chemodiversity/app/Main.hs

206 lines
7.7 KiB
Haskell

{-# LANGUAGE BangPatterns #-}
module Main where
import Text.Printf
import Control.Monad.Reader
import Numeric.LinearAlgebra
import Data.List
import System.Random
import Control.Concurrent
import Control.Parallel.Strategies
import qualified Debug.Trace as Debug
import System.IO
import ArbitraryEnzymeTree
import Environment
-- Example definitions
-- -------------------
-- Enzymes
pps :: Enzyme -- uses Phosphor from Substrate to produce PP
pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
fpps :: Enzyme -- PP -> FPP
fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
-- Predator
greenfly :: Predator -- 20% of plants die to greenfly, but the fly is
greenfly = Predator [] 0.2 -- killed by any toxic Component
-- Environment
exampleEnvironment :: Int -> [Enzyme] -> [(Predator,Probability)] -> [(Compound,Amount)] -> Environment
exampleEnvironment addedC es pred tox =
Environment
{ soil = [ (Nitrate, 2)
, (Phosphor, 3)
, (Photosynthesis, 10)
]
, predators = pred -- [ (greenfly, 0.1) ]
, metabolismIteration = 100
, maxCompound = maxCompoundWithoutGeneric + addedC
, toxicCompounds = tox --[(Produced FPP,0.1)] ++ tox
, possibleEnzymes = es -- [pps,fpps] ++ es
}
-- Plants
examplePlants :: [Plant]
examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
where
enzymes = [pps, fpps]
quantity = [1,2] :: [Quantity]
activation = [0.7, 0.9, 1]
genomes = do
e <- permutations enzymes
e' <- subsequences e
q <- quantity
a <- activation
return $ (,,) <$> e' <*> [q] <*> [a]
defaultAbsorption = fmap ( limit Phosphor 2
. limit Nitrate 1
. limit Sulfur 0
) <$> asks soil
-- custom absorbtion with helper-function:
limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
limit n a (n', a')
| n == n' = (n, min a a') -- if we should limit, then we do ;)
| otherwise = (n', a')
-- Running the simulation
-- ----------------------
loop :: Int -> [Plant] -> Environment -> IO ()
loop loopAmount = loop' loopAmount 0
where
loop' :: Int -> Int -> [Plant] -> Environment -> IO ()
loop' loopAmount curLoop plants e = unless (loopAmount == curLoop) $ do
putStr "\ESC[2J\ESC[H"
printEnvironment e
putStrLn ""
putStrLn $ "Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ ":"
newPlants <- flip runReaderT e $ do
fs <- sequence (fitness <$> plants)
let fps = zip plants fs -- gives us plants & their fitness in a tuple
sumFitness = sum fs
pe <- asks possibleEnzymes
tc <- fmap fst <$> asks toxicCompounds
liftIO $ printPopulation tc pe fps
-- generate 100 new plants.
sequence . flip fmap [1..100] $ \_ -> do
parent' <- liftIO $ randomRIO (0,sumFitness)
let
-- if we only have one parent in our list, take it.
findParent :: Double -> [(Plant,Double)] -> Plant
findParent _ [(last,_)] = last
-- otherwise count down x to find the parent in the list
findParent x ((p,f):ps)
| x < f = p
| otherwise = findParent (x-f) ps
parent = findParent parent' fps
haploMate parent
hFlush stdout
threadDelay $ 100*1000 -- sleep 100ms
loop' loopAmount (curLoop+1) newPlants e
main :: IO ()
main = do
hSetBuffering stdin NoBuffering
hSetBuffering stdout NoBuffering
randomCompounds <- makeHead (Substrate Photosynthesis) <$> generateTreeFromList 40 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds
ds <- randoms <$> newStdGen
probs <- randomRs (0.2,0.7) <$> newStdGen
let emptyPlants = replicate 100 emptyPlant
poisonedTree = poisonTree ds randomCompounds
poisonCompounds = foldMap (\(a,b) -> if a > 0.5 then [(b,a)] else []) $ poisonedTree
predators <- generatePredators 0.5 poisonedTree
let env = exampleEnvironment (getTreeSize randomCompounds) (generateEnzymeFromTree randomCompounds) (zip predators probs) poisonCompounds
printEnvironment env
writeFile "poison.twopi" $ generateDotFromPoisonTree "poison" 0.5 $ poisonedTree
putStr "\ESC[?1049h"
loop 200 emptyPlants env
putStrLn "Simulation ended. Press key to exit."
