxD^zP=cm3XAW zj2&^)RY+&4LHNy|L-~js$_Q zXZO?Hm9wpQlrSzkPM;o5luC@k53JSKbXl_!b)K3<1>JqbRHHvuR=(@4tKX%LoLP?= z<1cyjhFWies%B+XoLnuJ>6w`EHtHdK2fLfDP#iix!XQ1|F#%_qqvuCYn!UZw-V`s! z*b==urN|{G*9Z$E*8pee8u8|gz1@it`D&3$%#%BF+~?=d*at5t&;>5MfSfSozmje2 zyHR}>FA{TQ0lMR%0R^pe(J&4=n2CQ3%mZ}-DhAtSI)5MbwcegVpGU0_iz?0cfGS zR&5|AHSX*V^LV?&3IQpJFAN0V7*J)5dbS#lahy7N{*{B&86ZALu+BqzzlP)7PCmoR zL%Fl?#d8@ngo`9V?AHr+^66Ygrf}k1Ml`rrPBjX^y^-YE5ptr8i0FE3SqI9HMbEu3 zyD|R|eM{gSn+;h5?Vq21ChbwU#?WdIC_VIYep`60hI&rz zf*xi}xFItWdvJw(%C0xA$xNo+oK+*Q@q-2Ho>-E+8oRG)<_ln&uh^@kZtL9NmrAAJ zeFwqq;psQEikVm&43Zxr-w6(mtC)5isQ(7Ws)2SZ1;$z;`pFz)dOgU-Mt<~05%Ua3 zOzEk~vbWW^C#PGhHXHNoxhtoo)!y{RvYvx;lC{Cf0nicC6arC{|If~no{Y9RaiueJ z8)svO`FzjR>slASv9~FA$sN-Q)~;Ha1D?^x4V1(1o{An==3HxWe{id!|dhX00vTt0ffntXj7r#ifnSs`nYfP7Nh? z-q_Xm$m)Vn*Vg*Nl|2n2vEl~5XGcLlK?c`3H!FwkAu+B- zmNU#{x*C-(_@SfROMVZJ%9(LZAv&Ot+O@eNdq!#8R|!_F%OHujYFs8Mc8|nu|LA

      %Gds;)y`W&~-oA8q&7z{Bw3u*XRzXM^s0TS>-MOnIFSTLyk0p1z=@ZE%oPgKxl|VlRWz@fTJfzJb2hi?765wK;GyilJ;5j9sFkdsHx-G#zQ?8UK}fF0O+um3#%O2c)? zi%v*q3;8(Bi#nPYU$ACHc=0cW7lYqYhp|(H0csz5;^)X?JK&nZG%*-@I{5e*#!k_7 zqm^qKJg)qz(loy7R6=%1c0x)#T{jvpqE3yU`IimhIJL84Zo%aFHEI5U<+|IwMd`uh z+=Pr&rB-FZPhKDl9Hdv=o-umW&074w(kh>JFMCk|^1!=8$v4vaycrAGL zL4S~ElE{4vGTYZyn7WpA0qnso@SE9jV&kZb-}K019iLuz72wt!_GUl{QV#IQQ(m2V7Izwl1!sprD{4 zy{V{FK?uF72q*|hmo6pr-U9(tL{v&ddKZxnK{}!L4v{83p@vTAq312w=j`p?XW#P9 z-RJ(_egDTVj5XJoStWC=Ip!GO_~u%#Z3~k<3iJoLBj=^}6~C5m`+WDgGEto1X)P+}gu}|tS3EyL8?II)Kv#*8a$5%WfX8{D#iqgs6=0`WzLpl# z>~&-i?_2wkJ_J%oKXau2q-^}vC47j9!r;<@9N0z|=7d2=PB%LvLvQ^kO<;+%VV0K= z%N%-wm(2Z|wlpXUDbi1^60tV%{k{X|7P1l(mipWNipZEXR-G4r%Kz0gC;SI zeeGLBF$raBn+LcYz1Bz>@`HZ-7vv)K+hr@d^?Io%wgFYf8LOSU@daBsZ@ z4@}#ZTd5B^ROCh~JTWB!(fe{PIXqkY5i5p}qX4rA3AHjyy}i{ce~L8t_DiW?t!S-+ z$#e?>tnky93h}*VE&e(@32G{}SM0~}939>Fg^A7D?{$r6Nd}kMGFDajZs9@}mqP0Y za?QLz3;TKX19m|ArEg0eC>X(ek)VO@iphHwUnt@sT@b$Ma3*o8&Zf-_(3$P1=6Kk( zv`1|gcgE?r%}d$&yS|bKP)xrTSUAwrL5--#jBemP%D2%PudPFkbB8%^K^>>57PN8_Q8$ zE`DCVVqsOJSROw{x*A)F^Yn3=6+GY~rgy_Xi$dij!wcv8uc00UtUO8iEyYeXM z6=CR&d$@5TSne{bQul&7rN#otr*CgO^=#{OQRwMn*&wNC8%4#vSvu_E(yRBh+&u2Z zN>MkQ>(bTNK15bwq*!PJDp(*inhM0L7(I#DX}w2Yu7OAwfSnF+lMe|#(iPej=rtfW zepPZ#`(Z;6D9XE3Ww=KRY*VS3<$vU&ziL(PUG{7t0GZY4U4ZG#?pmMlg-w?cJca$HkLy3J6#0&AK_QRwJ6^lhMwM;{{{)V)>6L|)C%HGX_ZQP0#TKxyeK;AgXbJ#D8=c;?Nd z2S=l*`0C9MOj9Dy=szJM=Gz!50_=5!+b4A!!r_{*?!1ibr5lPEd_=s)fV(|J6`v8F zK{wJ>sZ+FVJ|?ngI#o9qHRMF~RL940KkjQ?nKbU25{Uni%=?3OW|Jv8skBLuk*}Pm zEn_-{~6sfmP7v$}T%YZ3=v!qRp@ z#Uls-0^a^%f6RW$6XnI$r~ke&mj7xQIL5 z-+Nku__R2#d^3#p5m65MEWA8y0cLd3KvGM;*H_$#``YGN{%$8h=WC5-qR;s0y0SF< z31*QEcl;iInNz=`C+Z_`>n2}|zuO1>m`_(V_G&|fgddK2mUw-W9pTs`Bq9}P=-_{! z0SywNQPxV%$j;gM{@OZ#;PZ$HO*dOPq~!X3v!Ia<>LlmukPMmr-fYgHacJ}Ly`6Gx^duodW+v=Do!t4 zW%u!Jt(-7y6$V+UpdkxeWqogEiiSc!&ORR{0+hBy=go?^+QRe~$>pP6h!Vej6S^${ zYGnlzbAOE#j<_rOyjnm-P~5b|;{7<%&;OEM?{+40P(vt&wINhGLC5Za9+bTE@a|_T zzGxk?P`7w$!5ezBC7SW<1r1gJW{3jL6CWn&fTc%ftq0ri*FxWeeISQ5ddpI z0g@_W#IaaUqO>kdOfpHHiZ=3^X4#Fk6*lD`^YU2$HdpF{=$2>}XlZHAhf{uc*^P2h z4`-XwP;1XNZAwnP+>q@VC#ZZes<8S?)k;-lUmArwlDh{T3wl`jn$o237MbSLUbZ5} zPx^}=V>)R)IaCLo2p};|6*Y1$tCeSI@n;%7hX+>2RJ3P(EIUoa#TY<6CH}A=l=@aA z<{{rzW+mj3hoixr2*nYOCj^k}BNn1O=SLBj%vbE*l)}Onrr3~tvrTfRv$LQ2$YMMrmQjI{TT>*1QZmZy1_2szWT`wcCUgyK<{nzl`Ei2 zzTv|tp^fp9;xpx5e(HS_c1dZEE_u_1CPtOgduXg&-~u`BJZB>>Ng%h*}FLJvUUXP#k5o#JyqKeXtPLiEOxM~7jdD; zkwv~b=zXlP&Z?Dm!FKA*xLTkYvrLo6R$)4hj+Z1H^9pX#Y@UCDz6_v;m8 zF=t$+ZK5eu`fLdORJq`O=HuEeaZX0@udOEX5@j1`?yMuzJ+G9_Q+?9xH(ghjn#pP# z+a&Q7fyT)gK&6Ou^>3HjqZ+)PI_T?2=h|tGYown(kE->WuWR)2 zJg0nc8Fy|x%4$aGh1B{{jq)Q$nkHoO{;f%_a{_J~?6A-Z+w!_sY%aM?OEgw;nY>JM z>5tnb4^Ulg^)%qBJ9_q|L$(FE6_Sih9u*wM+ScwbTXA28KXIp+j!3Pp)Qr`DY zAJ$CkT~uik`O($!MBr^~Jpr_lFq|Q8w3_hny+kL1zTYXgIB`->`Yi1J&cjY)n!H#&Xw6J!?T>0z2}`AEuS{JY+O{`$*8Hx$GG=b7H8+{ z`ID^Uvh&jzc2bpCwdYOsGG06yo|I*}_%1lslyBJIl4qkWZoy1`Ly2)v`J=O@;+h_b zYj!kUA>xs#?v*V6qLwh1ii^cJMFhB=7QHEqNbON-NrmbZl~rExSKZKQ$@kymR4c6R z$_lp)unM&?9HfQ$;_jX!%9R4aptG2`af&m$AE2|v2KQa~(r&~-%ysLcH64hwHdNG) z%9zDGX8RN?3i>>dmlDbPWV&~pMYbaH$CjnUnOaYH_4_nJKZu4TLoQiez_q+)0{7U+TkhOE)uP7bine0SWAXGwDYDI%@CYEYyl#K;ed4@@yIBAf4*NghgKAGBeW)9VBT7wk|X~ zt4I}sr4r|fu`cRTM)$@VmamC^#^h-=o@}V4R|cQm<%P#-SqI!2$JbL3vR@;Xmee`aK9e#0j@=>^a;V6TPi1~~mnD3{4kVd-W!FS)+eGkwLz(go<}Z~QWLOY1*Q{-@ ztTEMkBJ2;c`EO1U8as}@_MPHzcPh|=*(~3S9Xs;LS5}dtK!cD1zNEJ{!^q9BuByHm2nI{u>vxwK|(I(`+*^zQ$iyh z$!SwB`t2U2F-F2G-Xl-Z@9@ z-l4T6c6#<~$B@HC6STYunakAvb=&i(?3%3Wf>$f#k8I}%JuFAsR-{m%7>VfzbJ&5P zEVA7hyeyL=7wJ&0_oi3NBK9$pfU-KYn4y z8G?a6;4O0oWMW&VNQk}znp53#>5!A<{Da;jjw6=~x

      5&YZdc{QvR?Y)4dlq;cxh z1!JK83Q+(3)Hc58Z?(YU^mq3-uRap7=cW)9~YC7Jfnz?0t4*YDa?lpxFi|Nx^*=HZla)2*fd356u`;)g$yXl;`^cOZM zxJ_~VJ{~4nJLX4L?bIc{FS)Y2oTc*4m&uIdGe?JFySSli7U*$$a(eNm&f~e9kC|_* zG~zbEy6F00{}iL!SB+9=BKt963I1=yWN0?Z#e&~>zV}?J8sn?0rg^}(PO+lSv?fxX zZ?$l~`J8FX#>F4$1Ksd}sSB1rD9k@V--T77DslE_Gf*ZRAQB9 z^f5bD`fiN5Bfch&UL+~5RiW(@%t$i{uVoT~Y_sfnq)IXAn&BBmeL>JPYT|}=R#zG2 zxjW0=4SmGyljRB^$ufESf=p07V^y_Kt((CMMV$rigj!X;*XN9)j+%vycD6K2g*mwbQF zY#Y+XrlW@5D@MZ<4^O3*L(&}*8|ovxFX`nI+l+1qDJWZ1$P5; zsy%Y++2~_0o?y)Dj7#GYnQGv5LZI%`nI~0N`y6t4go{`N_*7o2yuUc+znbnrP~dW@ zZAeg=Mo@e~=)orV+nROT(Vf&+ro;(X zZ9jq#XAz+wAIDW*Hftq;$oyTtBtEf$#VGZOQ4!3n`g4I2$MtoN%hS(=kWlYbg*H>Y zs7T1^Sg+HuuR_oBI=oKwL!8x`jZf^%y7&2=mP=8hPIaCP8@DLZG^&$(M5!x%9_Pr> zff=}E9Sn}f`ihabL$-<7t=}pL&64B{J&k>~Op!rc!E(@c$LvJ)zWcIw@EJOn7gkRhxHpP0P+=`E?QD_KvX__Mi+?8xveg)P86BbJd zI9+m!WXuIIa%dntpU`gXUMs$K)D>x)yIC1XcaH$XLsAgpwrx|8yyKeBQ0p2vtPHKB zu4i$*hPGQ}lW;4qpsJ`=?cjEA9(w|*V~B_xHJG7Vv0Hz;|4d?fEq6?Fy<}(fl6%&m zTR85mAjdL;#u{msyT3XrE|O!m8)ZX*Ep98H^_wBU8q7%P+hHp{xal{F=5Du*CW6m% zj2f8S9#Joq#ug7}HRbFO7aMZtzBgndUE8@AoNkm=sZ3uV`@yxS#AL5&X{#!6+*|A= z(b{FkCT5{va-sLC?rj_)SP#fLA1to6z?~F1b*|!FuaK4UF1)RJAaKw3B5QH=K*z3% zOjsk@3R;x2#&7H%*Q_)y>aOA~AAS&U(eSp0VVWkp=TNXA6UrIS9QjmT3YJcb`NMH` z;F{Ob8{XH^xP@t=7z(rscxedaPKlg=RJ^2e&`$j*PmK8b7YnG)ViVIeyKYYZ_=vWk zwWzG#s!h-ifz~)<`$JrwSSDi42Al7=TP*0SX|K33J%SQL)f3U;?5u8gms{NC5qv>t zYD8&jOln&n@9La$%T!cmc`nAn^eOztI{%}pw=DygcWG}LNKIS4gI)^B{jVtRX0>T+ zgcoJATWP8P$j{6Mt82Aq=0~W5k1KL1M!o^e%Wq`m(U8{EO9}z{_ zcdfK^e&iQtga4})E^5XM{m*6je<%n2S z^Mhlulm81vx6Sw4X1lLFHQ{yrwk6P3X>i`Y-$kPf5r}r)H?gCIqk%KeCluS|5_0P9 zu0&^_+~h`dGNZ_uMO#HzL{>hX=e-Y=6*?F9za=)~uJ-F#W1VJau9L2H)eB8}bI3Ye zY<4kSXRtd1D+BKqchOWOCyX(htrB-31ZTwbovK3<%k8FJim3+mofF$))f`(l4?`;p z_O!Ru3}XM*y?KaAv^u>^raeh;6W2*6?gfvt25a&2C3hUUpCX&QAr>fWPtRh1HEp#t z=(U7Wr`zhSgmw05UO&)~X{FJSzPlU$0Mttl@)FDH7Cb)l z8=e-Moq$F7M>9Z+9M=-_pItkn-(V4UdpK+Tb`G^q=oK&a%CA}`2{mr3Uk~88yKV-l z;{m0Nz4sVE-v+(z`aXXRUXcW!7er7XXxj6D$1UioqfRbU$lov1_IjJdXuI-T;MSGp z165}^@HE@&YI30aKNu>OIXSj9&hWS?>rbsMy7!8Q$?p`gZ|KF(%I940_z`I(ytjUj ziJvq@4`I9QCaPAOT z(LPU5(`&a2qZ5Im9K1A{_r1W$?qha`Bmd()|NcBOqjO`dFtN+#|K?e#gV3YCV}riN zJLID0QeMPP3NcZtx$#q7wcZ ze`|Ivq0$#_vz1U*%>UbPZ=4(NsvDF#6s#-?*I)$Q>3t_06!klyz=Msp@Ih)=O-sa+bj7H+AbS8v*uTk=v>9Fki-Anz9VtYNY2>nav?l zaJJoD;k@8lLTnyA$EdMZYk~S;0MAl=Wd#yEaKlWuyyCT!t$$pzbjf&SwpP-4evXby zQLmz-{Dz`@M>t73PfNpvUo?GWUTA9{_4gHeQ!n&7*?eH1+p6y$EV!Os!9feh$KP4- z2s%EQ>d36s+tNi3^tPX2j82h^GHA_ta|Q6B1=2IO_h`VC57hZ*`>5#D)H6I5wEBBT zU(!Uq*NO@fF6|7?;_A)o10VZw?=rv9)Juq#UZR=wwO%#Z5uVeQHC$cM5x?_~wJMC68I_@M`PqzM(qTA!B2>L*iSa^Zo zsi^CoQ=b)6n^B1}Vcywx-DiOR!V!LaM>)?#B}ZE$H6|$CG&H6(P#YA*z@W-pM%lh5 zQmMOJwiv1hmv=QLlgW$30Y1+5#*V&`XTY)-7blU!J2yHEE3@sx;7RJ>@*BdhLb=$} zR?`UnKY3|AYCo34JXFk@n~72Lpkg|ubSn)_Sj94cIJ>@@g5dgo*hBxj6|{^412$4md9iDipK=g80dr z+BEc^!`!v>ri)x7MKyZ5Gck=z#Zri{2r^9=LybU>#!Ms{DPr$deeD!PgNhS5GIh&1 zHTAZu4iC<2N6z#BFJH|c0AH5>_7oeD#RU>X=mSn%_wiRukFNk#WPfQm4(hk8VO{^u zu{EXLaXw$yWyoPDNSwM+KOyL+=3ilPyzKAZc~6!`c?Ge+>vXYsOxE!X%aB{!;Zw%j z3C1gLpgL2Z zeuENlnY#WV*tX_kM+0X^6Mf-P+g3=?-fw0@$h7}+wc~uQ?pCC@(eYOKHjBBsdmNER zZR$QlQ-EXh!vL|st^VW?obc%HH7O@s>~Uxwrj%t=cl^}aIn|E+2E|@i($-YB^G|lM z4W@JW`|g+v1b!@VZ&31A|K^#mCUp{RMed$wnj(*-11j0zgJMZ1dpXoqp2>)1Y>#wK z2u*_=i3-T`JX_>y zw0v8xvjF32f@h=t{l&LNt3%@TFMnLB)L(pyI1Rc-UT}}j>E1w7d!+wwZmrgI)w1=# zi@QGz#RXn43rxUl?(AsiU2?k~KHvdfseeFUXGmYGOkbef3#__TescHHJm^@*PByvHFMfuyZ4NC5uZ+> zWi-_eL^#d`^h~}21I2)EGl`;oJr}wdw@p@1ki>0(IwQ2Bc*|Et6Zr1 z{hd=x!*P8c;FI71llFtdsnIk;BQtmUxUVGyX(D=J{q{x#29FFg613>x-TAp zp(`UsrB?}@Tq5Nkbo~Puz}86%zmn}QpzCienE|uk1F(!