data Graph nutzt weitere bereits definierte Typen, Pseudocode in references
This commit is contained in:
parent
5d66fb1310
commit
1a13b62cc4
BIN
references/pseudocode/pseudocode.pdf
Normal file
BIN
references/pseudocode/pseudocode.pdf
Normal file
Binary file not shown.
103
references/pseudocode/pseudocode.tex
Normal file
103
references/pseudocode/pseudocode.tex
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
\documentclass[11pt,a4paper]{scrartcl}
|
||||||
|
\usepackage[ngerman]{babel} % Deutsches Wörterbuch usw.
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage[utf8]{inputenc}
|
||||||
|
\usepackage{times} % Skalierbarer und lesbarer Zeichensatz
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\usepackage{amssymb}
|
||||||
|
\usepackage[usenames,dvipsnames]{xcolor}
|
||||||
|
\inputencoding{utf8} % Wir wollen UTF8(=keine Probleme mit Umlauten etc.)
|
||||||
|
\parindent0em % Keine amerikanische Einrückung am Anfang von Paragraphen
|
||||||
|
\usepackage[lmargin=2cm,rmargin=3.5cm,tmargin=2cm,bmargin=2cm]{geometry}
|
||||||
|
\parindent0em
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
%opening
|
||||||
|
\fancyhf{}
|
||||||
|
\fancyhead[L]{\textbf{Message Passing Programming\\Parallele Algorithmen und Datenverarbeitung}}
|
||||||
|
\fancyhead[R]{\textbf{Stefan Dresselhaus\\Thomas Pajenkamp}}
|
||||||
|
\fancyfoot[C]{\thepage}
|
||||||
|
\fancyfoot[R]{24. November 2013}
|
||||||
|
|
||||||
|
\usepackage{algorithm}
|
||||||
|
\usepackage[noend]{algpseudocode}
|
||||||
|
|
||||||
|
\newcommand{\abs}[1]{\ensuremath{\left\lvert#1\right\rvert}}
|
||||||
|
\newcommand{\norm}[1]{\ensuremath{\left\lVert#1\right\rVert}}
|
||||||
|
\newcommand{\mean}[1]{\ensuremath{\overline{#1}}}
|
||||||
|
\newcommand{\transp}[1]{\ensuremath{#1^{\mathsf{T}}}}
|
||||||
|
|
||||||
|
% Ende der Voreinstellungen
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
%\title{Message Passing Programming}
|
||||||
|
%\author{Stefan Dresselhaus \and Thomas Pajenkamp}
|
||||||
|
%\date{24. November 2013}
|
||||||
|
%\maketitle
|
||||||
|
|
||||||
|
\section*{Heuristik für \glqq{}Densely-connected Biclustering\grqq{}}
|
||||||
|
|
||||||
|
\begin{algorithm*}
|
||||||
|
\caption{Densely-connected Biclustering}
|
||||||
|
\begin{algorithmic}[1]
|
||||||
|
\Function{testHomogenity}{$A$, $\omega$, $\delta$, $g$}
|
||||||
|
\State $l \gets (\transp{A})_{g_0}$, $l \gets u$
|
||||||
|
\ForAll {nodes $i$ from $g \setminus \lbrace g_0\rbrace$}
|
||||||
|
\ForAll {dimensions $d$ of attribute matrix $A$}
|
||||||
|
\State $l \gets \min\lbrace l_d, A_{id}\rbrace$, $u \gets \max\lbrace l_d, A_{id}\rbrace$
|
||||||
|
\EndFor
|
||||||
|
\EndFor
|
||||||
|
\State $c \gets 0$
|
||||||
|
\ForAll {dimensions $d$ of attribute matrix $A$}
|
||||||
|
\If {$\abs{u_d - l_d} \leq \omega_d $}
|
||||||
|
\State $c \gets c+1$
|
||||||
|
\If {$c \geq \delta$}
|
||||||
|
\State \Return {true}
|
||||||
|
\EndIf
|
||||||
|
\EndIf
|
||||||
|
\EndFor
|
||||||
|
\Return {false}
|
||||||
|
\EndFunction
|
||||||
|
\end{algorithmic}
|
||||||
|
\begin{algorithmic}[1]
|
||||||
|
\Function{preprocessGraph}{$M$, $A$, $\omega$, $\delta$}
|
||||||
|
\State $G \gets \emptyset$
|
||||||
|
\ForAll {rows $i$ of adjascency matrix $M$}
|
||||||
|
\ForAll {columns $j$ of adjascency matrix $M$}
|
||||||
|
\If {$M_{ij} = 1$}
|
||||||
|
\If {\Call{testHomogenity}{$A$, $\omega$, $\delta$, $\lbrace i , j\rbrace$}}
|
||||||
|
\State $G \gets G \cup \lbrace \lbrace i, j\rbrace \rbrace$
|
||||||
|
\Else
|
||||||
|
\State $M_{ij} = 0$, $M_{ji} = 0$
|
||||||
|
\EndIf
|
||||||
|
\EndIf
|
||||||
|
\EndFor
|
||||||
|
\EndFor
|
||||||
|
\Return {$G$}
|
||||||
|
\EndFunction
|
||||||
|
\end{algorithmic}
|
||||||
|
\begin{algorithmic}[1]
|
||||||
|
\Function{DCB}{$M$, $A$, $\alpha$, $\omega$, $\delta$}
|
||||||
|
\State $G \gets $ \Call{preprocessGraph}{$M$, $A$, $\omega$, $\delta$}
|
||||||
|
\State $F \gets \emptyset$
|
||||||
|
\While {$G \neq \emptyset$}
|
