{-# LANGUAGE CPP, TemplateHaskell #-} ----------------------------------------------------------------------------- -- -- Module : Main -- Copyright : -- License : AllRightsReserved -- -- Maintainer : -- Stability : -- Portability : -- -- | -- ----------------------------------------------------------------------------- module Main ( main ) where import Control.Monad (unless) import Control.Parallel.Strategies import Control.DeepSeq import Data.List import System.Exit (exitFailure) import System.Environment import Test.QuickCheck.All (quickCheckAll) import qualified Data.ByteString.Char8 as B import Data.ByteString.Char8 (ByteString) import Control.Monad.Par.Scheds.Trace import qualified Data.Stream as S import Data.Either (lefts, rights) import Debug.Trace import qualified Data.Text as T import Data.Text.Encoding import Stream hiding (map) import qualified Data.Array.Accelerate as A -- change to Data.Array.Accelerate.CUDA as I and link accelerate-cuda to use GPU instead of CPU -- depends on accelerate-cuda package in cabal, which needs the installed CUDA-stuff form -- nVidia (nvcc, header-files, ...) and the propriatary driver import Data.Array.Accelerate.Interpreter as I type Matrix e = A.Array A.DIM2 e type Attr = Matrix A.Int8 -- Graph consists of a Vector denoting which colums of the matrix represents wich originating -- column in the global adjencency-matrix type Graph = (A.Vector A.Int8, Matrix A.Int8) -- Adjecency-Matrix type Adj = Matrix A.Int8 -- Vector of the Adjecency-Matrix type AdjV = A.Vector A.Int8 expand :: [Graph]-> Adj -> Attr ->[Graph] expand g a att = undefined -- constraint gets a Graph and an Attribute-Matrix and yields true, if the Graph still fulfills -- all constraints defined via the Attribute-Matrix. constraint :: Graph -> Attr -> Bool constraint g a = undefined -- addPoint gets a graph and a tuple of an adjecancy-Vector with an int wich column of the -- Adjacency-Matrix the Vector should represent to generate further Graphs addPoint :: Graph -> (Adj, Int) -> [Graph] addPoint g (a, n) = undefined -- addablePoints yields all valid addititonsto a Graph addablePoints :: Adj -> Graph-> [(Adj, Int)] addablePoints a g = undefined -- TODO: Give createGraph a presized Array and no dynamic [Int]. -- should be createGraph :: T.Text -> Either (Vector Int) T.Text createGraph :: T.Text -> Either [Int] T.Text createGraph input = createGraph' input (Left []) where createGraph' :: T.Text -> Either [Int] T.Text -> Either [Int] T.Text createGraph' a r | T.null a = r | otherwise = let next = (createGraph' (T.tail a) r) in case next of Left xs -> case T.head (traceEvent "parsing" a) of '0' -> Left $ traceEvent "parse-concat" 0:xs '1' -> Left $ traceEvent "parse-concat" 1:xs _ -> Right $ T.append (T.pack "cannot parse ") a Right errstr -> Right errstr emptyLine :: T.Text -> Bool emptyLine a | T.null a = True | otherwise = False emptyLog :: [T.Text] -> Bool emptyLog [] = True emptyLog a = False --emptyLine $ foldl True (&&) (map emptyLine a) -- TODO: implement calculation --doCalculation :: Matrix Int -> B.ByteString doCalculation a = B.pack $ (show a) ++ "\n" createOutput :: [[Int]] -> B.ByteString createOutput a = encodeUtf8 (createOutput' a) createOutput' :: [[Int]] -> T.Text createOutput' [a] = T.intercalate (T.singleton ',') (map (T.pack . show) a) createOutput' (a:as) = T.append (T.append (T.intercalate (T.singleton ',') (map (T.pack . show) a)) (T.singleton '\n')) (createOutput' as) showHelp = undefined infixl 1 +|| (+||) :: a -> Strategy a -> a a +|| b = a `using` b exeMain = do args <- getArgs input <- case args of ["--help"] -> showHelp ["-h"] -> showHelp [] -> error "Error: No filename or stdinput (-) given." [adj, attr] -> Prelude.mapM B.readFile [adj, attr] _ -> error "Wrong arguments given" -- read file and clean adjMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 (head input))) inputLines <- return $ length adjMat -- TODO: concat with foldl1' kills us later -> use presized/preallocated array so we -- dont copy that much lateron. Best would be Matrix Int -- unrefined_graph::[Either [Int] String] - [Int] is Adjacency-Line, String is parse-Error unrefined_graph <- return $ (map (traceEvent "mapping" . createGraph) adjMat) +|| (parBuffer 100 rdeepseq) --run parallel, evaluate fully --egraph <- return $ graphFolder unrefined_graph (graph, log, lines) <- return $ ((foldl1' ((traceEvent "concatenating graph") . (++)) (lefts unrefined_graph), -- concatenated graph traceEvent "concatenating log" T.intercalate (T.singleton '\n') (rights unrefined_graph), -- concat error-log traceEvent "getting length" length unrefined_graph) -- number of elements in graph -- in parallel `using` parTuple3 rseq rseq rseq) -- validate graph log <- return $ let l = traceEvent "first validation" length graph in if l /= lines*lines then T.append log $ T.pack $ "Lines dont match up. Read " ++ (show l) ++ " chars. Expected " ++ (show (lines*lines)) ++ " chars.\n" else log output <- return $ case emptyLine (traceEvent "last validation" log) of True -> doCalculation $ graph --A.fromList (A.Z A.:. lines A.:. lines) graph _ -> encodeUtf8 $ T.append (T.append (T.pack "Error detected:\n") log) (T.pack "\n\n") B.putStr output -- Entry point for unit tests. testMain = do allPass <- $quickCheckAll -- Run QuickCheck on all prop_ functions unless allPass exitFailure -- This is a clunky, but portable, way to use the same Main module file -- for both an application and for unit tests. -- MAIN_FUNCTION is preprocessor macro set to exeMain or testMain. -- That way we can use the same file for both an application and for tests. #ifndef MAIN_FUNCTION #define MAIN_FUNCTION exeMain #endif main = MAIN_FUNCTION