>x7cQ@3XD_Gu*_Dj&9Qk) zol!uUT}ZUR*r_2G4*PRFm|U`cy#V&H;Av)VmmmZgkpnOqoRxLxu>1n&!A+eOd*{D; zkFnMvuI5Qx-IV(obZw}6+XxGKi+E-q#j#G{(kbK8rm-uZRV~tZKrLC@yX5)1*w*C& zw@zn28zvB5E|{rm?fFCIS-cVIOI?Wr4R&0w!XLMG8a|kwLDF#?-m-r;L#yt$szR>} z7}KU26H;2qP^2?=T;+5sF##gXSw~QWv0phe2c(#|q?9F}wq%lH@Po}@I|nd`%F;}( z85Sl|vyHRJ5bwMXIn!wtU~^^}SlJYIQ6E+cyk?FXo*Gz7?dm1wlULXWzTs{3^}drj za?g>6Y=h@ztUa*zbGFU2*^MIE&4ktscWzO2S~@Y2PF^ORIv+e4rGEcUhFb{3x)fOF zv#`a_;F-B3k4nw)5v#N)fBK;kh05RCtbu#w@Aa$X%zoPbc=@VvR9KdM5l1B2(V*oT z^ol_b4e(--G@G>JxHCd0Wa#>3-&*fM0X)i=t;Z;W)`uEef33vf8UH7%YXHM!Oo{?ph>_rN8^!pz)nL2jfNRQS*( z#fC{nREk4Qvx=R?-9%;J>v4^QEl4(zUwM~wgr&RdJF&}KSNUNxg(L~9>^fHsjdUb! zC#Ba9`j1QnhZhoxyVVRvL=yox0Co6S|Hb|n_-m5>f#O3pPrbT!fyGTN<6$i=U{l~m z#l(7`D^fVVKisMcTIWU8mb;T-rwE|tPAZjlf9vlaXy}6J3~{o>tf}9gTK@9vhs<~Q zMea%bUO->0Pk6Ys<^-i4!?g^-zjbQ>38CJexC|qkdbh6vI4Q&82RBzHs4@yx+Sxik z-rVYwf`n2p;ZFyYW*Ic#&8gNThoui-u2=BMdjJ0F*DGi)G_HzUX`|(*@Tq_j(bQ5Q zt@gWHaEVU_!wd~n;xq^f*;S+T6kahf;UXMGPRj_I6{s+)FX{D|ndiAl&3ZSY#HH0c z>~yYqB3;6a(267NRJE?7Hv4`gh@B=bq9N%s4&w;6D)h zUy|*@5m9LzsaLs~2;lOzYHpFNpPoVb1J?3~0;Fy+vU=NS{S!`A zc=7O&{tUw;0975;m9yEo<7ODJ5f!suY)tMYGg4S8$Hv%*C(soy=6Hs79K%6IO$*E-FEqr#3IVQ0>#Bb#;_ZP(1X8y=D*|Dz_g#^yaFLa0M#fE=a((GSf2N+^YEdDVc^b*^{A<^;&+$qI=ti~P1|IQr(n&pAk7rSwqF^Xk06!9qU+%!WVtjz=_+50@ft}e=2?#$Do^ewx z^|-r*;Q$PL>3T0I@AAJ=DDp1f>it)Wv6QE{7TrR-=)shwqw6FtD|zi48r9hK*8sTQ z<`xMb?jQ!|$!ppa>-hm$MF33KA1JiNuEUe{%$6rbtRmO@9ROPwT)sT_Vf4gWhykYg z1~z-q<0to}F*!@vNs_U~*Zn-%)D`;X3vobH8f3Q0nNYvsewurdPXZ@k;gv7qraa5F zFe)8ip6*2Dvht-%uMZLMe~8j;v0$mHklzQ^rMT=iKb%J(x~7ix+NG@uwsSX|iM7T~ z@|Qc1k&ZjWZ!LEZ&Fk-4i5JV7rD5B&u%9ay;zJ#Z$*p}R4kIg)HolAFeZ<@({>})#52@C5Py5bUSxq`EtQMxM-pAmzd*xxzr{SIHd=o4IBV~|1U z2?e1%c{7wcY&DAi`#+4l%Qt%el_KbqMcC716WZIotkE*9d~&JEynmglQiS_3zQa(I zia@*5BYa9Wzh*4lk4v7Ctyv$NzP`K_JkMH*a=@`b9){o?1(N}O*WKKO3b-c4x8<`V zf}^uNE2f)(KC+yqGSjyb|3M>4zrPl`5>criU(U{+*)7lSks*`2uAji(uzany+B7IB#s9!FS+=igLOj`+&LKdo&W+b;UkihpBI z)CinI%20E-DHEsyMuR#oXvTQyT5SJLdl75=_V3^OrJ4u1U)r-YC079B=#+r-{e1<3 zY8Jy9C*XkUs9CR$4G9c{X`=!LsQ)<|RSqV5K-&=kFt2rGAe~s?hDi@wLoe|^86h*1LLAMZzctYg|);)am+JB2=O0;gZ z$@8#s7ceAK`c4WO51Or|dtgpUlq9}TrNnbN@r#J;SXM93_by<^G z@mokI7_?n-78|TDpmZ_pZw_P0#t# zd;Q1C%Wl{FHzj$!7mlAExH#=EfC6;0$(afTj<)rZ<1lG-jy5GUc$aK5W5w7;CGPA>p7khl-Sr@l?&M z8E_=b9jDI)@+fBb5__de$wr1gww2F{4n!^=MAKDAAH+|RE?jeamR9O3k}^u+>p0LI zUVfafDsvPxHm@EKP8sby4GAkJmqmy=grU{NGNY7QjS?;aq>2m;*~-hqUhk9j0ou?n zxtk?0?sl-F!6fTHEZDUfG`nMXrWs1{_F?;EvWPz}`pl~PJ^OI~ZYJ+8EW@fQgxkCU zW}y+qji~2s=5Gb=Jjs?bIr7bF6HfW>yaIRtfTOm28N8prw;6>AgaDXg9PsPoH|VD} z_M*)2Sf8gLS=oV(pGY|cLj05;o*5e!8~5GpdmhD8$RjQ@K%Z(zxZJ5po>9=_ePRj1|NBAHD~+l0ZcazDG}d zdpdpzrwUP(t^TZKCgE(?N)aEb`+ev|U+fQkbW0X(yu~sY^&RoOaB?>uTEo2Ed#!hP z(JDGDF(0MBU6tb0-mXtv^=^^pQZEmIlXI7o79tk15Z_+*frr5M+3*k++@GWqY<{VF zDQJ>faY1Z3UogdKxVJV$ycwFxJrKOuUJt!Ee&?77^J*lI&?=8~ zG4C{8-UT;pE?PDq{N-fUqlwO)JdWgE*-dgSJrqS(b?k0~yGpp7s=TzOvMhHzc-|Ih zTtcfu&HGoq-osXTB=Yv=_PU|$k{e5AFiF*!NRyheP`aWcXsV^bri3b`hlbX1<0Pny zojBVAIHRXs=9`)(zx}FF2Oz)&9-Kt$1^NsTO?K~kOm|2V58AsDKP61H|-p8UjVX1dXZ>FRWZn@Oe29S87 z_jQ3Zn8!h8Qx~V~zJ5R!t*B=)F|$Z$b!Hw(n?57J>06l*$60KZX6Avov#Q~ieH|P^ zvjT093JhjucA-2=Br9+ETrrjUM%F?b$niqreCBGVj4q8uL+7t4*lkfcO|M5Oc>+JN zXSiss{vk53E$Vq5iyeO=HglK-9k2?+LMYa~a%H@y{bnq-#eeskw47?>CGNF#a-!ikl|~l34yyi-w{i5N($nA<%$6{MpOLR0a*(J-SQ(Xd_is<*jQbUSxe>bMF)iNak_jL=5(REJsc zpRWL$Eqn$sZDhoyt#7D#C$u3|cOmSON;9(=2V&ug|EDSW`<<#gT&TVt+P3reuT}$y zc~CB!qj*-!u?LD|CoBL`Yi*03Ja;4q_7FFnbb&83wY=O%jHYKDAuG@5iF?75mp-}r z%sXMzJ-L?MO15aSld}y<79uq4k0_V|lt(t$qJRDwpZbtSEdJ-M*zOO zUI(CMif1W30e@9`@@q=|^I^yA7g+M5YR_+UlEhB|P&uw&j&}3kTmjBQox@8m=ETYs zwc(Zp6TO%wxpR1{3?`a)E+k;Qx_)Cs9)wkT2Su*t_iH64VE~?{PTz(A*Ay^C9k(hW zQA6=`613~LH;L$w-Y;i2NayzECgHcMUPY}Iw+TA*9I6isYIr3D-_slw_?$a>)E_SE)dekEAmYp!H=>TeX>u^ps?3NBr0w8I-0cE?Bh z!R3ds73gs{l-;T*Rxqsbb(|w?nkRmFbaly1+m4mlNqS@XE$^qjxSqUCVKBz{)Gt}1 z(O~}P0WQyBmj>S{l=kL7YwU0>#A;R6;<8cWo*H(m;#q<_3H@|X$lyswP)-y z*Bxl=2c~6kMV#Mf#}xVxzHzFk3GQZmiq$4Mx|3UG(0&$PdOMo0f51a&0bs9=ekBzQ z4?(HYL>~i*o<3lcrtjXd*i;Q=r~6!2malgI6~g97X2iyhOr#fpsfCXoa%FKJ$^P2h z-;aXpd3~A{l>l{L@B%tad>07JNhu9L5hgOx?E*1HHbQq33|+vQ5MYq~bRRwpF^I``3;uWa{$Wn(vQk zXH|U|6rJ^n$wPXbnT{krIz3Ya#B)NV_KZJa$(%ID4x8s8E%yYNjyXO$3gmvy%;qa! zR;Ny2-LL#7=u5J-ANJM_nIA5{%-2TVUC(2J1;K)M}MF zc+@x9SJ7XL$+4OJxd|4gah1#Y!z69XV*0*C&;7RsUj_}nc?5@8{l;nd6JB=P$ZZ=G zYM`Pslu65m-wuDr$M1x#Q27tm>3fy(ZWSiyI86N^)9glJ$3y&c?yrG+?TSPMnG1v4 zL-@n}x2^snk~E=>UET|l$E1<|@g&n^MC;fuEG+M%X9e8}IY1cU-BKbe(I-|Y3*?eL zAxitP8f29ZD#l46WG;s(kDY(w=ZuS60s_8Zf$rqM>B` zW=Bjw1d;IDb#x!fOzIXiTm7Kh{aB$zy>z%AAkiq~eF@o9qG`BV7@}?XRfA8(ZQ7Jm zww$}N?s3jN6%N`AI}`4a6JLHrqO+AECH+tdv2C$*uB$b6k6w2z z;yZjvgRiaaVY2nF)S^+-=)HHc$=1JKh(cw3!!S+i844MQ-=7wxle71B6oE-F0Gn%O zUC%BSimqaMz#)|))~Wv!sIFf;Y}wFBQ-}?E$~*Z)My&N63(eXs<^+?5&_MT3SCsy5 zP)cs-e}{~L>;U2|3kIaeqW=l8Qhc#g%c6Q?zk_4dwdElWMAMzt1Hz_jGUsMukj{SQ z@KQ5gi@ly@aWC#E!j77!9d*_nwE*WM{yxE=f9ukiF zv<9uf05q-#_ZlUOT<|){RYfb@GB8HJwi->G4zR`(jCkuJnJuD%X`-e)z;IFa zjnM&KCW4i)(K-0elHKWMlRWufA~m_U_T-*60GYvF$>cV`m7~*t4<+}6+%@CBG;(_Me$tZ1`Qon-zN~6MlkV z-{yBUz1XUq_2#G8(=tW9?vLb8$$aH!*pcm@C;%nY0l$)!(ihDW4;4_kGqCl~e`Rvh}7x@tD&jppBiR57&unOnR)kvuwv6ABxaUUgG8$ zi=?9nKLn>(Bp%K%i(5(N%obEbO;(D{wz__WGE%Jq8C#}SzKTtdw#zT9Ib%s0gs8^ONq3-qO>6Qv#D zzUj9=6?gVc^X>jjQ0|-N+5MRi*f%Y(`!hkhkNIZzCnDD?6mJ0CRyZ;}nU%LtU^iT{ z46sfVI?4A5JuQ6j17_%3c7L?VSdViO`w=@#J4-r~i_=8ia1q#-rGq=?~zajqXlx!5N zDQ8mDK8F#9sk~BQeJ%%FHfx6z$Nef^n{l`o|4rbB_Uo)da1|Q6 zHCC(Yiy=Ad2{@l=0=rl&dWl5<{Al(u9wQojj5M>Ati{+=n8uG8DQxueDiS9CJB79VzFbXo&&q??ILZv8^4mHiV^ zExkkJ%rRHg^CpXZPkg8<7Z(f>uucmzXpUV;(yhx?&tn=iC|y0Q0fy#m?t$OMeap{( z3v{N9B!ifLLY>d`G5>LjxH%fUO@Q`C-GRjX-rx|A7?gf2N$>eNmb1AAHJCi6GFs~{ zaqG6Et^1?Uh_rQ`mFTCn|G7z<{(mxQv!Sz9nO>@V|4?eh8~MYdz|f1&rj?R`zd=M>V3TzCsb8aKVbGId%g36D6aFp=M2lPKc#vz|N5TZH5CUuWTX!r^ZHaf!G2P=jzZGXH*j{@77OnOLUN!18G9a93r<@nWTu4YQ0A z8^-5YmsG>K44Qt;$&3tIr7;W~m6ZWWAd7{Qq_e~s`k zg0o=$8bN4edmZ!F2pJ>WTbRE_+%dAfiTP^;6I*dLkT0JT!^?iKQKVe-*p@95;FJH> zA^s7t;72;gqXr0%nFxoz-{p2_I09SoHb2LlHiC?0Dv} zd4t|o6u|2`yoBCK2?a6>eK4kkN!WD$@ks`JKcO;0@-muhl)p|1m)$S4F%68NNj7at zkLI!bA6cYqO84WjGz`?HPW~TR+{-&``pBsU_Rh9Sk!-OX{gC^Dqj&Y|Z-n*uNfcbHQl+io zZO0f(862IVSYnoCA0Wz+<-md6B_7Ece0xQY4O@tQ`!Tm%VrZt!1mF-~^MoL&w+$s> z*xSV=gQ!{O#>GpMm$3pJ$}*#GfJwIWZc@NJMm;sf3FU#iusrMtTuMKcHxUuw*u)SC zOtfmAU5ijzM3{MhB6oZ2 zwdiHV{RHSNq^jE<&m-++H-phTi%#DtCM(yRzM{9h(#M|0(+_Bs0CvGZ_>to8r;#FL z*Y%XltgCQho(En^nweF9I+0Y=i`{Cb@PB_QY1J`i+{7Xv)u(__)y*54lpls}h#T)C zzI^x&zEZ~dFj9Ih|GXY$Qu|G3tv6f&|NmBo;B%8jz2J*gSW$0f(OwCQMDtXop1xso z)d(=m&2zFLT-0J&V6ji$p&?#uc9njVW9iKOr6-SiVy!uv9xk1IbUzF%8Y08!f9w3~ zQ_kGALM87P`7H2JBUp&|ZU@8F9dB;EhK zR~jMmrmAd`Qp12QccbjS6@*A{NsunmO9(ym9zsZ@mlx0d-Wcbech9@u zz1K0`{p0?z=br1g*Is+=wfCA?Ywe6Vu@&F~J;3jg4E6=s@h-rwhs(3)y=Pm7>|%z@ z(hDWWE+xAjbI+bMQVfoA{b$1!<@u0n*w0``J%H1g`Cw0)_i%-0K13Fq0baTba2!(_ z>`C?R`77i%*pu!(RYAyyC}82>B|U)a*zZvonB#8!!!gQ1$@kuk6?FMl(%9dl{)+fT zOSz?NC64ae$30q}l4+j(8UGKVoZ3_vk8U_#B!&~Kl@U+_uaZdQ4K;l=b+yqw@8yE! z0)QIr5&e=2+Og|0XX5@zqoI|Z?ey@uQ!Ih((4_3&cC#rFReerIzO^n z49rw~KuCcUqUVr3hL6?wr2Uc@pB+njy+>*kDB~jZ2h|c`%2HY<7>1x`2IoP({VK3p zo*F@(gxRIE2*AXXwmBbV9%zH~QVP+1;v{eR@V$VGfM+&V{D?W|wW?NDes7=SN<7LTGD4yr;T1YgIGaSE%Trtx0-=6NIqGRSXiv(3fzBR)hzxt%$U|t>~@~uf0RFIguAp? z#lGbVCWrk;`IAQQ5c`%Vm=b15`yb^`8li?)Y-2?9)P4FF*&q@;!yUs>(U{mmp}3lcs>9JPZGvZ3h_m0o50 zT8CW3hvb|p0qm=lRu?7yxj+%}t z!Ik^pVsk-^h(-LfeaI@Rst!3`%ktpjk;er@-HgES@vUXcAN}Wa1n8_beP2y|tm4vv ziAW8y)s5|y_gzaw1Eiv!`UVaLxb!O&Cf42d&l~Umm?FG_no}rBtR^LWlvSWUE_?iw zc{?loK{s|*npf@0)7grVpgW$1sTPIMK(s3L;`4|ca_ zuyf;o1@ONEM}Y@>+XU>=cyD!twVDug%fo~DebJ<;MbY_43^Z$*fCtJr$|{y`$W%AMYR z0`U~$wv`*D8HEg4aPe^7|KZ%IXGeh^3~w~9>$ z`j>gikeW_+UN__LQ(qAT6Y;cF2{u%CLTE6o=d%VrarHZ7NyNm%+DWkYH85-g2t9y= zPzP~x!3_gg;lL;D6_a3ZE1IcIhACZ^eZvKQ_}k2U$7OT>gvjSx5^Y z*5@4V!jumDR{$g5f=&GyNE0B^hZe^=B?kW$V9>V!uRjNA1HAO%#>q{A;lBdN`Z{j* zOhXz0;XY?@^iy2$UjfQ}9q~Q0kXAsv4?9j`${hYH0PGAdD>CzgD4<$1D?S;{{Q_YH zYxA4!ox4sl0ER!RQETQAKl?i(NWHVKNCb3kudoBChkUYSk_<}=M9u#X)IIMc0+QWJ z>pT zXuJ@?y#Ew?2Z}=-J1sxOszq*~kn9hRw2?S8|8OB@?I?zS&>P#}g)jwJ6$R%Ix%}T{ z76r)@;q5@D5Y{@jf}krso6%6$ejld>fqiRi4z#{ zLt*Xh2HgH(nIykoBpZbOv4+PJuzeiaRMxPdjNq`~GQwJ)L4U87DBSu0-VXXec?HZA zG#YRu!9Dk53^ceJQfj@^U`8s%aks7AF^>jeTuajPNVCa>)$3N2S3Y%EA$~s_Q#L?T z^X1tQY559Ryk6_~gOxQMNr7u_rmWCfFrxnt`>>pO#g`oGJw~BC`%&0F zyRi-4XWgwX?OiokU6u#Weq@wn4x&8k{PlsoE2~OYDg{MLUOzH`&Z&gBE1uS+_C4ZN zU9Aa)sgzeVmtOSwO^_@(>=z6hef7WVs{@LIJiV3C;eoJ1w=>>CTgP% zXss|;1n1D$nG+vQw`wq|^*Xw>e}4Z$P@Jk>7PNPOqln;(fTvqa;quX)^<25`uLX-M za#c{D!YT&NxU>Vk)0gG@U9!h-R>wYNnG~th^ZFx@NH>!