||||||
|
\State $G' \gets G$, $G \gets \emptyset$
|
||||||
|
\ForAll {node sets $g$ in $G'$}
|
||||||
|
\State $b \gets \text{true}$
|
||||||
|
\ForAll {connected nodes $h$ with $h > \max g$}
|
||||||
|
\State $\hat{g} \gets g \cup \lbrace h\rbrace$
|
||||||
|
\If {\Call{testHomogenity}{$A$, $\omega$, $\delta$, $\hat{g}$} $\wedge$ \Call{graphDensity}{$M$, $\hat{g}$} $\leq$ $\alpha$}
|
||||||
|
\State $G \gets G \cup \lbrace \hat{g} \rbrace$
|
||||||
|
\State $b \gets \text{false}$
|
||||||
|
\EndIf
|
||||||
|
\EndFor
|
||||||
|
\If {$b$}
|
||||||
|
\State $F \gets F \cup \lbrace g\rbrace$
|
||||||
|
\EndIf
|
||||||
|
\EndFor
|
||||||
|
\EndWhile
|
||||||
|
\EndFunction
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm*}
|
||||||
|
|
||||||
|
\end{document}
|
16
src/Main.hs
16
src/Main.hs
@ -32,7 +32,7 @@ import Data.Either (lefts, rights)
|
|||||||
import Debug.Trace
|
import Debug.Trace
|
||||||
import qualified Data.Text as T
|
import qualified Data.Text as T
|
||||||
import Data.Text.Encoding
|
import Data.Text.Encoding
|
||||||
import Stream hiding (map)
|
--import Stream hiding (map) --same as Data.Stream imported above?
|
||||||
import qualified Data.Array.Accelerate as A
|
import qualified Data.Array.Accelerate as A
|
||||||
-- change to Data.Array.Accelerate.CUDA as I and link accelerate-cuda to use GPU instead of CPU
|
-- change to Data.Array.Accelerate.CUDA as I and link accelerate-cuda to use GPU instead of CPU
|
||||||
-- depends on accelerate-cuda package in cabal, which needs the installed CUDA-stuff form
|
-- depends on accelerate-cuda package in cabal, which needs the installed CUDA-stuff form
|
||||||
@ -41,16 +41,17 @@ import Data.Array.Accelerate.Interpreter as I
|
|||||||
type Matrix e = A.Array A.DIM2 e
|
type Matrix e = A.Array A.DIM2 e
|
||||||
|
|
||||||
type Attr = Matrix A.Int8
|
type Attr = Matrix A.Int8
|
||||||
-- Graph consists of a Vector denoting which colums of the matrix represents wich originating
|
|
||||||
-- column in the global adjencency-matrix, the reduces adjencency-matrix of the graph, a
|
|
||||||
-- matrix of constraints and a scalar denoting the density
|
|
||||||
newtype Constraints = Matrix A.Float
|
|
||||||
type Density = A.Scalar A.Float
|
|
||||||
type Graph = (A.Vector A.Int8, Matrix A.Int8, Constraints, Density)
|
|
||||||
-- Adjecency-Matrix
|
-- Adjecency-Matrix
|
||||||
type Adj = Matrix A.Int8
|
type Adj = Matrix A.Int8
|
||||||
-- Vector of the Adjecency-Matrix
|
-- Vector of the Adjecency-Matrix
|
||||||
type AdjV = A.Vector A.Int8
|
type AdjV = A.Vector A.Int8
|
||||||
|
newtype Constraints = Matrix A.Float
|
||||||
|
-- Graph consists of a Vector denoting which colums of the matrix represents wich originating
|
||||||
|
-- column in the global adjencency-matrix, the reduces adjencency-matrix of the graph, a
|
||||||
|
-- matrix of constraints and a scalar denoting the density
|
||||||
|
type Density = A.Scalar A.Float
|
||||||
|
type Graph = (A.Vector A.Int8, Adj, Constraints, Density)
|
||||||
|
|
||||||
|
|
||||||
expand :: [Graph]-> Adj -> Attr ->[Graph]
|
expand :: [Graph]-> Adj -> Attr ->[Graph]
|
||||||
expand g a att = undefined
|
expand g a att = undefined
|
||||||
@ -135,6 +136,7 @@ exeMain = do
|
|||||||
_ -> error "Wrong arguments given"
|
_ -> error "Wrong arguments given"
|
||||||
-- read file and clean
|
-- read file and clean
|
||||||
adjMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 (head input)))
|
adjMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 (head input)))
|
||||||
|
attrMat <- return $ filter (not . emptyLine) (T.lines (decodeUtf8 ((head . tail) input)))
|
||||||
|
|
||||||
inputLines <- return $ length adjMat
|
inputLines <- return $ length adjMat
|
||||||
-- TODO: concat with foldl1' kills us later -> use presized/preallocated array so we
|
-- TODO: concat with foldl1' kills us later -> use presized/preallocated array so we
|
||||||
|
Loading…
Reference in New Issue
Block a user