masterarbeit/dokumentation/evolution1d/20171005-evolution1D_7x4_100Times.gnuplot.fit.log

139 lines
3.9 KiB
Plaintext
Raw Permalink Normal View History

2017-10-05 12:27:39 +00:00
*******************************************************************************
2017-10-24 11:22:20 +00:00
Tue Oct 24 02:24:04 2017
2017-10-05 12:27:39 +00:00
FIT: data read from "20171005-evolution1D_7x4_100Times.csv" every ::1 using 2:5
format = x:z
#datapoints = 100
residuals are weighted equally (unit weight)
function used for fitting: f(x)
fitted parameters initialized with current variable values
2017-10-24 11:22:20 +00:00
Iteration 0
WSSR : 4.20596e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.707197
initial set of free parameter values
a = 1
b = 1
2017-10-05 12:27:39 +00:00
After 5 iterations the fit converged.
final sum of squares of residuals : 161579
rel. change during last iteration : -1.2809e-09
degrees of freedom (FIT_NDF) : 98
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 40.6049
variance of residuals (reduced chisquare) = WSSR/ndf : 1648.76
Final set of parameters Asymptotic Standard Error
======================= ==========================
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
a = -3703.04 +/- 2343 (63.28%)
b = 260.954 +/- 37.51 (14.38%)
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
correlation matrix of the fit parameters:
2017-10-24 11:22:20 +00:00
a b
2017-10-05 12:27:39 +00:00
a 1.000
b -0.994 1.000
*******************************************************************************
2017-10-24 11:22:20 +00:00
Tue Oct 24 02:24:04 2017
2017-10-05 12:27:39 +00:00
FIT: data read from "20171005-evolution1D_7x4_100Times.csv" every ::1 using 4:5
format = x:z
#datapoints = 100
residuals are weighted equally (unit weight)
function used for fitting: g(x)
fitted parameters initialized with current variable values
2017-10-24 11:22:20 +00:00
Iteration 0
WSSR : 4.16946e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.963614
initial set of free parameter values
aa = 1
bb = 1
2017-10-05 12:27:39 +00:00
After 5 iterations the fit converged.
final sum of squares of residuals : 160881
rel. change during last iteration : -2.98408e-10
degrees of freedom (FIT_NDF) : 98
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 40.5172
variance of residuals (reduced chisquare) = WSSR/ndf : 1641.65
Final set of parameters Asymptotic Standard Error
======================= ==========================
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
aa = 1779.07 +/- 1039 (58.39%)
bb = -1445.03 +/- 961.8 (66.56%)
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
correlation matrix of the fit parameters:
2017-10-24 11:22:20 +00:00
aa bb
2017-10-05 12:27:39 +00:00
aa 1.000
bb -1.000 1.000
*******************************************************************************
2017-10-24 11:22:20 +00:00
Tue Oct 24 02:24:04 2017
2017-10-05 12:27:39 +00:00
FIT: data read from "20171005-evolution1D_7x4_100Times.csv" every ::1 using 4:6
format = x:z
#datapoints = 100
residuals are weighted equally (unit weight)
function used for fitting: h(x)
fitted parameters initialized with current variable values
2017-10-24 11:22:20 +00:00
Iteration 0
WSSR : 5.35889e+06 delta(WSSR)/WSSR : 0
delta(WSSR) : 0 limit for stopping : 1e-05
lambda : 0.963614
initial set of free parameter values
aaa = 1
bbb = 1
2017-10-05 12:27:39 +00:00
After 6 iterations the fit converged.
final sum of squares of residuals : 5.46947
rel. change during last iteration : -5.95966e-14
degrees of freedom (FIT_NDF) : 98
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.236243
variance of residuals (reduced chisquare) = WSSR/ndf : 0.0558109
Final set of parameters Asymptotic Standard Error
======================= ==========================
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
aaa = -3141.93 +/- 6.057 (0.1928%)
bbb = 3141.87 +/- 5.608 (0.1785%)
2017-10-24 11:22:20 +00:00
2017-10-05 12:27:39 +00:00
correlation matrix of the fit parameters:
2017-10-24 11:22:20 +00:00
aaa bbb
2017-10-05 12:27:39 +00:00
aaa 1.000
bbb -1.000 1.000