&b+#RCDT}pd=@faV_b0$+ zw5cr8p01Pq-4zK7v#Kx7e*m*Ncr^3?k6LCgxngNiQ|0C|GuBiY=|qSA6EH;`r$()! zZs3jN*tc{9kn93bqk0zf&9&ulcld zlZ$2D_UWDSDK3)ZmQ}URo})iObSGm9pCrK2yJp>Ow6UhyiE56qjqe3u!lwr3hM7S& z2Spz+?(l8=1Pxpp7}}pzm)FQzTaQx3aM2ZKf`epvPioh?-D0b0Qgm7TKlyjMefmr7 zU2BX;S$&_;#%Pa3OO*0y(uUjZ9D zd%b&T0v0Bcb&|iMkf1VS{KETC>8nTR!aoT#C8Et3OL=XTT0CMFm^;tE`zJxd7hW5s zCXa{(>dv$8ge7j7{gc42VH-A!alldaTl{9!L^QInhu~!z|1v^@rW$t^3x+9sw@@`E zm}URek>b(mqYSWAz@hd9;?Z=m*H6O+_|33MY3#s*egqZbsGikOJ>cKUDe`}TQF@pmwzrrxy;Hw{L2ssF&jaeqPH&! zq=z^km+t*9N@6!DhaEv6{bb~@eNj#Rq;&6ZAeR$^f$ftEF1*FOc#m z3JD3#o6RQ7sW3*%?loK}FcXmw{ytp8Tap0i)N@O$q09_hnno-I&0;q_$jEM!Q%TdU zQ=}}cZl!JsBa>VgqxYx|Q)of0I$EW(CLh>tQl^I$=ze@%^1}G|@@MuETB$pId~~FI3Fe&sQv4zIx_3reht)>O)5%f~?Gwxm*?8vtVk3!cAxt#f3r@+Y9 z;akuAO0}l0_Luc}^v6{k5BsC@UG7vYjAOB>K40q%XlrM)!`IE0zdgGy#`isDD}Bqy z1oHh8w~>~y4l3btk^jBUp&I}DM<$3*swS8xx!jh7`^f{mPbAgJN9gvyx=WvN0PI1W zmr{C!PT#Qo$fJ9szK`6C9-`SRO=a4|+4a@Pjnz8BXp=wVdAS=o617$N1RLRPQeV*R zt!{-cf$JB>uVnr(MChsIfciv#^iJY8(3xhvI=xO(g9kZGtMNN*3@@W%X1?BAcf}=c zyY67Pw6xn4U9Zd0=xMXq(57eSSF8*WA1%J;^6Y|xRj;WrT{=Tgkwvw|USL0I_=Wbf zuDH!h^WI_u`L-(C@h_9~w&AIb(T%SmPOz%#F(B4rdkH$!x7e4dxkwEtiC$#aXxcYZiUbPtn=S?Iz&<%;e&b0xYm z+$d-Lw~{iR_5P2KSq1nGIC89SF#HxbmAsEEoQ#SrgzPjaD(WRNMKT{!$4w?}6lCPS z8CYQVQ{MKo8Fc@a-M;rQwvn#GhdiM(Sc>tPw|#Z*>`t!R9Lp(gaj8p@+h=LCMy9|CNQpP zA|CN^j9R6V+dh6dmTjQh;@y@ahq01;A(v@8stqCr$Iq(WFO|6BjItME@JXGQY8O2; zzj!A^nRjFkmRG8q63EGr!sy~`yx{!Egdd!|p%&m#Mkn7WcUbgV?Yq`>9>A-jUBNJk z1i{GUoQ2?q@{kB~euTfwYGSs!7c(EfDksuD<{;Tca7swSYeXP$SRl~91)wQ43d0;1W|Fm9W3e2%=8{NMt)kU|G#A9s-@ z@f}mLCT-}NuD+JUo-ylX(B{ntZ{OYH3k}sZ;-EC9G2~Cu*?XCMuiA4PCv1acZHvoS zJ8L%murtFxap{!Qg^0###7h@Bnw87x>RRoLf`$VgF^cTk`fI$|>C`tU!Ya9`O~BNx zV$XR>B@05OzCyOXUvhavu@G&k^ic zp+Ax?WDO-K2|q*%4joX=8XBU1$UrKBk?H^|UFDn+de{%3~PH zsR-Z=1hApq_-(Vqi$rRj&lVTyrkOpY$bBLSzLL_TBa6!ag1o28nMq@`>@m~%x|8)) z>~5(rL;RH`V{%jJyXkk7EKF3;{%v$J6oCtt7egt;$j{zmPT-DHXv&!d?%xCE4uiU*|SuFLd?NJFT0`a=E(Y#6E6#>Fx$)mTsz@ z)(mxDo!cn?bg@Tb>@)3Ve#_Mnl(taQd%6p2EvE%N__@2x&{c2PpInuUEmWM=4mj^P ztFoBJEynxpP6F;8Xy()1MYbq+zeMagyC1y1ZXwc~flY&f_wAEJO5PN{fxl98E_QvO z<=J>{=FW{CjlJh0@0jkRnV2zpUk@wTKbT6nLNb};OlyXtG zl3d@cu&3lj87`W~MdeC$Wo`D8rL%i7pM}zu zj0>QOESoHY)@y5LKPzhR)WW`A)t+5`6LG946>w(^89sE?Y5w5NX0z)1*N%_GwtY4D zqK%;Rh&l5wt7+W&9MF`&w^Wcz7Z1+#eD8C`<%fhQ*&uT#WLD1~gcPQ*7fU6JvnR zgsIner=W%uW^?^&Q_S}W> zm8yAg;Z@q+%=h}{V=u#lT69^OM2J+2@LK?(&#kOVQ+^XmtPNok9%c1C{oHcmal(xB zH=W)OW^9jpeq5s#(@gFpJL6rP!@Aeboh zxn8>rch&sY`{68cO0AQp-vp)%B_*%ibZ&}R@n|;Wxb&VU>Uy!rJ&kAQjL(wXk~_$=Q9thdAG zeBFmslhJoK2{f%~gGLf`DCgcc#ymRa9SiBjS;{W+g#_e701J{nqa1p0B&R+(GvKjqOH6FW%EP6+NK zhvUnP&$KIF@ots?y7t6+`6XnO$I*`C#m#f|vz{+($?9$7ydAl=KZL22a%{Iz(Py8! zd~l;#sfIxrsm*!zCZ39ZTkFNb#}?HQjsu&Jp{o(%%(wW;I6H&a6Q!gRDDL%k*Cq#&)eiu%U8X`$ot)9;#G4k%Plv@jiy%i{?A*>UeO>bvaNWFNTAFsvH@VU`-5uVk3~w#L;WP8}dgNQ*(}}ZZCSsmHZgf;6OP^z$h<%drorW4J&^CR8H#VnF zfPg=(->6~ScvI}^9$ep^yR}) z0lZ3Zo53z+XK7sb^*4ixkZ8Ocf1~hdQ_kbEw=^PP8>)=hbUeN39D7CCOR)=^9OI?W zjyz3=UmdwQm#;)PnKy4I(lv!IQ$SC`oBp4MP zSAEkFWl`BD=e9Ji7Xfw;EsIu8uOT7_lB6Nd`99Z^Y45&05>Xo=Hi*V!CL24__C74! zsW852d+IG>{K43Sjxk%`>84X>pMMNJFId{I%khGiyt2!_a^xzCGQyU+l{xM_tLCMs zd$t;}vB7tVc1*?s-*svM}s76hw8m{-E`d5#?Nc{{)7cHbS) zzXZk&nTnXa>v1qtx(J$}p0{%Npk*@IQfPYq1MTBebvMie&q*APQ<)^v)}RV)VrkcO zqf?p1eE82wpS~$2WO(*|EVZaD>zzUI<|#9im6xb%6v|iHdqh}FMO>9kuQE$1j^2nD zsl9eZh?z}#|3NK$(q^$ZSNfU>iUK??^HyKnaiM!QGhh4E$|HHH_&PHyNT;kZx!w&9 zW)m<{q#K>PmnH}DOvg-LeXB90FM8$VD(XxTd``@yIN@3+Es9uyfVVLyuozYuu1%(m z%@*IEZ8eeJFq+eP;s*y@m#eyI@4VwJQ!swmSCiSRiva2)U?w;)$|u<$mB{oG7rP@z z{5bGXgx0SUWGc=Qf5$!>Xzs4SOC!Hu_)-gX{1O{^_q!J@AGkaTC=&3d3QipD0#R>GURonuReaxnO>{JsU#?IUtT(X63ih> zK_N^bn$$g05#LDO6om literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-BlackItalic.woff2 b/presentation/template/lato/LatoLatin-BlackItalic.woff2 new file mode 100755 index 0000000000000000000000000000000000000000..e9862e69094b4e51bcda9cc1727287dd5abb6935 GIT binary patch literal 44316 zcmZ^~V~{Q|(>8dIZQHhO+qQMaJY(CoZQHhO+jGX+=Xv-2wraO(uRp2kN+s#;E8R(@ z|B9Q%*_5B=AHvdriRWWh%5mirhNdL}g2=b#!VU(Se~U^+`q<^^LUJ4=VjeV?Iq)VES} zE5P~ND>k7d*`eHkW;<1?colQwy3Q9r>pvCD z%&VdUcKcx5)oA`rS`lDE(Q!1Xw&A!bjGx!&y*cWJHG!pIVI}b7l>y=t22aInyia$l z2{Q|2kkgmnP4j*jG9CbBduoDv)X;z(V}((h52oFQ2-O~(Mm$E?3yXp(((nP&3e$}c1@qObg~I47S^ z>711F8zJsN@2erE`(;1qe2WH&GP>?~KZ!px`wJH8?2=%`=%*p;?%)=%BpDdNehsWm zKBMIw>XSp6Dzv5G-hQ)a*iA8w9DE>%c3c4LvK{_jP?EzanKT@+-GELw+Z}7Pd_* zzi_cZI+P8Vq@=H4ccN#u5KwI=7KvW_0o~~Qk2{P+VaeINW2yTXE+1;+B;ZG$2#BPM zh|&t3shjn)-3Y^HbAA@jXWKez75Tz#XtJ;H_z6}D${0%)y8LuOqzp-=-&s0*gpj8cX_QZ-}b|7TIe!? z9ckx8%y5t))P)5|bG*M>muE-6Vm`LqIuqg-=2tx8@VM1*hb$m3xbH3i6J-2TlB5frDw4wCI=+#=y<5vfGZ+_-iErqh#r->L$ z=Z7dJbkv9;JKuffD$7f1VG$7hfQ}j(XF_UXVB$toC}?684xLisab+RXcJxzuI*pBH zC$`dlf4m_p6mYdD zW*DnZM)rMh-^-m=de;XIkSZOv!K?C77PQDizj%Emn16=;*%f1o;H!c-R&5oL|06i+ z%dd0)3-N==fMA)uEKWU_pch3xpbc*<(|qdL1hD=n)lgP0f?}D_jc}RNIkl(yZRK-T zA;ag|$m3Y&A1}&J&4hSsVX3#me;TN9n0s$6_D*FQ#)vJGe2MmbzvWr*Nd3lE))ge8RKWEj6&YAdhRcj%bT9LVoZ2GnU{5`!k7aN*KD9pA$ztEi~>H3xKp zSZ3xL7jL;)u|*Kg*_@d6;0J6ne}PjCCixc#(A)gA8r=b6-pLH2*G}p=CFAz`OMi?; zQg0|*m-=@0d!XQ!C)-AhKpF^OYxaZQ_fwJkWVF(Zz__o^fz??Zd8u})Gm|aqRYYA( zSoAm+FI6mIBhd9M|3>_04phh9;4AvRMN@pzMsXuk54ypsrXm(3l8#auB|>q`FJW11 zl~v5KC)p2`4`9b&X=Y{aQv0{!J%~C>7`pZk^$&|RGb)Br((C?rQkl(@c$}wR?SoDws2q z+vjKC=xLscf$;a7M*08-hb((?a>K5hu#86qpb_wG?1oOi?Vt0l_^XlCQb@*F=+<7B z{nC8r{tdk%Wr2>IXf#6ghS9EWKoVn``LG`DB{Jt%SxJ(Zus8tg7FC(nD~B{17BGV` zEXm#jKF^#;u?O65OluFoedsB(GgB&tc=Z|(8SA!k-}dV4)Yc6o0|Nf(n!JRDDd#Mq zCYr^WXV!AYscgpr>z*CZN&lDZAsEH+;QD&;V4cGz%RXl2*cYale^No8x~NPiaMse| zQcDUt_da%1By zTrKh-<9L-mL_*8i^{iRz4fN!kF@N%ca77lx@HU;P zCp1NvwY{TN#0?X3K!)DvmJRRZAS^8(Cn3XxNLIA1qc|-uV>kQrhhUK+LbMlP-g^;< zZZ)vx<13LhnN3bcL8Jv0`x1=2_!5e`QMjtPm6&e%629)`je4Gujz;1MnWc%IiAJS~ zgNujngu>F2h~oE7xrEQkHn*VKgc>8N*eADTN6S z1M!t8(O6blKe1N?pE;N5#0DRamP=~)^^QpYWjjfEtz}(zX;)-EU7Ha2#4`&iY z7tw}1xkJlR_?LEHxg!>gR+Y8X%`XudOM~doEoyUhJYBwqr1ToXtIkNVxHK`_PZrT( zjHG4P4dcYX@9$7vtxy1(<2y5+O~ABSo%`755&Lhpx-M@j7_Olq3~%hc&y^?v$cP6& zcfnz=h0MD@h=*NHtZpT(nU^3+z(3#$+QvzF(0EXE%&7j~tw%IJEJ6`=s(Nt^hLdxv z`e)sGwu>q;t1ch*7JW zGg8LhMbdFIM6K;bpOjzagT4%P&pz`e&m~ZMNC_nIouc$BKd~x`;If}jZPkh?Xdnub z`m*&YZohW$gBg1mWCQ;Wj+4-Z8AlFW2|UQh1Z1d)!X+KjxlEiM`8X|sO7v_g8*B{g5aj1Zk-Rxb$wl!W zk&z(>L=uVM#|ugK;JC0lss9j)l2PTXUxN?fSwcppB`gSmiV7SyA0Ci>(|BLJaH- z3l8Z;I+r8LrQir@=^y@exD6j?ocs+In|Cv}#Jyl27f+0XVAv$vD`9ylI+DWj>1ATZ zwgu62$w}Xs4~C~T^))eST~M@|7|LvKsHw$b#d(btWait#8QhDD%CNUYxX!~G=pSt0 zk>6x`T%_DOVh{B?Tqv>2I>XdI;7di=E6{nyF@ZYhYYv9&ybt(sAVbJZ3P2$hW1$^` zDI}$-6t7xZ3t&Pq2?D@wF2F5K-mEl*l%baV$OTD^$1^>mnHphlHY3u0OKWs+*KX{tJf8g35kt@g0Q?tQEO%O6GV_>y z$a!sMy&WZpRmxepgElr>)foOL88d3xjvhR|0T)WY3FFgY@k*24q!r$%nRo6^ zI2@ zN2Q1=-zQ$AwToDhl}DadzqTg-*+>6c^d_|T7DLqnT3ut-_tPWA<{8MM5cURlzlyK$ zKJ)Ti*U)-$i$!q=tjfy)g&&*w6ho=Kumy3dSwdcycT1>yO9rWmp%2p6BsROpfm%MHY8=Mx6fd z%I6Tl&d0;%9m2=2166@sVmN^)awTZ6vgUpzl2D~+K^UB>I$JEI92){6=eN*A2oVssbH0T?=O2x00D* zrg668j;q{Hd=E`&DziF7Zvmo=Qgb?FTR85^$NB&p_ZSx}944%z<@vvP&DGIC~#RS9Dt5-bWg8=t2!Z$EYM`$`EuQJWJl{Zg}^!Yu4avH4B&j zz>6mSG;ChOmrdabA_+4F8heD#kco|{T_p&!q9J&Wno$nD34EF3CSLv##!x0z3bwFpQ>B`uwB*K$+6Y4B*c1-UY}$~ zCX*Kd$uJkU&ARLPoF&;UKSim*1p?2;p^Mdzjl#*D^e3KjTm}*VnX6bw5SKjDHe-;b z=wVL*6~h)}YBaH9X#2E?tMPSu+d&fO+l5X{W+m|ZrJDOg!)y_qUf<5?0Pxjn^Hf>mC*S9 zf|V|&r(ITPRU_@q#k(;{A!p370;kDLrDqqx$t<55wwPN`7TVFf%+v~WI7YkwX1@F1iw;l&(3j8Wq%ayg{zR@PiXLU2^_~eyWX?Wn8JkQXu?!f^x-P zxw)?A};4;d2J5@{y8+;=+Y7p zQ?Y&u;eB58#<|4*aIyFMx2AcT`JSH_Q|Qq<`&XV667XL?a|$W54moubN;ei-H*@z4 zSTgJUd6{zOUE*18t$%rV=XQ&8A!=mu$3>OVldN()D((vo784zj&1A+SxVz^%6Y200 zu3xO46Zv78=E!`CJBci@iEwNcuctW^F&pw_1*q z)SQ61T4t%F9 zMEz_l3HGCuTT|5(HeD}O>JJg8&R`a@!9KI;?6^?r>T{=Fgm5CND)UXb%*$m4LJK}u zmnsAdL=RN4m4*x@jL3`_Y7c|Ff~i*zuSx^-J(}NNW7qTE2$%|oj`9VEU5wr>j@IOG zIp`}{am|nt!2>?d*Akrl5c=dWOiMO9;qCm~{Ku92KK4j-W{3f1(I-b$;^@&~=vH6c zZP#49#^)mxq+ngKD>~X{<`wvoC*6?9n>{^@E4Iqn^qkSKh%OmiASG2jBG>F`tw(L@ zKLyQsm0k5&%f+yFS}MjnA6TWl;Hedxo|Tl5Kl47wNO&kMSS=LKCF9Kqn_>KsaU#zV z3Ie}pElVsckq)^pFBwv;K%1&IO`bk&=dp)4-j>6}D*MXZ#Y`?xcp~IIE|#88H*VqD z!