_ <- getChar
putStr "\ESC[?1049l"
-- fitness <- runReaderT (sequence $ (\a -> do p <- absorbNutrients a >>= produceCompounds a; (,,) a p <$> deterPredators p) <$> emptyPlants) exampleEnvironment
-- mapM_ (printf "%15.15s, " . show . toEnum @Compound) [0..maxCompoundWithoutGeneric]
-- putStrLn "Fitness"
-- forM_ fitness $ \(p, c, f) -> do
-- mapM_ (printf "%15.2f, ") (toList c)
-- printf "%15.2f" f
-- putStr "\n"
generatePredators :: Double -> EnzymeTree s (Double,Compound) -> IO [Predator]
generatePredators threshold t = do
ps <- mapM generatePredators' $ getSubTrees t
return $ concat ps
where
generatePredators' :: (EnzymeTree s (Double, Compound)) -> IO [Predator]
generatePredators' t = do -- not fully resistant to t, but fully resistant to everything in ts
let comps = foldMap (\(a,b) -> if a > threshold then [(a,b)] else []) t
amount <- randomRIO (0,length comps + 1) :: IO Int
forM [1..amount] $ \_ -> do
impact <- randomRIO (0.2,0.7)
rands <- randoms <$> newStdGen
let unresists = foldMap (\((a,b),r) -> if r*2 < a then [b] else []) $ zip comps rands
return $ Predator unresists impact
printEnvironment :: Environment -> IO ()
printEnvironment (Environment soil pred metaIter maxComp toxic possEnz) =
do
putStrLn "Environment:"
putStrLn $ "Soil: " ++ show soil
putStrLn $ "Predators: " ++ show pred
putStrLn $ "PSM Iters: " ++ show metaIter
putStrLn $ "Compounds: " ++ show ((toEnum <$> [0..maxComp]) :: [Compound])
putStrLn $ "Toxic: " ++ show toxic
printPopulation :: [Compound] -> [Enzyme] -> [(Plant,Double)] -> IO ()
printPopulation toxins es ps = do
let padded i str = take i $ str ++ repeat ' '
putStr $ padded 50 "Population:"
forM_ ps $ \(_,f) -> putStr (printColor f '█')
putStrLn colorOff
forM_ es $ \e -> do
putStr $ if (fst . snd . synthesis $ e) `elem` toxins then "\ESC[31m" ++ padded 50 (show (enzymeName e)) ++ "\ESC[0m"
else padded 50 (show (enzymeName e))
forM_ ps $ \(Plant g _,_) -> do
let curE = sum $ map (\(_,q,a) -> fromIntegral q*a)
. filter (\(e',_,_) -> e == e')
$ g
plot x
| x > 2 = "O"
| x > 1 = "+"
| x > 0.7 = "ö"
| x > 0.5 = "o"
| x > 0 = "."
| otherwise = "_"
putStr (plot curE)
putStrLn ""
printColor :: Double -> Char -> String
printColor x c
| x*x < 0.5 = "\ESC[38;5;" ++ show (16 + 36*5 + 6*floor (5*2*x') + 0) ++ "m" ++ [c] ++ ""
| otherwise = "\ESC[38;5;" ++ show (16 + 36*floor (5*2*(1-x')) + 6*5 + 0) ++ "m" ++ [c] ++ ""
-- 32 bit
-- | x*x < 0.5 = "\ESC[38;2;255;" ++ (show . floor $ 255*2*x') ++ ";0m" ++ [c] ++ ""
-- | otherwise = "\ESC[38;2;" ++ (show . floor $ 255*2*(1-x')) ++ ";255;0m" ++ [c] ++ ""
where x' = x*x
colorOff :: String
colorOff = "\ESC[0m"
generateEnzymeFromTree :: EnzymeTree s Compound -> [Enzyme]
generateEnzymeFromTree t = (makeSimpleEnzyme c . getElement <$> sts)
++ concatMap generateEnzymeFromTree sts
where
c = getElement t
sts = getSubTrees t