masterarbeit/dokumentation/evolution1d/gradient.gnuplot.fit.log

185 lines
5.0 KiB
Plaintext
Raw Permalink Normal View History

2017-10-24 11:22:20 +00:00
*******************************************************************************
Tue Oct 24 02:36:17 2017
FIT: data read from "gradient.csv" every ::1 using 2:5
format = x:z
#datapoints = 305
residuals are weighted equally (unit weight)
function used for fitting: f(x)
fitted parameters initialized with current variable values
Iteration 0
WSSR : 1.35967e+07 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.707243
initial set of free parameter values
a = 1
b = 1
After 4 iterations the fit converged.
final sum of squares of residuals : 773379
rel. change during last iteration : -8.7995e-07
degrees of freedom (FIT_NDF) : 303
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 50.5213
variance of residuals (reduced chisquare) = WSSR/ndf : 2552.4
Final set of parameters Asymptotic Standard Error
======================= ==========================
a = -3455.11 +/- 597.4 (17.29%)
b = 271.216 +/- 11.74 (4.33%)
correlation matrix of the fit parameters:
a b
a 1.000
b -0.969 1.000
*******************************************************************************
Tue Oct 24 02:36:17 2017
FIT: data read from "gradient.csv" every ::1 using 4:5
format = x:z
#datapoints = 305
residuals are weighted equally (unit weight)
function used for fitting: g(x)
fitted parameters initialized with current variable values
Iteration 0
WSSR : 1.3481e+07 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.974091
initial set of free parameter values
aa = 1
bb = 1
After 4 iterations the fit converged.
final sum of squares of residuals : 799152
rel. change during last iteration : -9.18053e-10
degrees of freedom (FIT_NDF) : 303
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 51.3562
variance of residuals (reduced chisquare) = WSSR/ndf : 2637.46
Final set of parameters Asymptotic Standard Error
======================= ==========================
aa = 647.632 +/- 136.2 (21.03%)
bb = -408.074 +/- 129.1 (31.63%)
correlation matrix of the fit parameters:
aa bb
aa 1.000
bb -1.000 1.000
*******************************************************************************
Tue Oct 24 02:36:17 2017
FIT: data read from "gradient.csv" every ::1 using 4:6
format = x:z
#datapoints = 305
residuals are weighted equally (unit weight)
function used for fitting: h(x)
fitted parameters initialized with current variable values
Iteration 0
WSSR : 1.4212e+07 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.974091
initial set of free parameter values
aaa = 1
bbb = 1
After 4 iterations the fit converged.
final sum of squares of residuals : 146702
rel. change during last iteration : -2.79543e-10
degrees of freedom (FIT_NDF) : 303
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 22.0038
variance of residuals (reduced chisquare) = WSSR/ndf : 484.166
Final set of parameters Asymptotic Standard Error
======================= ==========================
aaa = -20.6354 +/- 58.36 (282.8%)
bbb = 236.239 +/- 55.3 (23.41%)
correlation matrix of the fit parameters:
aaa bbb
aaa 1.000
bbb -1.000 1.000
*******************************************************************************
Tue Oct 24 02:36:17 2017
FIT: data read from "gradient.csv" every ::1 using 3:6
format = x:z
#datapoints = 305
residuals are weighted equally (unit weight)
function used for fitting: i(x)
fitted parameters initialized with current variable values
Iteration 0
WSSR : 1.43362e+07 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.707107
initial set of free parameter values
aaaa = 1
bbbb = 1
After 3 iterations the fit converged.
final sum of squares of residuals : 146763
rel. change during last iteration : -6.86135e-14
degrees of freedom (FIT_NDF) : 303
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 22.0083
variance of residuals (reduced chisquare) = WSSR/ndf : 484.366
Final set of parameters Asymptotic Standard Error
======================= ==========================
aaaa = 1.23966 +/- 4.167e+17 (3.362e+19%)
bbbb = 216.691 +/- 4.63e+14 (2.137e+14%)
correlation matrix of the fit parameters:
aaaa bbbb
aaaa 1.000
bbbb -1.000 1.000