-;Sbg|-)^bN;9H!y-qb8~TgwUtzQ0*ujRNBMyPZmZ2ve|IHFBmad*b3#P5h&+F zvA>6Ix&LPfO_EQ-Zuubq=Jh(rm%b} zIs0N4hy(ioNcp-5Cb4QL38?Y8Q<)g11icIWixAaTH+eTF$(dWU1>Tk!3f@vw=8bTY z4(7!@qDqW+i1D6^yzEH{7?r}?ZzCEC#NU_E5Xjs(;Z^6aSi zJG|RBIpU3hXagMh|HoSE*GK(4++1DlogH2txi5BK0Pl-lg40IYAU{W6X-6}8STGcL zcpxlOs&ZoohlhKrigGJUvx!m|^~fzX7=O`XoKiEMfsc?zhr;-WoVO#6pSNGyjsJDU z|Jo5L9u;q{v+mR<)oq`OIy1zGqu)u~yZ%N+_XqpoQ@U`Hl>2(u5Eio{#+BC|W!{_z zFJxSnl9@Xeiu30;f{00x9)?5hzj)fZRqFNOF@yjJCX!l3BmEaPH+Xvg^P0dI?O1GW z@Wa}NShYgmCSQDYFs8E^VK^<|L)mrlQo>^YT)O9dYhB;M>}s}w$g*UDVCag59NgOlHtw9MA|KILIKHl&8pJ6#|huWdQj=W=5VDJs+>cVYDH~)b8XGwAk zx*a+q>Rrt+JokijL;6lTaTc1|?HSXneiPDUMMX`q8a8H8pQ?EOen{W zJZ9BsLJ6rk3GME;UFUodc>j$b9Ti~7+1awsS$2m{$w}*Im?JhhJwiuHPgYuAVrOb^ znw%Y4Eo+KO0;q|180og4*h!N^svxmKG0Ru~-warwqvFoBHJJH)>I~`tB)N8LL`bN! zG7vnV2(SydZrk8n2yGTtlZ63;1=aVzBTCgu3AtlorXsj&-n64+w1rGd6u7Z5LJXb! z--n~~gt3DoP^?uml)SB(_>?3KMO9^WHI=pb<;B&DJWmbb(*H58HxT3iWMsoS?(JIS z*B6sF%HAF-=jFQUwX?%t?*K(qG!>iw&1co@T|*a65c`CnB$T0H<1&%G4|gSSssA*H zv6ldxHhFF$p*3vQf#a+ZzVTo1Kz2W@b!v8ZU}55;)mYbK1ide_ zb(yvgAz~O4lQs!o} zX)4aBWz>a7AIE?gNnDCzWolWgC?2wgT_bPLm^qDJHFN9GxefF`#2kW3EIdm3eDt{{ zNNxPCM4jec6_)%T-gwsDh5pM?B*bLoB$nhy_592L1`dH1OMdtdHHbi{mjC>*s))1h z&%lDuoN`{{d*!>ICy5)9fU<^MYyJs|XK3JBmNor<^x=7pkoRM5SMl*vyVfqZv9z|j z60N(dwx1_x`QNPqj`Dxh`R*Uj37cj@yK1ln0Jg%(pa6h;N=1^`$}IO+j;um&1{h@My7rT*&PY~QSXnyr9(SRI zV=pD1N)aX8Ll1_%BTo^@WlXtnjWpIK+rvggq|G@~IVWPQk5RVba3A z#8Qtz&+%@nr=+)LrH@FarPNikgW^iQ@Nf$^>VGX|ZHc#^BdR zb9;3=S0=%C&LnYXi)UxEtCIEW7prh}42dJL$^0nE#O~QS@re#BE*`8>E4{L=vK?I2 zIcERe9OXUq7L@mzrM6G~4G-QWB2X9j7yu`OdpKh$1h9nfKwG_${VNB?)>0YDxP)`j z9kJqJFP;%6@a4T%d#PI@onpv{2@4)HVCeZDs8zbD#dXlIWeArnU|Es>bujl10y ze9QYduq34=rbdsK_bXv6x0_D;4$8N`Qr>3cS#)^KyYu$kYIW{Ib-t;`o4;Nx*3dHORjUF zP}5f8f}0{m*VgsITmf!Gg98+(Af&h=EQMsGxn?YesFb>DjCvUdrkuIVH8Un4+-0cw z4+P4j$FLBZ^#`JM2k^TI{7p@%^;}Mf)RfG8IQO4fGf~7^hS#shcKV^J?MEx z+6j*ZLF?zD9|5n8*M$75_rULan_^VLP#u1*{%*Is00R19B^YOj|9`>*{QrhZsmNH1`xCzJFe!T?NH0~+{qtGb#A(Ug6&j`YT57}!5l89q z$JkO)@Iy9MK<>;H$f-7gq;Q$wQ-OdfQAD$}m^xOf(ln&L3pR2;NI<~58|m}Q$&_u1 zy$L)R!u3)2TwG?*`=1!jdo+<)fk6sVzcPoVvol!43z(ohqSSG^F5L8o`Lr7vvVR%0 zy%gV)zBXSaKQTXLAa5F+8$i%ph8^C2`zQSOgc5$Q$c_UtaS+a0HlVm6x$(l`{=k2s z;lj5DVfcqJ;BXXeEb#XOvVo)fu?TIV#|e*z#6Y7V6;Ng0V>U$)x*qBi%ZbH^Rpe@6 zKO_>?{RoN=T|uk%%v}CKpyF2MI0@2|9+I+0OwR{l$uZBxJ1f1s!9@TIq!cM?nXqD| zYrg6DOmtc<_Z-?t)vk@P%}jz1E7j}vrMXq&R~0?WkYhDa@GWW=lPj1GMCaucI5;@LyBvfrZfW z8X0aY_CZe{4YN%`$Al?NnqcW1nI;D@yB~}WS&}q?kt0IvE?C7)GmaD!7_psA^}-7& zBma{E)ytCC5frA^mmZ@BunEZd^F(38v8YfDYo)PNpF0_WTV{h%EE=*dl?RzdxDPie zm%8#x;63>o_#1V)|8v{KqXNd_c!Y=<3h1hrX=IXtpT{*~ceAJHKkKg$*qZ)q9Q(v) zE8B5*>1o;3F;bwoXA$tM-;P=6ipqG5n*odKU?LzxDnvihbH{va>1+=z_~bqE{%tMT z;{cj(L+#O`k{>B7G|D$BG~x=RLn>>-?+^Wno|<(pgpyu$)SXM@pC6~@gbkoyBnUJf(X?mH(WRK1e5KW=$!Q1^#?QZ* z7&6cj45{#!xU_Hg{-1x$SrjScV1y$>3qC${B59938CK&jTf|pZZ^PMy1jIXqRAO)z zOgEf7;^1*K!Y0Dz6dfqY3-fuZ2{&l4EYD-F!5f+e3db^*Z6J?zvr1n5*RBuVU9`vV08B~hN5?#*?+1&u zz^m36qPE!V%ruCgYdqsBvFP{bmzwyCjk7_sJ}Mj$jT#3lDJp~<+0l*dZTagG+!_+B_y^WFF#ApH^(8*?9vcX} zi2WN$={jNqcgcsJ(=vUb@7Wv}-#0Y`dk3$p zwP)hgmY^pa*)7bkluRMBZ|m(2u{x5TfWOlL ztLpGe+v=|N*Dm@8-V@1UDL|C7;L9ArF#N{TOj}5ahtVjfp+{j49t(wYu-l=5xJ;x_ z_*dRR?T%8gxR9gQ9RzGp`0stgY?MJ{L7pfl7ZHeaI=m4>vUR=BIR+SXf+MGkJd=tl z(kIdDuRXp^z^~DcG?dbB6_v2zP!EzZkrz<3zVI`0z7;STG`RTRRDQckIB9+GLd!Xe z&wgLFHf$gIG&wjUl2`M-CX&=I`{qVk(n_-8%8}iaN!^u?uSn|Wt1|Z0foyE)4))bx znse?==g^+Y(Hi9_ody5$bQE_xUn<{|Jts}h80&vc+7L`v8|S=@wzQAYYw3hn*r_cB zGj*02amm#a9C0BOB^#3bxpQF~3UWrHtbPo;J+Sn{{??|4J2kLwyKESfE$^FdcNX*c zUe4wB0WxxPT5ku$J1`8yODA3S?K0t=kuTQrDrjhIPj&QH0iQvj? zty?PpFztfW)O?V2_u5lZ)LgeRnFwp0VyW|3ZwX4wFgh^i2n$PiY_P-h0;$jhYY9CP z?OalE9V9~OEMsyw^1|!2^U;v=1NjVonp4^_208r%kjR(E^gC4R3bWltXj{d0Cw7TLm$Pgi)1VS*d?5$<&q_E3_ zF*6#)*#9V`+eyRkJ+h_=SQr2fj%k^FaHH{xNv6vaR-S972X*L z^}F=ARGX2jRsHov>B-@k^~5-mvLZOaz(M4%rUg8D7rax6s1=9=^gLyl<3wjJSrV-Q zTm5xw=y2v}0q07^@A0bs`E$7#3fXH})I=DN)nyep@Ei{k=ipSZ&5J4A|EL|S5Z{W( zJy=x>sp%ajvXmNF!T?fC3;x*DJI}H_osggoI=aclA_Og)z;qPI1x;DI8i?bb$}3p( zQtk0*Jd?$M$w*Hw^UxgIoy8-4WJlLi6K_qm^6b753KyPESo3&rxLh-~ z6-9pM0=8Pl9s3y*ej{AC+F&8FLYs;=M}4mHqE%egvj(N@wSR+@?%PdjuD+*{`I1n4 z6fYr3N<%Y4Yi%51qmf4tQ{B=W0b* z=b)-3O%DUP>CTu0*Rzu;mTwEGU0)$r<&FoXAucCw*@9m5ha0Ousy3gg#2tk*snF*u zE+5b63vukn&r%eVll;#CQosl(@#c9DU>Ff5di3ETKY%(lpAmn#DG=UY(}b(lz&q9H zbj0Ls=&}hwEdX<{SG>wx1oY$8>|}G^EF}{zeR&gL0 ziKTd)vOci@IwOGyjcYO92J4Y|;1AY#8!!#6z3P?=b%k3pSw1n6npC-zxZb2tC?H=* zNYIZP^SmB2|HwE%UK3h%0yA8u1Vj&=dOoGm|8|^uK8HB~TOByhBOlHq@nG*D326@r zI~-IVLmX&H>{nR)G$6wj(9{H3ooQyM;K$(bOEx%M!Lw{%bh9*HFZHxkCeJBXk{inN z_Ierp2X1^}eO%6oS_z_o0@8~o+K0~2FU%pIga$$lB*km>O?~Bj-g;$%jp)I-kz*z6 zM()*oF&jsCuH`IJRWO&n%Vi$)`pjMl$m4sP^c(8u07H=8WFo8;OZxn8zYGIJ*O`CX zio+PjVxqr#zn}c}>95CqcgUzcL_auyF|EE1km-j7@G*ex5C8@Ev%mF~*wT+9` zA(1JRY6VhJ>b9G%oKnKKynws;O!*#m$x*dJ%?c+o>ZeOzS8Ub`DOLM#TPv@v&4pSw zx9TE1h0A0byY`FdqFHM94YK;%`krE{o2Itizjx|spNC<0FYlE}^)i3Q6%eSt_OlH1 zT^qEV#r@5WZQ;uLiNa#C7_FzB1wK`M(b7#Ed_;F`Pli4GB7r_!}yum{&Sze2Mz zd?qf$upniWx&x^nGGGoZb6EhuG8^LSS7_f);0B)l>+V$`$#0Y%(AT#c(f2E!Y;cdj z+_fh5O^=-seo1nBZv_f@rwj1?{M8(_AN;B3_C5o?uL|=ZcoXquR0X_e5cL)A(H?Vn z|2o~~jh($`{u)4Mz)ajBHy!#ue7*m$ymIzaet30XrUuOh+jcHhBcSWDpG#j8k~R{? z@?T+EYctx=+a52xk8+UEP}~Vsa~=Wr$-|tlSIgo;fyQH*j8e7q>YJF!1Ska-+EUN18vlWZw^gHZOS4w6dJ*?;EO|+h-!@2oamNasbn!20OvQ;c zszy^IE{_}%ABkw3IOL%koAcXcpE=>OZE=1?Q>1nhB2u%NWJca8$L}eqf5ZFuBQHp_ zMn#hoL4eAqtG|mS+}p)@)?I|~PVxK1;7516=YK?gcs_inIcu6b2y4Iky|w{z&ai6e z?`)#;R!4pJ$*)yq;IScGXDN<&vku{Pvw~^(3GyvkZYd$y0K_NX=yr`qZ z04MZEhdWAE9x=#W9lW8xOB0x~*wg=teGNIQ&O)!N8<;ZPMu{ChS{b%|2BHL%5;OtK z#Fj?0cd|ZnpEaVE)({*sU3PcV%`IM4hDDr)EIkTt*+-9xt@O(*f`6SYWm*61W3q*V zOvegIo&T6(m1@|*maZQdqE2?68RoQ+rf34x(mH;Ch!YfL6$DsxhO zkFFVc8hpzdtOtOgT$)Gzs`^RoWznnq0tA%PT-#na3!?8&b#RbW>u|N8is&@VNAw2n zjp*xaXcZU6YtPnQjZFjL!KT$8S9a%QA^zlqZuCb07>L&=C$G1rp7S@GVAB^7@AO^& zE=w<&7UV#U7?vyYf2}(@=R|t})xpvpgJF~gJ1}ZHuLv`R|tFKe97>byAbGHWwVRof;3AOt4eh*l&3^D-_s`D-ty?eYan|;= z+-|cRO#MvjNb4s1mL1QZGMnVyG#pVVmiaTahcff)jtm;z^nat9I-_oExltVNGc2t(-cOzTch*LY79eA9`_N$14Bk}*O2;` zv1^^#i`<>-p+-+GMrb(giH}v#`W@J4qFhX1Fjk~v@RlfIZYrBI)D~dYN(x^55*)b# zs<;a+bj2lAL@ho~E=Ayaa1#O5CTe+oF3e9gZ1MDTrzE+D1rkg-OgAO0OO?9rDS?TB zpMb0=tCu!uX>t$iKLfmZt<{Xz5=oW)m=|i0SF8Ddw#XCeJ3w^G^5Wkn&5>nIWPXi6 zFwzipRB%tVUB|QoYtYwXAZ=`skbwe;Y&lT?wQm|Ix&Q(VDB2|h1}>wl;jz%HfCp+M zeU%5xI02s5wm)s5mZb#yjav3rVW}ZS+|u$GEue=A=P!h9fk}JQfEicaojK z)ef#=Pi+p*)FD*5*6x$6>Vn~21{w`uno9V4>H+EL`x}d1=;Xk{KWvm^v_UZh0loB(V*GA7M9rON zH4Kk#bLaUgY3u!UFS1vlBKOi<$XL()queLtF7YWO(Rjl%`R(93$@Q&_VssKv=@3`y z!G$4o_Kmjb!?6A>TUAXRgvW3s^WF?p>A;41!9oFws*=OFWGaB_NK{C(5YbsBCb0fY z$^b<*$z@!&|A^zzAzed6=N1^j`Y$m9=2a!9vx`bFZuU6W{Ag#jKi4~&*t*=3JvVUi zo;;0mCsg#JN;=6ti$DDn;xrVVr&BLeXfOB-PtR6Ve40u=$Yj!fdIbKGzE59(F@e#) zW^wnhwk3IC@<6sb^AkY#QP~=#WQO)3U|Kmm<;~t3K-Aay(w%A@(_K&*sIK(~@K)nY zVw0YYVpBP!c202cNW2Dg5sAb&&9mz3r=5GmqIz_AwjS?u7m7Nl|2i>ZCbpQ`f!3ow zu3X&ca?t2t?+ORws)&WJrj<*xRjP*9*bXAAjyzb-tCEFXZup;M*d>CM8`sbZe_mrb z4YqMo#!)ftG7txN@W@=`Tw}U3?G7_KH9Fd^?4O3gD_gqtsIWC?gPTM(Yp~v~Ux)|9}kgbwih%4)}kFgnf+h#lE z$-+oTF>saNq$4!-y>4K0usWOcIeMdX-n<;V9$dbMpSZY?F)myIqha^Q2Bb9Tu0ofV zl$=sl8aEbJGN{^H-94cRs2|-_!7Ts#?gM?kKxcKVK=(m!kcL`N)AD8#LnmWq9+|Gq zCk%A8p*V$S?5;AbVFE6WD6pSisZ>rI)Bh&%897F7NP55RQk~UZ7ri!rA`XWyeAfqY z<1ASSuoo|;sq^jP6ZQwFs{}Yp5{9Rc8?+unHbe#43B^CQJxu?ntZi!Cb@d^xi`V)o zSC&d+oDLt0wPU`rqBfnxEG;}a!SqR)=A5_;tGaPQIktv&F@dizJ`;>bY0s2UOqDeQ zHiO(2O7eU0L&V}8j5Ko=??tV+DZ!iJYG^;E4A*3o`!vX29V zOjKFoD}$^U|ClI%tMwh;OL@a>70>`V5Kmc!4cUNMb4Y1$VKmG%Pa9v?!RviB%#Ik) zqyJ|m;U&>Q!$J!7GGRuUnoobNh0p(lD6lZ$-Wv(DX1~utPyqO@~L1@sl$VoL#^S%@t*goq*SE?XrhE!HZ=gve+s~f+b0bH zM^l)R0th!SL8F#CkuAl9c?1AiFcKJ=@{sC;ccy;1IQVA1KTz7A8wlbRKcQ}<;<Y zRJh;_Q`z3tn_4!NdJ*5iNPjema(fA1fkq>XuqBLrTHs!bv=)fOqe+CZ<6n&8A0#*I zdh`|8zgs(%1h(j$N~1rBw*$FB7pPkLvQ#{gG;z-XuD%>Z?wB16&_KN{sm6rkzxirYhB?SU^ z=q*(PRs+$lP0Ci(e5uoK$t4|a1eOmXB9mdFyN92r_IwN zFsUnJ>L6MLG@QY|>0>YR9^wTyjfK=h69JRS>W)Y)3&k2rVkB||1SRX}n0ehPq|L$v z251MSzJ}9+=%o;d=kc&bx&|_gbWozm*ojwF1?QUM< z`Vnnr`Dh7@zUPH)Pxcu!;qWJ=TTihWL0?C%aia_k%n% z=-l?U=^n~RRVr}751i+tH2&*xO5g+uNHgDi#!)8LQoiK;6=7WM5mK-Sb%SI#&_Id* z;K_=}Z3wLi#6gi?7VJ-m#464Cj8t-B8`|-`p=RKfN1vnRP+m>M_(%p&*_XsS$!JMt zTZV5JKr-bzc9b?ppDd3uGcq?5utSi)#qX{}73>48I}sj64wKHx8mj*M!;a;1iZ2tb z)wR4i>8eohN``Y$N96a8YMxt;m_(+{4g!2UnA)Pen>XLM+YnA7@j~HnDxzxEo!bJU ztDOhXv>1u_!eIkI)RHQR~bfl0*j+>^%Up35QPjUAQfT@ppra^6_Ua4 zoBySJrv}_MEtcakx8$*UtJb0GAS)_8+5-zRo1h8>&Z7#-yV2exhAld>l=*A6a|ocE zeaO?