data Graph nutzt weitere bereits definierte Typen, Pseudocode in references

This commit is contained in:
tpajenka 2013-11-24 19:04:15 +01:00
parent 5d66fb1310
commit 1a13b62cc4
3 changed files with 112 additions and 7 deletions

Binary file not shown.

View File

@ -0,0 +1,103 @@
\documentclass[11pt,a4paper]{scrartcl}
\usepackage[ngerman]{babel} % Deutsches Wörterbuch usw.
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{times} % Skalierbarer und lesbarer Zeichensatz
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[usenames,dvipsnames]{xcolor}
\inputencoding{utf8} % Wir wollen UTF8(=keine Probleme mit Umlauten etc.)
\parindent0em % Keine amerikanische Einrückung am Anfang von Paragraphen
\usepackage[lmargin=2cm,rmargin=3.5cm,tmargin=2cm,bmargin=2cm]{geometry}
\parindent0em
\usepackage{fancyhdr}
\pagestyle{fancy}
%opening
\fancyhf{}
\fancyhead[L]{\textbf{Message Passing Programming\\Parallele Algorithmen und Datenverarbeitung}}
\fancyhead[R]{\textbf{Stefan Dresselhaus\\Thomas Pajenkamp}}
\fancyfoot[C]{\thepage}
\fancyfoot[R]{24. November 2013}
\usepackage{algorithm}
\usepackage[noend]{algpseudocode}
\newcommand{\abs}[1]{\ensuremath{\left\lvert#1\right\rvert}}
\newcommand{\norm}[1]{\ensuremath{\left\lVert#1\right\rVert}}
\newcommand{\mean}[1]{\ensuremath{\overline{#1}}}
\newcommand{\transp}[1]{\ensuremath{#1^{\mathsf{T}}}}
% Ende der Voreinstellungen
\begin{document}
%\title{Message Passing Programming}
%\author{Stefan Dresselhaus \and Thomas Pajenkamp}
%\date{24. November 2013}
%\maketitle
\section*{Heuristik für \glqq{}Densely-connected Biclustering\grqq{}}
\begin{algorithm*}
\caption{Densely-connected Biclustering}
\begin{algorithmic}[1]
\Function{testHomogenity}{$A$, $\omega$, $\delta$, $g$}
\State $l \gets (\transp{A})_{g_0}$, $l \gets u$
\ForAll {nodes $i$ from $g \setminus \lbrace g_0\rbrace$}
\ForAll {dimensions $d$ of attribute matrix $A$}
\State $l \gets \min\lbrace l_d, A_{id}\rbrace$, $u \gets \max\lbrace l_d, A_{id}\rbrace$
\EndFor
\EndFor
\State $c \gets 0$
\ForAll {dimensions $d$ of attribute matrix $A$}
\If {$\abs{u_d - l_d} \leq \omega_d $}
\State $c \gets c+1$
\If {$c \geq \delta$}
\State \Return {true}
\EndIf
\EndIf
\EndFor
\Return {false}
\EndFunction
\end{algorithmic}
\begin{algorithmic}[1]
\Function{preprocessGraph}{$M$, $A$, $\omega$, $\delta$}
\State $G \gets \emptyset$
\ForAll {rows $i$ of adjascency matrix $M$}
\ForAll {columns $j$ of adjascency matrix $M$}
\If {$M_{ij} = 1$}
\If {\Call{testHomogenity}{$A$, $\omega$, $\delta$, $\lbrace i , j\rbrace$}}
\State $G \gets G \cup \lbrace \lbrace i, j\rbrace \rbrace$
\Else
\State $M_{ij} = 0$, $M_{ji} = 0$
\EndIf
\EndIf
\EndFor
\EndFor
\Return {$G$}
\EndFunction
\end{algorithmic}
\begin{algorithmic}[1]
\Function{DCB}{$M$, $A$, $\alpha$, $\omega$, $\delta$}
\State $G \gets $ \Call{preprocessGraph}{$M$, $A$, $\omega$, $\delta$}
\State $F \gets \emptyset$
\While {$G \neq \emptyset$}
\State $G' \gets G$, $G \gets \emptyset$
\ForAll {node sets $g$ in $G'$}
\State $b \gets \text{true}$
\ForAll {connected nodes $h$ with $h > \max g$}
\State $\hat{g} \gets g \cup \lbrace h\rbrace$
\If {\Call{testHomogenity}{$A$, $\omega$, $\delta$, $\hat{g}$} $\wedge$ \Call{graphDensity}{$M$, $\hat{g}$} $\leq$ $\alpha$}
\State $G \gets G \cup \lbrace \hat{g} \rbrace$
\State $b \gets \text{false}$
\EndIf
\EndFor
\If {$b$}
\State $F \gets F \cup \lbrace g\rbrace$
\EndIf
\EndFor
\EndWhile
\EndFunction
\end{algorithmic}
\end{algorithm*}
\end{document}

View File

@ -32,7 +32,7 @@ import Data.Either (lefts, rights)
import Debug.Trace import Debug.Trace
import qualified Data.Text as T import qualified Data.Text as T
import Data.Text.Encoding import Data.Text.Encoding
import Stream hiding (map) --import Stream hiding (map) --same as Data.Stream imported above?
import qualified Data.Array.Accelerate as A import qualified Data.Array.Accelerate as A
-- change to Data.Array.Accelerate.CUDA as I and link accelerate-cuda to use GPU instead of CPU -- change to Data.Array.Accelerate.CUDA as I and link accelerate-cuda to use GPU instead of CPU
-- depends on accelerate-cuda package in cabal, which needs the installed CUDA-stuff form -- depends on accelerate-cuda package in cabal, which needs the installed CUDA-stuff form
@ -41,16 +41,17 @@ import Data.Array.Accelerate.Interpreter as I
type Matrix e = A.Array A.DIM2 e type Matrix e = A.Array A.DIM2 e
type Attr = Matrix A.Int8 type Attr = Matrix A.Int8
-- Graph consists of a Vector denoting which colums of the matrix represents wich originating
-- column in the global adjencency-matrix, the reduces adjencency-matrix of the graph, a
-- matrix of constraints and a scalar denoting the density
newtype Constraints = Matrix A.Float
type Density = A.Scalar A.Float
type Graph = (A.Vector A.Int8, Matrix A.Int8, Constraints, Density)
-- Adjecency-Matrix -- Adjecency-Matrix
type Adj = Matrix A.Int8 type Adj = Matrix A.Int8
-- Vector of the Adjecency-Matrix -- Vector of the Adjecency-Matrix
type AdjV = A.Vector A.Int8 type AdjV = A.Vector A.Int8
newtype Constraints = Matrix A.Float
-- Graph consists of a Vector denoting which colums of the matrix represents wich originating
-- column in the global adjencency-matrix, the reduces adjencency-matrix of the graph, a
-- matrix of constraints and a scalar denoting the density
type Density = A.Scalar A.Float
type Graph = (A.Vector A.Int8, Adj, Constraints, Density)
expand :: [Graph]-> Adj -> Attr ->[Graph] expand :: [Graph]-> Adj -> Attr ->[Graph]
expand g a att = undefined expand g a att = undefined
@ -135,6 +136,7 @@ exeMain = do
_ -> error "Wrong arguments given" _ -> error "Wrong arguments given"
-- read file and clean -- read file and clean
adjMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 (head input))) adjMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 (head input)))
attrMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 ((head . tail) input)))
inputLines <- return $ length adjMat inputLines <- return $ length adjMat
-- TODO: concat with foldl1' kills us later -> use presized/preallocated array so we -- TODO: concat with foldl1' kills us later -> use presized/preallocated array so we