{c9@^zDsdd2F-d)$%c2Z8!RZN1o}!294e-g>xr%W|TEG|I8E6FeFQ-%;p{*3-)=nOj_wH_PP3a{>j$Nfxc zc7fqu8&IA11Vq4|9etH&kl(u3Qavn#qXw%X$5j^mOQ)F^P)N6IVjlU44#0s?@iAYn zHK51cGy!M{jbKlcDAF;nB`Z_3Wf|!p_{sBTWA3=X+R+TU0w3{m`v%{6dPpWft|LR}Q^fxfKl+P2P2kRsA8Wxn zb89oIX{10jh#S(=iEZIhlF6iIzZVGbj^A;sIKRrj(qVG!F= zt}2SLn{TNwA$LcON}hh_{$vnrh5WZ92J!($6&i9c955rT1vVR_jALtj{; zYuD-j??!L)yC0C1&r*%EkAmr2pQTHjl@io zOyua|(gTFU<(l%CGGCDsVw6L)p*-u&+ru^l)lea@1iSzu*AZ52LLRx9S}ILh7lAgF zqmzX_5Wh*C^Sw+Kkuov>-QqvLT8tK6AC+t^*?Q$~*y_A9!55XCFT0{wbep(p?w2Um zqba7choVV+wYG3Da-$Z}XsaEi8JJa=BwMXDbv|Q7J!$nqy^vfp#t~Tcyah+61SIk& z+X@BYT+QmMMU1y>RS7EMv?TG=!WAbc7%|TV#$;$k8_T=GA3>BITQ%BhKa$gY%DRC__;%%PL(N%0WPU6-JNT7I zGtVJ369w;AFbP?A;v2M=gfJ7LeEwcb22!%ugLZZ^fgyl6Pf;iO7N(Q?$q5+Mz2MF( zEyX|t2&rP}Mx)RQsg%i@D#rBjF#RDz15>@A7}tsuH8d*b>f3I1)HI#eBwmp<057W zMe{P@OnzA4Ry>%kk0psXu%3%Z8!FaUMYX9e_oLxqk0$o^9KMke zX(AXNQl{Esm^|syQ$S>{e@KCe73|#2=Jr9kcA$MeI+vP0ifvTFGw<%?I58MldG)I7 zgbt9SX_Yit=;@3yVmQqWW@WsDMinyJ2y=uqRBdp?c$q{;y;SC`(Sg8@K&(ul@Gf)3{`syI+nXleI z4P_QkrM`HADO|M?Lq{y{Y{-fH-l2^#nw-&6y3bbK;%v&lTEbZ3R&bxco6+owZr`K# z$gmSpCZ=1iDr%4<{Wdx0K_xgmzp39u582*9P=^GjOwCr)4VE{eB;CLz!B}v+yugIP z1HkxTJB>bsaY=XcPIyEZktN9q#s%UnI*!jm*_tPY>x0Id6dhzRKNJKA#BhdetnPPX z`rSSp6e#!0dL?CxD2=Nad;C5(yw+HGw&_>6F@GYc+yza6X;2R6eJbw;tLPIYPrYw2 zZ{Dk3sv4LbefWJ~U~hPxR$fvyAF7fL+NW^75y16gP!{#ymwO?p@j8Clc)(@}FAEG0 z@L9jP0om3S0(h%fgacf(%{#i_k^b=%7y>ObE6*wLw)Wz9T^`5A~P@4UdKH=76m^x>7K@AE;WGKOsdH&V4K) zasu2}Wg+sqV9bO%G^gDgMg3In3L*WUD{lNQ66Zda?&cbIPz><{e9S5|Ncc%puG$9> zEKiVxKov~t!cg=(UnO#{T6k6tdYF{c&SCmclyNJTL9I$?4#ud)o_`*Rl&5^8?jrY|7uSrlOnl=fmf`?WPHijs}bsEyfv^<;jIzyV2v z+U2$Pc&1_`+2>x-_IX|ore%6vP65S7n#>emM`9}G3UhtNnvqHn_NzIhAOO|Tf#)HO8V0~ zb}kG_1WOyxac~sCKfy@pN=F*fmq%TlwE5|P(ebfM%YtfhxB>eCl(2_#^PkgbEOf?r za-nzh>x0T)#CRSyscpu{FN(bww>f4z7*W6Y%cDh`nW5amE$S!T{ia=9c6Y*A!M*k@ z)pgs2+*7^CWXl`6GMtAiy?+AH%jgC1Y29eyEW0L42P~di71gV#0Gwk}A4}zQZRNG= zk(kDh{6Ha(w+)k1f)#VDB=2-h5*s!n$qfl)pT976dLup*%4EyTEg(i_B#h+w6&F9< zN;3>{*@>eL1or+3t>WS%q4Rq0MR;oVGVZj_o^(U_5+_?qw<^&f zP6FL-WLDqXfo4i`G4<^Mc~!w+?<&yA=5EH~b)uQ#b%%#b%rL=QDV;VDnltM_zN-}7Wv8CdtMQ!aD zMl!x0n628XR=LtzgpqdJ)litiCzP__v8@z;S`xifFE?Y3hyRMsYOu$Rk1EinzcWM-Gw}4bBj9D~f3$ zf?wW+QC8PK_)h@Vl^H438QdBee zQCOB1B%Ldh5&bkMz5dOsu;8J8GF0<|FNu2tV>fkWd`9Bm$0BICb>rTvz!Omo+d)fA z3im}e?S6vQxI4pMTj;VQlpi|UUp6pcGQn-Q zz*@_FZgNT74mj$~j8xZ$hbX=AS`uuPd}}Uw?|BhDE;5mWkP&t3L^tb%ovJ5M*~*+% z?Ep#JDBk4MKTY<(VH@85Ab=5f-l<$?#pOO8*!Td)suzVh6D^SQ$(4fw%M*}7Fk)lF zcEY7~y-Rm()&xeT+|ahu-hr7rOoGt(oU3(Cza_fVvzUa>Fe&D7+|qHl>~ynMn$RD6 z=G~WiN~=82Fqf9Ak7NnI;Q}_I-SD;rRdK(Twj+mIs#|u3#CxV#ngW8n3V7^OZtYSX zNZ7Z*4M){&0uxvu#$~gU)offdK;M@dyX25~v6INEAcGg5F7WA8;!I1AJB~@_ef*5h zuyjiKPTB7B-C?UUGt0kN8$?^D%_W&BLQb4ePyb<1wEZE1i=xu1uGGx<(e4c7u%Na^ zBv*tUd@cAj8~womR?FjY5~E^9AuvJdRB*P3kOUMK@+TNmB#4!D2AhJg@;4t=zY}Vt z_oWPgR__jR1!_dmd%y+FTL^A$9vs#Ki~$d6GSWTMag$pda}2Z|D`Y6WM-cnVL4uPX z`5lhr0C3q{e}u7eigpxVHD>$VTSkA6JTr1e{z%+)vA)WN;M80q3RMsX93IGI$4jl> zeT;uji%&xE3Yq)UtS7o#YLQCmNOnYsZc6eIGYzJbR);OVzb)1a6iBVQxUTU$43b{&L#xfGrslgBeTP93qtN>48}Gq*=7VT>r@Q&PcUm#^a-sxJWFCCNAUO8a4<+lBD;)jj&l^Izs95hm(xh$X4x?;Pz+A>DE+ zD~ZKc<@2)8I9um~Szt#(iEy>2w9K>I1PngH{fd)W=_E#e#b!z>+OU|H@do*daG;!t z0`HAM3WY2EhqT9wAX@tTGd674ZrD`NiYZ*mU2C?jyK#PVyJtiCO`8 zaq;jt;wEFFDa!8-w&PP?RTFV|=RH)n8Oq6Ra{Vy+R_N2e(5{o{tCSk58Bi{z-lyBj zgKTdMc2nuiaG-cvD`$_bSKZ-)E!@N^!Q`S*LdIQ+f;FlHJZbG*NA~V|4SFjZ1ua~S zmx($L#2d zrVY5n*+~K7i7;*EQhwf^2{!%%uY%85MI2ZI8@Qs4N+tqnU{BsKJptvc^&3FUK3Lfg zBC&#=6L_||uTvYlzQdfRIIs3*vAV7Wn0fxq_tL1OdK24;-qKJtOj(&cEtOTsyoNy@ ziuMcKP$reX`vd8g>8|)V@b>0f$^1L1JoacWL-=}lX--8rOVVGsJ9GM`tX091VW7sX zOZ)t*pFBnnIcWf^F1e0y!!#+QOxB7BiG$3K24dFxEQy6;+TcL7x z``!X>b|S!GK7p+G{ETIdV#Nij8>!%ZBIw3e2WolFjbd~M>~iDBwVSthfE z11b)VInJ{oKkuh`d80v%MK{8sfp(dRkB(sbieF&$-F$RP%KVv=jwKozARJo8lGfl! z4Ok^%u&&+*8rY=?yxqsOzL&m;z^S%1Y#%f>z5}nW^=7?M`*^(J<7;URltLvRz!xJf zK`wc+KhP#!wd`9{Xj925wVyX#g$7rO>`O{w%Aqdi#SYR{3_6R!*e#ZS@( zux-0~kTh~(c+IzIEw?%LOlW$%}q;J<7t)IR&Oq{f-5`LtVu`E-dd!w+$6 z`Nt(R?_%SY-2Jg1*U(b;XfH=S>>y#O$fZdi3xUc0=x1uxV{WgYbdIjna&GXP*AX%o zXuX^N!{objS4iuBII!K9ptM`QB}PKDi_)Q4aga?dTW34P2MNDh-n66QuZSJ#49Ye5bi5V0bocyN1M*G?OH18LI zj!oacmxs$pMb{4~i3G=@Vwbcs<@LQ8BK??@HIPV9%y(Q>5^ z@7_3e&n>jvjUr=evS(Tbahi?(&}Jer ze>_p0?we1-FoBOhHeQs6530SZkn1>q-owulfSXXsrnZ5P4s_C8ni*A7>nGXD1+f#@F~WZM^g^S=PBbSoV6S>K;HA*2AY|iq|Rt zw~*KVw#-25rt}%#C}bQtCOrm72yp&bMK-4w$3U@tz7471xk_30MI!9_gwR5c4w@0? z=VIoew|pF)99+e40(#r=i1Zd%inaW}{dpSbebd8VV`HuuqZt;B-x85mGi7*BHX5E$ zk`e(#iv;E1*Yz8Ih;d(GB3wiQQ}ClnHDuZ}<7Vxeju*{)+3pD%??feh|EmNDoz9wZnvFIt_7Ur6}8w}+FYimqWYz_ z#gu35pgXo-1^2;fE>%9xN#Oze%!PxMyX(A)@$qN5*>T$iJ7)y)84Yhu_rWGmznCA= z#=iRwGpVl9`Z*O+0~Hr$QJB=4p+E2?OUq?L!hK&lg=M%$1QaOKPNDR2I{suM2$~*6 zQ?=Db4o1^50UuyEnc6!m40lO6q&4F1w1w#UPhtR#NSiS25Q@ zEd!-J^PCy>ANjo+hsDRzs_`?}VLJ#sW-8!sAm-(a0FQ9NUl6ln0k6G;c7oE<`vKaw zB4P3s(Ed*E*3gdylpeGi37YurgobiAOQiO0qnC--2um$doD%=FQ!s|L6+Am?77qX| zf65AS2X-*xk2l8rHnka`i&ynEs1-lGiL<2tjS6z}en7*{%1Jzs06U+N`hjip3@aB& z`4xSE&e(_4W}e1gk2xu0M*=pIwMg5L9h#IP=1R=7$Ve-__~Ke)SRIX`AcicgZn`oP zLZnfMn2ee_0a~Ar?3k1-ZgpQ-s9;je`fDLC66}R*Y%kuMn}A6XhOEwm?koW+lAAqe zHAhNkUA9Z{SfV1#3o!RN6SW7rF-qu#|3~00pXBO%wA3Cghc~q1b}1r~BSF9Z-ojM3 zX_9uaMn3*N!J4HA?%Zaf%J&ldc% zH%N-1j!`)i-uc|c0r2bdbI{wv?$#T>f-G%4qN&r)={n15WoB{{3<35A`%0)UO3!cU z+l8>FkYL9vw3_nr_^PzT)vk%B_YCdN&~E!0a#-dK7jPq5B^3U*E?BK0irs?nNxxS1 zuqJqU(u!>rIYP1>agDet;uWmn{lA6EvX*pmorIF7dhR;izs(vT$zd*nO!;FxK|IWNn_1w zcXBw!uy%FpZYyw68!2JO>G1)m1t{<-51(a4odsqQxlKjdWgrs>=f0BtkUX8u6P!O{p%&_B690TBYQ&qk(sHA zDX>C7*M%S5Tp8f`dG_XPu-yxF7GFd1DPU8yKIzfIBLK97{@{;?yj@U zb)$85oNLQOQ6qz5B`RLcxMbEn8eCbLzvMy3h(=S~&f7E`m?UZ(h;%>jfsb@?_>A+2 z2^hJFReLX~DK%4NB0F&ufSxd^!>z|0rjpJAzrW3%_h)Pq@xBTJ?%mh|4&MwZ4KR_L zuN4xPqQdVo650V_2HI5mQ7U>w)z$?d{!v=^PvoJRT2zP*W*qb^0z=sJO50C)@+O-i z+{hg_NEuD{i5d6dIf)4vm+%wIS_HpJUI|(yGOT|WE61U~n7)ZI9`i62VV0dl!_uqBBXe&xI(v1@DgGQZX|EFwKn#hl)W*K#$#t-7r@Ob zLW%u?2Z$L?{JkOX;nB@bDl1zU<@)ZT*zQ`v9nPRz(*9B8w$nSwc*U(xT4jeq11!^3 znvZi#0nx$1q%#o?a~$xa5wd8t1Uo*7m1nF!BbZ=nYA^DwjrZG7#R)mbC(QrE;r3zeF6~^eX1uB296rJRpxCN#jlWwVp|O@L-W8NY zaDtX|%mQJ?yepDfR!t?2t{QL1OGW};&w##)bOp`<{poC(N|LID2e3*iI%jc$*Vgk+ zjA@7cC&mf97bc}_nQ4qtn5gY`zzOp3wC{e8uYTEK%9(GrNf3LPV#m4gmZ1YqSNdFEzm9PgY$}!Bmk4W7JoB%z(|mKNuwBjYpEg96-NiG}*Ym z^r0Hp)CtJ&UOy->lKGcDnS6V2NQ7;9Ske66R*LXth=KE6Wi9kJn*d@qZ7X7A=LM)J z=@!h#mEE>3{6C*;DGezboTu*r_F2^C{bo}TC%;f$gM|e1<=u8=(-aiS(nJ6UxWBU4 zvxzCtutvuQW`r&soN_&7DCrH-?J=z&IW1u#zqx|z5@{kyA%KbeV$nlKGAk#wXrf0KP+cGzt+Y-X-p0L*It_@BaazAS>x>qQ_!V}eL(CALZG>z zVo`t-uaHt6$9Q^>-t60Sb-+Seln218!E`&nwBI$rK3LGN;1d~h>xY&uv`G2gIlgQd zJn-~>b6DL9nV3rxMHYOgKNee20rWm(MgS=OwPu~O1wpL0Y5+Rbu`wDWTDu2VhzS-K zNQlBloOTeEM3R{SY&g8@`kmJrr@MF|bHN&U`QU4%Cyy`gI$O1q@~!h=fyh5SIGGo~ z*Ruus7iCLR5=tjq681)Ehm-i z>-BH1#bJC~*1V1#5*ibwCh)7AYS=nKPW-DlQOdsru!JQUW#JLxvKkU<7%k~t+*6P2 z2H>ZT3qJX(B#dHq`h)VKRzt&f15h?_m#79#bVWo;m<@2>=zX6z@x`Dg!#A-Fx-ZSL zn{YFoy`j&*ET9^g9fNLL+LWfmJN0O00G(JL^Alb+^w?Ewn8|%^GE^< z+3<9;`nSkb4nwi&di;yjP!iJH-Rb`{X?C;SW4Y;&^e zvjcQS_m`v_#EIvV)6HQg(QbVw#tr9}RnFxTZ);bvFIrKttgcmQ*N@70jL3DH zI4<#GMdrojRuL^VsJ-?xZJTz=yOALk+3+S?nvB1~A0gXYT`Vki6^Yi@_>ZX5it#sB zK2{wyf1UOp4cr#&Zt@o2kK>O>Xci@*1N{ZaGswpZbO~M?iWaLf>24Cv*-u*s_kG24 ztOr%A8x=%ez)j$e-P4B0(BO+}9K!4%+*T_Y+CG{=a}8#$@?W;{se3QwSh}iMAq1;E zY1v2!_l>=c`#8iw_Bb?7*m7epeB_mGa`i)e=R<&LII#5S>;?4iQnKPB5F^x2_L5U+ zwtxC1@5xl}y*utNRJ4%t;Whk9#dosxCE#O$p>=UGDb0~Jvjs}w!DV1tC>4Tza`bzd z(tR>5U{iJEdNVRzy2?Bbor%VRubqKMm8^YP_7FY`w>T@%3 zubWbUKmgnDvi=!p>F=Xos^!K5!bYGSK1d*+5JYpp({>z?{hBl|ZEzJ0yWB7p*BSz((Fwu#uS^V3g3 z(>?+D5RM)f}}=^xo09|6ZJw+qFFwck74O*EmWY^KYKd-U)c`*`1{ z6jgwTrG@9|HDOlR{-rOQGUTgUG#>wA*H=I&j8P{>@o0E>L{&GR9ba)GsqGx-CT)+h z3_ULhu7c|G=X4{w>qc$Ro3-sBePFtS7DJ-a8vo`D^*G(SNz4f8_LKV4H8gZ%`HACd zv|M2wSF+1iQSUpw zd-2!`wP&O-=o#D?w>_pvVmQlVDy=xEx1`BINp9)ea602rWiA4D zy}0HFxPjA{X(%R1v^eJu7kX~MIUgo~cY}PO?WEE4RzCDM+7ca~nhX4yS}lducrNzF`a-VPZmZ(7BjxeZthZ)?n?NaQD4Wf`2Up zX2SL*=|Kqzv(_}QpoYjgvyt7=)AJM6Jl<8&#Y)ClQONBLBZquOaZ525GyPXRDl**F z4lGdyk8VH5F6#Bw)&cu8B`NDDhU?^oYotB}c{QFOic5x66Zh1{;mOyXtEaqe@!@a+ zh7DR{(*~_-NAJ6S5xr4iSyhEclS_EDb*HHsyOkSgZMGM7$EgY%M}6x2x} zW)Yx;EzI|V@m2}XYmjI6y{aZ!;?yULuEI%wjK)wHd1006HCHF-e!J4?1}4YFR1D*E zJvilN%8_OEWpppNb3|`H6knx)`XCQ8fu%R6}cli z24y7q9x;AZ3JMWbDh$o#bgi#NkgL;M?DbSVf?kM`EpV~>%K80|V}!)}RGDCoLUTv? z$No;3T&E}Xstk=f8(+;U!dM1|u(}9>C^b-Kq0jvfswgO(wVDl@u}I}p8T>AwZD7xd z>uo`LV#f(dL8MPKlfLB^!a5LI+~*p~0X55G(fLT4Pa@*0oZsPJ5|Yh?U1!oZmU9-5 zR*T&)&|M8Kpt;7vpUPi`Ce9lTM~?isa#;_RWyfwb4EtRg0$qle-t1uq<5HH>V~SST zCoTG>chRK^BFN>ZM&mk>6W5UkVH=PkAGSwRKL^_9)vqNZERU3tv0Qa{d@hZ&gQ)wy z@Ut2(`h3nCE@|=7iId}~^^Jy`Kh?dbX{V8z*sr;lluexb!IVt`Un>{wy#9YU9z@rc zZaW@*i_iqxp^1ZGF24r!ps;T9I39s;1gQDMk=msL!Z>5L$RJZJft1q9iwR)l`8<8$ zkVJVwHXU2(&NvHgTAUOkjR;GfTTId?PXBzt+#}8`&A}^Syt`5LWiVY{?#>K@XQbD$ zM3t#JJyEfGNxy&wf@*$}NDch(f128F_MhsD9(z}qe>Vp9R_A#GX~BeKPn2tipO#6( z1vmX^H<*~b^M{&$-({s$gXhJ`-6{&bWlY%cq3n*jveeNtd^4DT|3p?y9iQ&~B~#Em z@KJ3%1kXUbdIGM8i??xZr*YyhnSYw7*?l`2y-;sq5Lwo{2rQm z#3i1x7j}|UR+p#t46z^?yfq+jKouDd8}McCzmE&uSM^(3e4XQy!khigecWC2P_hKK zXpsY}-gwEh{tfWB0S*`Gr^aLPIt8@TpU8ysY=LBYph}1!l2kaNP(M(rY;n>O-RdD^ ztSB(r<{w6_sn$c-J>Ppef8ZEQ=^1gU7w=nN1TY2kSL}Z|CD`=Jq2cQhsTgD}&3H_l z#a-1(Pj>ZkA1#kE_%sl8&$puAV##fV;eEA1;N>DqP0cI5KQiN@%h1pOnHANZtRDEn z)R#&qwP^pfz9p~A!RaM;cK()|`@XAAa%)N`$wep>%QF=VNM%T&>3i!=0~OD?3Tc}8 zr+vHr5KEd)w^PqPERWgCziQmw=`pOW*tr&IPkJV-h+=JLvh?ZzN-Li=dW;pX{C6dQ zFmYLGBh&5~HIKa!Yhgz??uVZkMdlqYBg7{+q(Oq)T)|>Ig2f|E?To6o95!f zx?Rtf@O}s|uh3jRknGHBO)e^& zn29j{ZI6zKSv$c?$bM$a@{|^|X+hNe()HD9a1P6P^ zf*=rvQEI{Lo)Hy@2Qqa=2=u9{+lVnxuFn&wxFSPliExk(cGAc9zr=!(0=b*5 zq*YhUSaP2Mk%_L;9QR(*c1(rD)T~x+bWZHp-V{^2i{3Aow*Yp`Y=URl;bzk5<;Ev< z@6~>8Ic$l|Zj}1=z#lT+0|Tv9!O{R>5V&ve6DG8G4z^7m4(O@p$}?Cw<^CkHG5nzK zUG7AFyP|hOPuZa~V&!V#YN#keW>&N#^7e??f26~0te7)eRiOAa!Ork8|*y%eve9{0!KEQjw`YR;__bl=!cQv;I zE*CQoYJNb%d;h>Z;~e)BIt@~}(?5^Y*RrhtMP72n<6P`laR=kMK)^vas7el}t25u@ z-qAy|DA8Rh$nZrH0zKHvuSIeB_}&9sSTW=iAwn&<`2zqI?Y*Al(p(;rpR_W3Np0WQ zR39T48nbw72LnNE?mUKAGhL^r$iviFZsWW%oTiR6_5f`HFo2F3{rt8kNsCzGZFojA0h<&_wy73q4l+an6iwv;kOaIidE&m+ z2x8!(GE|Gda`T()WC)_EMI+Z)c*O}J=qu#CS|Nc)#0-zxTmUf&aV7gXX(*Bn#Fk<}0 zY%tv#+}1f>RyPaa^!KX!>lEzq+L3! z@K@x|i0m<&AH`)$fic)?Y+2>%qfgDBrjpnc)!5=>;qI*$*>n=HtZoh-a^*A}GqBCl zey14ifu5>PL!)PlYQo?q~f#N%eWYUy zSQTyQ3rRGu!Iw={YrkrSy4BTL-l<%5LNyz>Yk;`BCtsU>JjUlHCzAC<6|-7q`i3%! ziZjM~5!HFVpGx*PLK{P56k@tMPZ-tISe<5Ov|0q^8DuNF2|}*+Yjtbv{KF$4=wv*% zWiL?qp$(t2|Nl-gGp>0Z6omyem%G>5<gUi0g3ei<%7~ z0L!jTQf!LqGwBp)$%7=0CC+pj^Cjiw+yoNpXvOpL9o6)RYvHH;&is=<>U0bbeOzVs zk?;<|5B$gHptS2eEm;_SJHi&Sn44Mo6Zx!BayH{!Me#5G6dV8w;ex=Afr?mbH6I&O z?-*=E+%dWATLraQQY5G6QR22U)~jC7C37OCCYK2y(pbK=K)OE@>6A#lVH&|wtIl&$ z8luhATrDaEt0a|cSgWJ7Z5;$TIq&l0->I|_(wSnBXoJ9drwcj##ALD#_0ols7l;JN zDN87d(VX;$&wxwNd`F}+9BOZccR25}b9m9BZbZWq@!VW3>nA91@UBZWarUPoI-j03 z_e;r;NF*uXACY}GeHVM@F)|@55tppP?dWhBeKoF&eBJ2uJ^pjg;81u*U4=h@?Y4~l znQ%}=&6-y_^Is1a(7-W=UVe(%ernWcuh) zo&T7A6(cQdo!lnX8LmsAg^vbDFHXP)e2b0gsQj)5h)-B4tM24u#L26dwKSoRVe!G7 z8_#g^*Vn(fx7Mrtki{aBV;Vl7BD}gYi#l)tI&YZy8Be)nxPHs`&Lv$X-o-(Scb0RW zzoY7Jphrc_j}u_7LAq0 zsfpse&2X~T*?HoVJIL;%lc+Epl)8WAU#G?!=kJg(HEbG{FHw#T<*aI!Gco3NE|@jv z2SByOr?!OBRF0fwo)#~%?81u>T`1Tn4d{%lraT+<+eN6{03MZdI9R|C(tb~Cr&$qx z-j6v=_~*lnhYJE|OqRG}urX$a*rK3X;`_I+l{JoSMPD90GRKUib{>aTU@4l~ z&;T6`Ao1G(H2UD@u`!k#YZyD{)Mo?uGTA4f%$PkDXuKO^y+Ma3|1IO-te?Fb`?5KP z7a(z80bps8y_r{o#IX$xK#oil_1Ok203}eclm99}&f1nUFoN%rw&I$hLIX%#{~f;P z*#gt(4rJEhF}@$6NY^OO_vHI7dN2$KIgQSiIo5M>zgZjx=Z{p>5PwA=-FIKK+PE7= z)DP(ak$6-uu6PC?HpOB7k{@5X^AsV9!No%$dUz$lDV@%Z`7Cz#GP)QS0?qlFGd#|n zg!MDIApA9wm7z7tSloV5Mm;A&p?;9X!cFM4`;p1{O>6C#Ppw3zGl?o| z3Wn~(%SUs~@2`3Itnz50)mkn4LiEzIy=QKkG`QiNJ666Ji%@!o#d1HQ!G}&)-2YEt z#zRG55pJUm?P=U6qd}!txa{A$nEAH?Zob9K4!&KYW9W-OesOw?={jlM zh5r+_Ww`Aa=!E2P0l3e~RwHtlZKa|PF6DQOaaS_XwbcD<^lf@vWx@;S{y9&c ziVo&3IAbMpS#Clp8$e}s`)hxM^97kuF&|Gapk*nC~RTFLf>AkC=ov+8|~5 zA|ENr{BCUpC;*L{jqLH#*4F+^_-MifkZCU-vqnHg83`67sIAPx)>e5olC1YKs7=me zU`RkklQIb|Q@7*oTW2WZb9?@RE=tNhM?I=$a_sVq^)_hUNlX_xd;OW>zmT<;$?cbg zEoBezGT2$yYPDf?YQ6^o866zg*Iv!;)eV%X(#PCCaKOC1kKUJU&#w!gXf1`OptrVK zUSIF`dxN=LlGC@j0DP*ok`9gqq%o$%M4hAN(M)%Ze^1-VCb?GK4xK#TfPHye++a-7 z)vkQ_t@&jhkCj-(jd40%~Cs+kAcqS zv2E!1Ys$ZM2>@?rw9QRZ>-!jIYQD4*K;8sTh__z*kK@ul?QQ68E5OElS)0w637(=7 z7l>_gNxph)mr8UntE5lijL?kF4B{I~O|$s92+nD8gat_?EVXbj+PX~gm*G(8h)||v*%a4SeXiTuF@6TfDPT#N zdZ4TnA3K*ix!DSOyP|_Bh)>h0W{4_gqZ4{c-Seu(Fe0@uNlfLjZk`d@HE};C>HTLb z-MmTy5*F0rYFz7;wb_WZ>68MQC3=cCbG`TFnlI)_##EThZ2CLn3Bs}B#T0mQc*(rV z(a@O&G?DBBppON`j@Pk5O`FX$o-Zy^2n!uxelxbFKqtq3j?HEi1>mcfSzPg^wxKq6 z@i!RU(h_6<7z6e_vG1R^*ZJ#zi5kC zf<}e7oa&7pcLH)~j1p~UzWyCjfrg~~B~;|QR?2ucV%zsT$5v7!x6JqsmFTyjf~DU+ zhFCG7!F?+svJ!Z{6{XpNis;BX`06Z5H^bXAtFr870*j-xPE`mMQlu&NlSM)$2b>B^ z1V*yVWeW9`C{3nGdIapvr!9y%%ETK`hM{l)8ykUTyTNChxh&yqke+z5?&%rh=Y;^0 zRE=(P(Z9AM2T^w>g5V;#sKLV0w@GXg?#)Q?&>%P8N7W%LTAWaLIh_4Bth&iqWMy6* zTZT35r!k0L{zW?=*MsF7z+4B-7~H+Is)6Q*v4qX@D>e36aprPb7l9e>maf-W@>*?* zPMzCxpY7liWc1f{%C=r>7kr~yur|Eomb*@XDLHT*a}W{7VMslc=PtLDeh+Rs2%I&N z4;)qmoxgJgodGDOdSNML>c%D#zobOhvCLPP$)fhhUH^kJ#=&g(x&+kfsGWJn4jF6 zIfUaeEI=%U?bn*IE-5}qfB2%CdQG+h-aJ{)YADkEZ_oJ&CD#i4u;Nw5kAO(EExns(pV{CYMGr03Q<0=I@+WPpN zRMOLIi;dzk?L~}T`tGW1>Cl^ir!=aj6IWxp-E8O6(!A!^1%J4AtSP{X50QDSHDI3G z@4KQTQHU|8gWLRId>E0SGjoCwGe)*s%JfQMymBXsvakZTu#>q{P&~P!g8c|MgBZMh zslb&vyswrMHm1^_hB*c@8=QiOHTXRtR5y%|a@S)2)eB9EL+JV7ZlyDs!FUmVCwqaQ zzaQNw#+dzYw!v?V5xq^PVN8W>V<|D5DGwj$nnQV{VM5cBKMQQy6)_N4)7J^B0K!K*dy$xtWUks;DnNoGw1b|8wzS3M}&9grZ)=VCHu7|5Sx97UgdO z@&E1_e*pmcQZ*eME|UbaK|dXF|JNSRYcp2zTtY&z7Nrn&1y)e-B0gbs!5jnFh{}k( zKc1`{aRTM}1*xO4=s$44xQt?6P5vUHbn71>Cg+q(D+hcn9p1>ilul=xgAp;Nmr2zGh3}N>eCXNq< zGsxJ&7z4HSucO5Od%Tp3Kqin}p(ZtV4}bxJ6&X^^(N;~ZkRnr zH!;&bG09tGv6hv-9=mA9SH>DGhm_28R6v{|4qaIXDqB$Z_jlb0diE$&hmaA%3r8gs za;E(=`Z>^acx2>C8jI1*)w5mgWKT<)o*}0?%ncoo-i1A5wgn`JX z>jlK&d_L!MP*Q7S>-T5ozetqNVq$4>d4i8FCTTp?;7i3JPuF4Z7IxYm4wxYP zlkC5q=To5)zL^FiM!bV9{bBzvut9c_H@8W>9hp;A#eH^+@n%`?b+m4wxTF_(>Rr9@aCe(W$ASKDv!9G={sj8}_Gk^zOp+8Q z)lQy4JVQW0zY-HJERs7#9n>e=E76DL?zI+3BP)>9wxFJsTue|ZEiaKxB9~cSNl&tD zGj=g4nsQ9Tj>)sBy1f$z2pUXl2wT1`%h%l~ZO|*kT6wSQ*$QEnn@e?sr?W096qz$@ z=Da$FzVgt%{kE8r!`<4W3H_J5VK=01W4QbGzr2=_(O5E2BXH$E)&mcs)E9wi3x?H? zGdr1zZSKBaU(MT~5RqEfcCJFHJ4736=O(-x)nn=?5D+k(F@6U3wWLmn79EFw8oR`} z7AJmhw<<(BogJgLTChj25&lsZmNe>Z8eM}do7r}9TwNzF;q+(L8oS_LPJ2=MfLZgb zS=EvI{89h{ikI;hB;@88`y`f@Ky<*&sGt@o;>rC0lk+8_J*tF7toen^+Rso2ol6=n zuKd`++84UskZIr(N=&M$%`L^naJG5%fIU+G!5smw6JplF8F-ky$r$VH@8>b)f|n?* zg`(IY6NKjd7z=v~TsH8zUr9@$8uHwy(*!(fWkI-RCT?sF;yW^ZYC1JDV&=r>Y?F z-s0W{dd^s+*<@UQBqvrE6Vd@PFc1zOZy|q%&Nlj=SqS{Uvk=8~39s@0I|==tw!Q+a zjb?2-MT)gJ1xj%#?heHriWYY$P~6?UIK|!FU5gf{xH}Xp1W0j*KcR2mp7Wi5u3VeR zZgzL(*=HWPXOf$LbXvWlc5vgz$;mkqBCI)yS@o>gY_^WGtfjzg?Rmbhc~C^S#d2dv zl2wBb$!S=#&ZH5DP#xwi83G#hJu z-P{*?18uv7__=8i*#IV(-sb9x7z)M_MO_VpSxRP?*7)1Tj`k2Xe3%1w+VxoWrgzFY z@M1H?TgK*r$MVu5|~IhFjJo<`2zNBQ5@AdAC!)7r$Vn0G5HOZ7EH;nfc z&>ruWVE3MY!I=r|sq1fSlPvRiB>(gf?$6K%lYr`@!$@Z*u80dvioBr_YkLy&*7AuaM*;%BhLws)ads)031$O7}9JO z0Xi`-L-GdSDVy5{nvA{panzV+)697~h=>J&NPQzyO8JxkS`{ipsQ=1|cC$zz z@GT{}Wc)`*B^{$?Ft<=_dVzqpp*2{@2^-1DDfxyC&XEbtzfQK15MNGD>q;*z;sa%h z==Jd^fN13mcn6jeq{?`gmIei>j@ZSzWtORy!NuAEZM$AS-L(=fFAN^6zt&)4{8l`s zw={1nvx@ROdbFICHQzsJo?{EV!=RC>4pLJr5v0S=&Nnzdawh(tm_PTB_}57+=aJ{+ zt1B}3y$oZPP`zSjkx=0K@^VtE_yg-37UY;Jn;u6@Fr{PwMQ!n3WW?lIcyr()b#j8b z-OMSHjsVyRl^@PoUPMxxsD5i{ITHQxtJy+qI5+Clu&vJje8MX{)E1^0l3s%hjQfiT3jkn!j63EDOTN<_I!^0>?yO*+Uk)45 z=`T7RZ1K_=7V{B-VGBrwFT70Ka0u%?5~?veLww1|aDh3h=U&7W zB9WmgsJy68gmAsM!2;^8`)Fl%UEd4Y)^WysvQnZSPQMJ|Q_NTDK9`}8pjDOSwXM<# zkJ9+g&<-O&lCMzos0@-?~7G$w&&HNS1=7;@EOM>UL)#hCJ}R{AEmVQupfT zUXf=ARXyv<$E`;^Ymtccr%9KboKF;XSOJip9D{q}exeu!2R5Pt-@atbinK!o)+>o7 z8j#2H(bUGzIZMLNP$;STr##5Vr||j%S)9i5`ciA>p~Tr~7RtBp>{fh19_Tljr%9UY zpVh5!!S*I;h81t-5p+6*H2y8@Ao+?nyiY+$002p10AOP+ARqv)0H7enuX?iR-&p^t zV(PwPtgECEZt~1_QKs;9T^jHsP19>%C?VRe`Z46|RoCTrPm!j^{4M>?YFL*Gs)wo? zL1-Ob^K{Z`Pw;zfp9k;N;;?}zG6aUNPgw*yK~(=Hc|N-btf~6Y;Jc&qyB<|))@zTKnojmpc!G1ld{4XaSlUn#6_&>0NsW@O%J^*;K_gHAw_2863k_j)}@I z8?IY0|cfcd0-0>p}5MkGo*7;$z8IKDT=HK#~SNEGEM@gd5k>RhV zQS^_9@nR-%#VmRyg5ZcIym!ZDgpRhn%+lhJFUy7HIYf?s%c5gn)nH@wDvaYL_=wM2 z=uamv1K@p8;h&9__NW~2rxDiOJ=bfQ?;+o0i(!hX`ZT0&7ySC~`Qg8!pFaFRd-e=K z0tFCp`%-~65c+-ICz>(mlR2A{H^=&O5z+$ul90E_&BuAL;SwQ^jR~795`el%!?}N_J#|KcStkp#5p%SAmU8jJ z8`K+44zEfmD%1a~$1KX8hfDnR4U8C5h+yjIi5J2x|HbCl;3q3znt$d0Tp00KSf9-Z zmnFgbaoB->Tbo-<`niKG>R5=V`1Kg{*UPX4hJ3Sa;7tK`c9uH{eB#x6BXw1Mc;pvP z&042nOrv0j^PYu2T!>1#oqM@#7)}qZF0q3E1rrf8-<_whjPT&zdIN4J>w9oJ z+ly&|l0r}-db^xlx;h-7%&}tNTfVMXA`$?J6jkkvi%fyy(07?)rjuh8u)a8khdjH2 z*YV4`N4Dw~dPdY*yDvf?ocx?u#dx|hYs$w#hMUOgN|0(?JCvFxi9q8u5ULo7R-#fmV^;4rb2;^xZ2U?QJ_AcdDb&@N?of{6YFjsv z)48R{A%yx=0!iKXtmOQ)Rm-*$3eO4dtS*-cI`7zND=HVw!JgMBflJ1&tJig_RpBQ@ zREoc(UX~!S%d7K=14ateqg_hfaVEcNvCX1U=-NKG{1VkPw@;=rPN+;F>Zzj!m*sP0 zm*6fjK)R$sx0z{bEJ3_dR+ZvHfU}7^c8Cc{MS|PBGxE2lm>h7`!bqFlmN}G-gFciA zdWxaa?}0O?`@0C&{^sxEgQvKA=98C$2H{km>g0KXSJUe-z7eUhov|CQEK`%G6^60g zHDCY$V`IQ~FJQ*pH=Brlhw!~;xO;XdHfd!#S$%K$l> zd9)54pdluq1&9(&?pJ%jDH?`?aSmT-0P=&d^IaCmsEpr6i-mLi=+okm`l_N+Q&v`J zS6A=1!n~Y&S1XVKWK`P6hkmP4Q1 zn7dftCa>RRaqzCtSCzH@dfHBFaGn`X<>sEpHO@8;c22gAJZAM8r1=pboPu1`ISM%I;1r_JAA$Y$Wz&cQqN^w?m-0l@-z#)WWEIKRi|ElTBurDyK-x zB|oC8KK|sn<)biLYOq|o_)6?<1^Z727lYBu{h_ibLm~bMQhZR;USQ+3fPJExi)=;= zrE)=9#g~6@Hp743B?tQR-+p|%Eu{<`hP_3LCmVbvq8$OI(7Mbvj9dR465CItW%sj8 ze;x!La+cJgIRsduAH+2y97@Bi6c(BMDuP}FD!;i@`WXxtY;vJ{uPvN z5BfW7?1o80YKPl84@jr!$9Po8B`5bE=9X~b6TjY->CbE>V?Qog?o{x$?RyfQz6IW% zHk(sM_}T-3r{?IaxKJj;co+6o@*qZ@v18kZ^;mJ!`_qp7rd{N+`_||#p{A{$6ICT+ z$?mhct)FcE@xz{nd}BKrWa+!y2&=gYbruQU54~T51EY<<&`Q6dzNwJo)SHGzbC#wX z558usT3e5qF-(Y@l>|E{j93YrqZ13hlP|mn!h%@-{$as#lA`a0X{6a#?6Y^FUw~cO z!KVTh(Ig_O6n(CCr@e-i(oK&-$8W1S5?~han`!~JLQNI`gkE(6V=5hUKU?)yCrFo# zaEUkc4_@a}Wn(2mhJtwSU)=HVN)z{O`9+>)x?L-?hVpw)J0KWL_*plwm+~yVn9GKq zL06!Pu{T8pZVo$XH_;Dd>;BmIVyH$`R!2}lvUyW`PXwC>x4xt-=nsCUdx7x8CYika z)Cw@ktJN0`LoKDZqZThaj%G!>d*i~TqlRh6o$YA;A=gj@E3y69t`O5W4R`Xvtm>0#SDW^RSbaa^?U&XhB`-gI!0N>UDQ#Pbj_u z7(63G55Z4`-xFsCX(GZJN#)8?383OY1$LoHd^mZ)h$Lr?K5La8?QnbF0)S6|BAQf| zA1_ua6FFCRe>_ho&GaU>=Iy}BZ`i?xo}!p*$!x#Iw0~iXAW3B^6e8(fsQw$&HGujz zFFWZ=^@QoRr*3{Y_sZFQ-_{AS@Us;JvIbrO{lLL7V+6+-$!k_za6k;FZz9P)w`1-v z1e)8_v$t#yNGQiDD(C9$Y?PdpoIH=qX!q3@)1pXLAcqR8wA|w0?|kzc$&vpN?V0e; zy+{4d{UCwwaAGGmJVslzzEhu^5e4Tk1!R}W!hK+(J4X)m?-2|c#A19Wo@SaCr1`R% zEH4aok}l&_v;##*0_LmJp`U2yU!`+#<+bp}_K?tAf~-xdT3Uv_My5L6o>B^B>P8=$ zk9e7KaOE8^N90kSG4J3E<|TzdkW9 zx57mFw;lgg={&<|0k#~eOxI~O9_DzVMMz&m0foF@43-0D^F1&|#Jo?b96D}ZQ3{b8 zFSrM;shVv-jiLI>n|~x$QRu(St&9@Wu0%kA>tW*1rGz|D?o$_Z`93%s-`tj?r2w| zSR~qnak>hgHu;B1*phN>;5H)N9Lhpx0ZN+29B--Ls`RyC)$d3WEWbY)f~drQW_qUm!7-RO=Hl}3-Z=g_|sDG`vDYyh4;^atdgU)tdg*jr$XHVCOIUN z)cB`2%s626fjB^xrz>@Sf&r`p{g+QZo;4N%ZLO)nQhgHWvfMl<5LMdx_=5OQMr$CP zmP&PJL<+aECKLE=Z8VAPGHI>UozTd01pKo0ER zCw!8CPuv4UTz|{>-*Nh9rw<=Q27iki{NMUNHJi-dXfO@4G$%JAx*^@H+Z!WZ3NTUR zqjY1#%@p#=+Nkvf31sqUg*%kQZ;9I0Noe}tNwXLWNHp;K^(RN1 zhJ!+d+>j`{CxK2NhVBw~w zYc+^faVp6HgT=BSUt-Fj;T>of8RSlXb$+t$?X>&usG8)7sh;x(?d5#O9o18=?s0dr z1yt^>biXa-Sq#{YP@9Hh%J0|MUHOg8r#+TJ>3=E3KeGBc=^oH0%W*o(+vhZV^yzGwse4BnqF}P`ws4M z@y)e23LUTBzjFPz^7G%?|5SXOB#h8Wk7hxz>Ulk8a*fTRk#i0ZklV%p3-aY?h}|cr zLjiA>c)o!32%mwh5WEwep4$)E)YHW!4PsrCW){cd4v^>GrI63v`X_j(vg`2Q<^Imsl$`|E-q=Wo_ zb+t43f4=h{JA8V2<+wJyLO<%r8>VuY2)2YT(k<4g*%grrhzs9i1O&Rj@D<56^x#Rb z{gBlSG00LiEmV~?T7PB)syXN;9EN{=ml>I4TH+BO)^fQ%fen0awqKcVc^K(P@gcG5 zW$Zba7v$vyd)}9lh+B51sgahjX@=Q`k%n*6^xdoW{AceHw;dOVyg?&0OFR_6C#{)x zK5lPeVaCTrB>{EnXGFAxm83Nb!vqqwoVM$IbRPnq262=wK`XRhOE7I20xo$0i}b|7 z`%!Xxa!}b_uU{bMo&x5H$OIn^;LG;j+&t88peNTIV;5E7+p1(V%p|jT9H(|GjIdeMSNf za6lRDL;gcKOwJ5)vb?gk?&x6Ylg+~r2TaF;tvP(lxqi0m0KRoBDX^EILWU_SJa88# zRQS@sWBSC^e;HxDM*ux0+;O7Rtpl|~WE88M$VDvLDk-ce5)xuwnzks zru)b}f=l7kvWj&`)m!6fO#Fh>AG08^FaV%-?}Y#pK@93$^RDIyDN#rcF}gH89CllA z%-IJwt|<-^Vl#RiW8}ddSCk9F6V}g(CH;aXp^>LZ`Yl9DC2l#@EHFQO`1{Qlq0bDt zKP}U?ZrG%#MswWG(CkUCSKtNb@;)f)OFH4pZ6!vF+bS5xEq;IvQ?MY5m}=TMj<-aU z;_HFCA1Wf-l(N%T%qnfArm_+DszeKO%3YB?Y!LQ$%GG^2 zJ4{4RHaDjcE%600T*hI`uM2xg;{(~uXWx)OIU-dBA@YbJ7QR8)8d+DtG9^hy5bUlI z5V%;$?%s%N;&hw1QYX^{*jCd(dqIrS>sw_5L-L$?whz1{qtKDn&$4?LAt9CDdN$(g zVVJ)?+m+MHxfRYf+D5+T40EY4Px)5=G~SahRI@;y`;8UN9%VifUw+-VPG)yMz8`7w zWp}RA*Jfp|V2!Uyc5qX}n3%SfrOc3UlaUj(q_Uo|uVt)-M?*uKa6oY`K6o=>&5-Pl zXBQ+vgaCj6#6WB{!uHc6f@}n0NHHM-Y=gJ$}KI1=LdH?wVT>tntAbAQ)4F6;C(C@F-xpDo8gY(vuyTYH9g_p{q zP2pygU8F5-zhOIr6|3&aDz9CRa`5c6|1rM=tMwEIXC!Q^w!Gkyu*GuXqfY(FceUHt z^>jrI!+)-q!3JQ&@nI06%KYLP0nz#ShZ~j&z=tXh);Ez&w4Q}SY1PvjnRrgM%<++~ zWoxd|C5saecSGbo=#?6-es5_dm6f5sCk-F~zJKp*uwUI=Xt3njO-r8^F`fDfDK}h@-O%{?v2^KWD zWH+M>SmegW#+;F39ysIu~YS_|xt%l0O<|xg*HdCu>KHnVq8wBrt z%+{A6cEJP#y2liBuGZ6 z{x2ts`$vf&?=4y?*LA7P4$0=~F~B3~_`&G?{n~y#S_c^;_0#8Ta(6IyXH#077>f&G$jSP+ z>O7ObxFbZ(K=LRur|;A|(_x&M2NQc4+q5u*+ZJizL~^)n1jgJJAXQRm?LM9}#VxJR zzz}>>H9=2lbBmn&Ss!E`X6t1>=6W$TmqtT-f}Olsvfu>rUvJeKXvc=1mhxM(QCK#Mm-m05)Sh)pSK<_^0+P%(G|e z&xE%KL&n6gh2i(9n2WfqpP|bpwGq)+M4xoEcNH*yB6XH*+RxwnfHbk;yiOC87cbCU z`VczoZfNcXQdj(f%?CVgJYYvQ=bs~Q&w=5Gr<&3F_64nTkz5pX1k?%O%ZL zPvU4KvvcRa1A;@8(^|sjcJlMJu{R+OdvxyUb%dGs_JfI7jzRCJlMp-8I580Py@-Vx z193%PayqWZzwG1BCA}#hDVyqt!)iUgW49{ko^52FZX45%K=VTpcM+|Dyq||JD(@8+ zRn)lZcljS(H!1s4(4@HC?r8BlVA)=&>Z-F}6+XLs;EhUqH%#hnzS&&J@#sCZFA^;3 z&cN$AQaWrL##HcHyU2xYk?}@)w$9p7N?dr4!q~2g2$65B&}K`r`EA%bv+Eo^&hV-BB5eF3 zz0s8zz~PO3^$jiI;QFGz%K#sbyQOdK0t)s;O{TLO-)Aclob|JZS3GSJfPKl3D20t^ zU7Vr$;2$%Ys+0hs5}vcb8jI8R6f4z$s^}64m!)t;EJ-RQ+tmGe5LBvSXmVNxfwHTi zguK{H$`;lOr>-&X4{s1}g1@~T!y(2n{I=0K`_fH(C$ulS-SBbFuC2|KUFbC-!Rr6P&zoi4*I2>=Rq&^(w7vspYnU>(SI#-BwC}L{6ze(A zHyrDgao@YG))n{c)0MUN(wGTNt@Bv3x=g-KQYAf1T7IP_zf<7^eBZFsCUm%Q#AQXF zUP*)iH&C(wv|XbO3q?Z#p=SKDib_9u$2G#e%LtuoZe<>{Gq77=DER0VJX)di z61l~<^MGi1ul&s+(TLX#i4vxpRzI!dYaN{&+j?1z9!jD*k!FnW{js0qIUZLizBf5V zAjBzhk?F=dVia2V*ByXIZ_Fax9Bqa>bpU}ty;zrk0NMHhtm2CmIW(j;+wn#hUS65j zG6UWhnkEU293EFW*S!pHr@u zv(y}iQC2Tkm4r>Xxx5VOZJM8cTDvqd%4j^}vzKv|2u>6E)LIqH0cLE1x6t3c(jviQks3ayWuEX%!Q7$>jZK07kq2e(5W;Tl2$@G>n3%z-P z?Z#L~1iG#bd4xX_CFer4HFD&1kLF=G`eLwb>E(jv%<5c>cTc?tV#se|0A!-Vb<9g! z_atWdhBUr;j|!9@Zc!UT2I;5ST*aqE54XtdI4($@yJ^plorC}F<>w`v=ZDlFz_EUy z?%=OkKC^u>vQRNbnBIvDjGLTF6T$XZmKbRz(ytg&!OJyE6i+G4N1o|FEG+Ss+Z&fo z4b0dEf`_;A68B2P?7>CAFuPjRH@Sm3{D$}pEB)JvD$o5iYfY=&%aG%Wi?if=e%*^N zp^_6q;;jQ1F*9jpg-p<$>#b9ba!1)A1xt3SUU{m5h|Yo;6($((SJn3yeh%X@RIm821{8ND6pb(zpb_J_WbtMJIKn;WA!21OIk%#td{-+F=4t8vC{a7WxAYSwpDd*$R;~24!`?ukr z`#f8l_F3m=a&NNT@$MagL>&dB%Zi7Ej|zZj7E*3p_)_ry;M5TXDQzJ^OjMOXi2{*77J%cdLJ+gIRSUs$v8C{{WkI8Uz3U literal 0 HcmV?d00001 diff --git a/presentation/template/lato/LatoLatin-Bold.eot b/presentation/template/lato/LatoLatin-Bold.eot new file mode 100755 index 0000000000000000000000000000000000000000..d90b47b81e535e7980997fe57ac261509eca9964 GIT binary patch literal 68209 zcmZs>Wl$VU&^5ZaySo!0xNBJ4VR2hvad(HsU6SDL9wfmnkl-$hyGzjEF8QAK{qB!@ ztM2Kl>F!fqXZp`fO-;2sIvl_i4GsVYfCnG~0J!itNbvCRhzRfqaDXm&z<*E${Qv-p zlxYE=|H=LbsQ>`&|M-@j2)Y09|6kw(Q~~AyFM#X+q_ z3gw6(u+7abYN~S1dY*jSiFTVxB_vs9N*K-%GTZub~F0C4gO&sw5{N{G6KO#m=)$p4m<&#*5*I6dH7`m=-#z7N-%%1MJEq& zlFE2XeF)<*m`j-PeYf;0b_m#IzH3e z+EZf?9s76vFC?%+(BDI7Ei(TeSso99s?Y|9CC6CvEKU=;$b2J3T+-pMhA+^V2;os@ zhkropm8@1vl>(R28dB|o0j5v@$!xcr-O)u%UUCj%DwYaO6|8`AznMxo)P%bJ*SJgNBs#@{<;KSVgiA1 zIc!BN>lq74WK#M8T7z~QmioZH>!h5$DRRr}jDz`wH&np^qJOw@gioYt=||CMQK!m^ zerDUt44qyc_uhMzeJh-*%^1x;yr$5#K3+H08DD-T-8P&3MG-|Tb#Ci)Y|3=_l%)Cj zN2S6>p4S)n$923JlGzIjkGN}|HwU$ePu}$qV@|0yqSxRmZY6oj03OlHMnFPzGaGvA0eMfck1LvFW5}5Y zJ*i2|%3J?Nau_1c()ybX?ecsN%d-RV@TEl}zVH?N-IPeHXH+^J3Fc#0vxG~|CNW$c zDJXg$e5JnJ7oNf+K1?A&V?{Rx!9K0ogy-X2DG+U7p&a(Iir=APu6#I?QO5rQAUVN} z=@DL6TcEFP|9vk}mh{prGbVTC&SNfwPZ0;g()8C^&^9cfm(xMG@^c%r0Eiy>0tmUu zeN$Q|&ZO+yL6-_Z?s}S7eTdfnlM;(*s1dhd1s%N97&vXIXw=wU;;UZwnERt&`aX%j zP}LtduP@@&3rF)7u$SsXGK`P%%-0ZOEriFIc`!zWQ0%JMzOP49Z|v6W7tI#o3N{f$ zERZIr{IKFYQzs2)AOyOtpT;VvxziE^75WgawC4pYT5_)}v1`hbHZZliR=PfnaL3)r zX3PnxkNPR@X=h!R&DI7xN_u4k@j&$?)hW0n&K2_{L^_8X{&AlLMt+K^fy{BQ9~0W^ zTfmtQ+}lIfEn-VX0#F@?&m!&aRZsKrI_TXWof0QRh@(_qG2Qi_R(7c(1GosUsg0`> z|3&nc`90^?=}k&)qfd4u?0gVvOxK+bP|*n==l;sTVsdtiiTT!3q67_tHuEv%IxW%+ z$$#%Tm+v{fCDa&c?@(WrD|dzpU1%>Sl$59`;IA%zWm;41pcdNw9*(kWs;)>}st$Mc zOpuF6?_R!YV)&qL`Nek-rfL=jY#Vv=Qx!)>^mOc9u!HcY4IwFx=3~I2Ll_>M*}xd1vhf!<%spaeqZ;R5ECeMWH4)-c*Ks(R(ZN%hl zXFd;i!+8XYW+{BxBBt4#21Q?M5>TFI#8`oP)vqS`IIABb1F_LEm_9{wyg_s24bW~q zd+2s{*6cc#yQ}V^xtqHlCvY2yZLcpxu_>{VHgLdp|G1w~dPqTxp>!y=SaeU`q-%9> z85MiPQgPk_>Q`wUH2YP>AUyg8)y4_6rTGPs{wqxYV+0^y!dg{y=Wke=bsO(U$wQx$ z`?EeT1)9KWIJpCi$9T1qB*mn!U(v_#>+0)CBU|WMWtI#Rc_>dJHW zbxvWlnlESCig1k)Ci(}+3$NT#sK9Shph;`Ego{^XJ=9HjOXiACHz&*1kmzhq?AeJA z7@QAUZn#U^J~z86{-b2Jxbh0Z_a}v8SO;yE;l}nnjg(cpc>OU@k2`o*wYU*_>CL_yDl9r; zSqX^-%Ibb*NshO>QYs{C>cxZ~4d*3^VWT6=CsAEhx5RDfGM5$Qb}bhfLAV(iZGKvr zzET|BNeP$oSfl(V`(){~cE5`-<&ed0-9T$_Wb$u(%;d3}sMoF|X%u?5TXa*85bqRu#OK89)*7gP4wbi0OaTekR5fh~FI>m(S!@yZ% zsz3QkCw2WgIrX2rAdK)+W&S5_?^!+)19M`qz&pC2l(t293bf>lX50xcoR1AEY1#s7 z72#ZeDAzh_#(1bCWRzhZtgedDz4bj=y2;Qle9&vjFw;1Ji{iK=*zk9tv~#>k^mPC!XlUS4{bTX%gh9s@0@@$ea^IbEGKLYC!*8VECM zq4U#Ue{EQJJMAac0A8 z#4DmJJ>O}M6hTEeu)!kmHxBou)|Fh>7c*K6%_J7zIwVDsd5o~{uaol1d(KQtBAKAh zrPge$hZDF=h^^P^@QrA6dP4^aaMhzmARn@srX#n<9k6m2q{5-vQfNqyr`RhfXylN# zbIk_SFHXL-8xZN?{gY?DsPeZC``ggC1Y`ReC-mZTQbN@z2q;7QYxQ-+9Go2e{OXlKVfblg& z)8dlXRhTmIKK{&Gpj^%ve3$1(WaK2s3-_xvm8hP7ps? zQJzQQ7wPUIwS_-=2IjwC%af*r2Pxpc0^lxp2!qm)iCed^jX2V?=07KmkDTx@#Gk3y zFg4SNf63uAtFc>-my-NK=^3Ingt;bxm+4q8{yNxP{qvtjw#zW^+{4c@ z_Z(jC0!D*Q`2-PZaF;Zza+3baL%pDcb`W1gzLtZc6TuRc#Y|JYWO?RctV{Hj-CQUI zC}Fk$J~4oJV44r12L1NhRQ#3NwBoca7$Q^Pu&vlTqG#k5nlv8aV)pFgMl>kW5;qC= z)vM`JvEQ(LsFGJnnzW0qQ(>lbq0Ns+&j`pVoiXQ}$2&bqYLc^liDN`ipq_j7(;=X) z#DT5Ct3#_p+izs5Uds{gc0a#*vk#NSBC98l{#&5ODmUlim^3)71xx!F=dSC9cgxN$ zVn{k{ggpgK27E)92+7(8JQ4H2>#o`u^&0x_SUC2HuJp7kW%?jc^@hTGdutjPXgcA} zjk}t)ngeF}?^7sO5-d<#32!OVQ>GjiQYM_!7wlMP7wnKy7Od!TQ^x+gpDDEr zfId2LbUmFL2RbOE%apXT{Dk=C8#6Y)%30(TY&F}$unC@|(mnl~O+Oxga`m-=vVB;5 z68al5iLlACpFkn@;Oj3Roq7$L`aIzpO7m>qVMuB0pU}O0)ruk=n~;6ED00cIxa$_B z+0`(7!iw5r3xaM!!LF4q)IrvXx8+vB{Fh#sQQrw0I=|w4DS6+Qj3=4HraUkrdc>^LQ6}P1#E&&NV9tcX$c1Up&9A(4LT0yZJ=@ z^wcZ5hLFr~eUsg-(*irzZ`~c-m~O*X>;g|#5>9ZnGZD`oP07cWeT8wk9$9jUly%(a zKaT$>YKWAu)^Jn=Nk`%em4Md_A+HTIC|C{9Iiy-LQ7wrRC(n?g4cOCiq0Tv?WQoW& zolKdGH+O&x{^KY$G}W*;%qMfd;m9AM(M++be+HMieKjH6nadS6`hvN0IF@|h6hl9h zl(fNSB_n#`8h<8wpna7+P@^=D=-m-PGnhQ!;u=OMu-seZ?q%=7*c407u3_yf=jMdl zHreNKeLvD^dY15r9 zOhx-4X+ZA$udfW8{TW64Cjx-i0#?RIUzBI33##6AR%dr~ut_P1+^j8&?F z@t=haa&WYVMBHO#A5?=fm4003@g%Y z@X>1;bEAsA4PnO>L1Vd9$ps6N32wWuW+#b|!42+HEDV86TC$cW4};qVg5|3Qd@xqi zivAK6PWq*p1RZBL+F2Eb7lgmzcJ6OJFBCV)Cc0r2c^y#%aC&s4Iy#_sv7ya?bGcrQBpp$G{SG~n_Xa{rjv+tG$?vL z;NPFH=mE(j6PZm`-$opCJWI=L86u~hA!jRAZARscQ_HmIP>-8Sb5C~Cr~6+|z5h}g zFBs)S7cHF}gtZ-#3RUue8mvqmieE#|{+Wcy_a7pSel$|v#OEY9H{=a!U%`z^{DWS0Wp72RsvUfJB-=D<%_A&Evd`jo zG%d_3dm(o(hVd&0a#@mwc-v^1GEI_riH0#3rF%Yv) zba(x(YaIC7q7qyxA8=S4G|=b>sDEBVn%aE6@JMOM}I_5rC_Q&E;PG(a(KjQM=A;NOF<&q=(YA;-Ix$|;+9KozMvIj)x-6hu9{)D?JNh@8 zxR+jbax|J8Wh1=C^W*H<_g18>Q=_BO{(?XdB0FWZiCOZ)1`Qkfx|Y(uE~!^tSYPd7YQt>PGd|k0*blsgNr9q}IN92^V4P;LJ6h#$ zB7`d5sU)tI9hRSByEXy2R4|L6?J7}2z9%2d68(6`Wps*XZZMn(7+Rb_-WZIi5dQVE zx91D`Ahf@Ieq3oc%0PZBb#_lX%FR>_P8OD5;YFJ&@!aHlfR*BU9%(C2QR|*kowcK$ z5EZ9QlRmWo;10x7SH8Pr(d2xjSH+l5MERWC_1iDEq!`yLGEPC5DNgJBgP0M|?C}6o z-G|X@Tb*&Dc@FlwtdkAp1?`x)z<Zv28rsqJD#I814-vDCXQOD6gR6AmIy+^+`6woH$W%k-Pmgpht#sB- zfYs}~m355pua&_QKX_CgsuVo{ru|xkMtgiQk-;Hna)VQ^zZQ z*WH-@W+(ZmcX<@EXVmLp(_S-e7NJdn8!)QlKe#ipW%TV=XZyjlwJT`5BpBJ@05(UL zCQr}Fu@q)bX$iaDX^38C8l-w&A&Pmey}s=o&vo-t{bK0gq5f%j)X-;9L1+B_nbXu* zfAQuJ@$XYmk=7@en%40$R?y@}txWiqv!8X24t0vl$$y6G1l?tF5ex=lvtyN=_p0u5 zOB7Fhp++^B$rWdg+ZC=X6oFr3o4|r+14}qkYA_qNj+l=j8XKPR#!>2%KA1J~MGF-O zR*lru$-k$|jV6)5pN!<(;Jj#ND_th(k+7QmHyuhoo8pTdJzcDKEA_D- zFQeycB?DQky=r4WJzgIBad;SS>Yh3t3{|R^zqft_XUeXmG+Q1eXHg|)fpJA@b)Efo7E^5_RwZ*FI>JG#(9y-J8ca<*cbqiNa zfVIJ3+4yy;l@;G(F#RaL1Q zxq-S=55?`0;Kx_l5#?xlbBcI%Vf^qc4@cM?K@?)A%`Ljio?iqSdoih#xIGR1>pDg7 z-H5OWJ7P6(KY@f5x6yCee;+Y*@sV+qN%6wLx;)RP?S8y$%i5v^)Zs2X4*&`89Yh+U zDb00C&9f?1=Tef85TcAIwhJ1qNY8DQ8deOLp)kvGg^ji%r8GdbMS=Q&m7e^2iaMQQ zZ~UrO#l202Z-}m)oRT6+3MXUIIN`t2gyUveUdW?Ks$x=KjejS$u zJaTw}Ey`=QR=g!pOh_ma-;Bp^Q15RpW+|M-3Ij|w6q|$q*?k-6iL9<%(8yHF+aKU9 zBT+NP5%lw-^-(Dt4EKorf{8M~)!^kwNb#6_O$PL!k-~#Bwa?{bU`^8N?$1#^)yvZu^%kPR^27;dnr4QH+)m83 z;>^T^iUkGJ8QBZdz2SHB^VH}fiuQ=43gP0N+Nx(`ns0){WGWeChUeYNSNDl-+-Yf9*5j>;QB$5BRx7hbk>h1# zfVlsD|J+{--Tp2P++3wd8+f)To%2HmdL?Pi)PFy~Y(Sx%sg5Q|jkJrTe%@jNyG5BzCI-raz9ojd%n0BJemwd_U~-2AcZ0t1M;| z!B~xK`af|rR{rt(5{zGY6ZxZSYeGF98ObB2 zK&&`~#+oO~@U3;xyP_h55c{NqP{vY>mqhduNC-0MGi0@mZo=9dx&|gUQ$d{n4t{HNM)4{wp}1f z>3dwl#Qci(pChG|IU$qWM`K0zyw+Lu8${=dAEpb2gOBxVr69S&IE~iqAMWfVXkT=M zjsXS_S4nTWHz__O;hS1hJrowzLQQ4Jf$ucrLOZa?Zf?DGBDcjJRD2b&Q%HtB)nzDz|ZL3Ux z24w$-15?-ENC zJ4NFokX_WE6W@W2nm1KAtFY$%H_mE!x7)m|D5@{@)<FE>aHT!ayaXswR)t;=W{XfzbKjsCW? z2c&Vpp`>90B4Y`zmhI6jm)~YhNY34u=~hsyCm`7x4j#kJmew|fV1H>8o8P|zSGEs@ zef^v@;+QNaUY*q6L)~_m8kyM9*-ca)a0HFKA}}MFFCLy8TCtH!4Vnk0w0rDx?bn&L z3*V`usN&V6Aja-iOefm(-XqLc66fe@4}TwkoI-<=sEOtbN*}o8-SB>=8+o}aIrQ5` zV}IEx`j-Hr+AxbL6xhfC+|lEQ`2ZJ9f-=7_1`ZG*EMr!h-pRIxtt+`RoJiAwZv?Ib zJdnBZub`S?ffh>op~g19Wo8o0yccc_(g40MJ0n=;1#c#FsKC#R0#j4F(u&H0EV_E4 zYpUO{{jEgUOOH##WOr?B8c^+kX4Oi=qKGuqwre{y-npXL6Pi#SL{8d3&o7i0fk{RC z>a8lBmi*)5Jr`@vru3`iPW62XVz^jPT^in#EFHYYDm-^5d@Zk+OSg$j>92y zBw2VJIfzjP3aj@^Cea!e7}5`bg_OB7Tz=*w`UnIv;=K4CC5rDB#AQ%b5K~DE(7P4&t1in6!no&oCI~ z;TSKwnb~VfKM;dVB1!F%w>+Sv|4#EZav@<+Nv*{UV|1p?Lxu=C+Tt=~;o?+wrYEfpN{P z-`V9R`B4xQR%1sojfnAnX4O0Q&rV2u7hG=`k_HUBpJx~wVIG!8_gs6-9o`Tb#{=Su zT|$6TSFQNBA3=ZJt`KgR#UqbEOJNx^7e5v`B@|ar(swRP@2dQ*@JM&_Pc9_3{BRr1 zKE|?9rsVBBl_%)@d|xWKx&d3??*V7?oUi(|<8X1`KP&}F{*kc*?c&$+cvI{@|5FmT{Yc~xw2cEfPlbjoG%jhH{% zt!xrr$|LZ>LwH!E$G}Duw3_*X>*;wLQl>%DX^-fh2Pw;w9kF7P!3><&Qi8O-An&4o ztrsS>5!JlP?Cp~s(w4 z%fb_xl_sm4(&5wMoT%S-8{4*=(GgHQCT2O`Hj@l)D8Y!SFoG4KIFtU1Nm{t6Q|LKW zL!LN%&uzE~MV2Y(A!pI~>ei_Z#9OSxQ?;S5_}A;!0rH0g*3-)qUn}|7;;>5g=J?{n z$YVi2l^#bqpUfrw+I4_Y1q#;-#mwlm7`pH}A_suUAjr^T<};SUrQ;p{^r}wL0B#ev ztm5^@`B|Qw;+Uy5lk{@g*>@1W#Y(0zlMh}f!0e$cpRuZEVa%DOkQhX5ig$N)1Z^wO zu`)5onHeBpZ_g3$yU`ZGPYR(R33QYa$+Wl&9ouW@-t)BpK&`qF=5M&JdQ+F*PhG}- z5>$+(#_Ju?Tb5AU_Y_A4g^csRYx7LF@i#UPd|TdmcS9AI|A*y~g8-nKVrsl#s>2R& z_xqJAV6xLMd?}_pG>5E-ZpS~JAu1!%+z9~5CkL^-`JWa3k@jR245^tY^%DFiCE`Fq z>QQa~^Yo!{S=Me3=5V7?VMfk@2o{*M1yGLfl|6|8(s@2ebE|Q-q?YjQiKAK+9A)+%Eq*fW8ybOUNS9%(I|uRkez)sjgr(PgPfZkyl#v5dcc-dVsy7AdzI3@3Qu1}+Hrh)W&0zk z0yDx>%D$egQg>Y=fju>m5GKWAH^VX|D@+m*GZeTPfL-J-E@~wBHFAE7Q=}Nc9Akra zZ+VY9v}c;{{ady(o_cC-BDy&+-zpJC`ol1i%Kp=m21%n>pG#V;6 zdAY9C_vW!@pDvLoYX;2*Wgi#AYwVV_?M^BEd9|KeRQy9Fa}al;@D$bzToPZmfyQg# zrGUN{n*X%S%DQxY z^n4=#5nct3&Cjb6g&ygI^fAobCIM~6ZFzRHmwsg0LG_?+=FpodX#}mjz1eSU#`gK# z%E=Xe!C*bzccn(j0EIo9O9bRoT~XN_$!=N3vwGe$1oC#{S>>_{!T#&`!=i>%Ku)HFSv&rb=GSXXo= z3ZG8(<#x*nhk!Y$$Hv)yi$=Wvmg{D@ak-LE zE{fRRe%KjA=B(v6FN&&wGu|dr9R5pydd#gh^lFPdYS57LOnfvg{6_T1T_c~Qyr9MQ#ItpePGf>HW)3ugR_P<1C~2+ z+f%4O0dn1Oto0$SMc$3RF5-!_6~mA~vtUPD$f!J{G4clBE{W$_w&@>3+A_kUr>J)h zPQ3mV=7zxBL>D?r(yo&5>J522CfVs|X|KUY)V&pVc?HZ3X=k4PhmH71W)AFbddtxw zV$s1KY>^r7fA`+&f-PiMQm^0W2-!KN@B5R6=EUjBJ(EC`H8s~Sp=K@H1Pe}vb?jdQuETQGCP<=t z`HZFNtR3hxmSl-GsI+>S-H_%7I+zt>w6XIy0?)I|18sC&1chry#A+OdCR0*J`(ek{ zzpN+>#3eDg(u=qH2&STsQ(5JMtEel9fBrBSr!)J+gKi#-sq<%U;JZ`dMD!p6$xFq( zHHrGZ*!rAq6PR4o4PdDls`;Zk9uh0J!$Uq>{q}zIFbLHAy4?=H);NN9BmfTfY-~BU z1au27oXl8RsF#O#bV3&EpJAxBpN5HV_I2j9xnf^X zxi{{mt+W#kx(=^`MJW6-9}vyjQq)8XeZNv?Az(K(Fk(o0M3f9_CE!~|lQxO+yc!g> z%;3UM=TrQ&g2j$7(|Bg`#u__-J9kZ__>;_9nsVYg{&)BweqxyvUr$oZ-M@@NoFA^3 zcCk$Rg1>%!W?Xj?CPfEYJwnpK8SE{@IlV1`lR{z0ODk@1I~a5Y38=Fzyx8Ra)+#WP4VDEBQu+6)LAQ zzF{xr6A{Ki5N^uAqZO7vAC|iNQ)vGR(CK9jQK48heEH< zz25ac(X;@)IO#5ySwqkXv0{qswGgwnbk0N_B5nu|Ug*QhfH>PTwrohIa~ioGk8`MYu~8CV6%d=#g&>z56;;Ki zrlv&2c;>k*+e72m(oiA2Qp@U)LEVAY$?1V*59+i=CU?D?G@3Ajgz|34NdD zP-OGm*;Z76V>mt#-D@B+j5xNGagD=@ap%Cq}F2pm~CWiR597AQ>Iw)pD+76yn|;qgk5nv;H5Ow}gaClY2eyUqJX7}$ z4@s3`%+5s5W*tVdVZ$4;Eo6hS`Uw$A#8dao`*7i(y&T8YMl1aCGSF#Udr6|tX~GM{ z{VobMM@BmsP1l+MF)v1yA%ER^={_)Boyxs|e*!|SFs88xMgaaEIp=zC$9LR2$LXn! zGNaovXpwJjQ>Md@{dCzjcW{DgmEZRWT2G@lKR; z!dzA9Bo{8le2sYdDp`yFExbe$Kg3^sXUYy7jxxyBc~G5Al+=4mZ&mx^MZnxPif(*g zSi8z>;J6V9)Lq+gCnzxFG=TC@Yc$fgVa~-(gYvOvEb_)yE_}>_|B~I(nCQtNxZ5~I ze#PTRC(PW!c-T);TDFJ}(maadkmhLpTq*;ciRy0n zV>ZP4`FE}2vekYbBBWXnDr3SqVoa@W^N-cX{JQkC)YFIQ3^3%XT}_=W`SqrnXgtc0 zZd338C-vSfd-#+1lUBv8Z_@NF0b{z$?DHWaNmBlc`&yzs>a1?ChR3Rm&P0q-@NRCI+A^}42id0GDcmX! z+^m-`8#(yW2sy>zE}N8^Tkt1y5#XOa94~|_l~5G$jLF0|WFiE-Z_&6X@BM;r{>Aj5 zTv~0k1b93UHvH^k%pbk+{bBPovG6)vdjLhdml)NMjqLF`okBZB*$hK7u3Ez0wNSDn zam}OWNIZGUk-r{`+Bi$w$mR6svvR`Gp9|y`WCs@vJ!)J_dIDb-O|6B`^b;ypRu@8+ z&t+~obWoekZu9}GvKA7?ItmuGNMU*lnh(rDYQ|JsS>0qcW#L#mlu11fp!u zCQr_q3osTu&t7r#xs6h+6s6W}r>i2@J#MGn)h<5Rq7fVo>KNd~8dulH-67DxWnEPFh(dXJnSXyy#?{8)l=R=op&dkhRjcy$M zZ)@$BZf2|0{~i62$!N)Xql(CbDF><3Vjun3kH{m?5F zQCJAlo&TnTxPpVBW~Py%cZZ`ey062mlqb4uLZ8PVh1)~AfHp>sUl&4p5xb#*T