{-# LANGUAGE BangPatterns #-} {-# LANGUAGE OverloadedStrings #-} module Main where import Text.Printf import Control.Monad.Reader import Numeric.LinearAlgebra import Data.List import System.Random import Control.Concurrent import Control.Parallel.Strategies import Control.Monad.Writer import qualified Debug.Trace as Debug import qualified Control.Foldl as F import System.IO import Data.Aeson import qualified Data.ByteString as BS import ArbitraryEnzymeTree import Environment import Evaluation -- Example definitions -- ------------------- -- Enzymes -- pps :: Enzyme -- uses Phosphor from Substrate to produce PP -- pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing -- -- fpps :: Enzyme -- PP -> FPP -- fpps = makeSimpleEnzyme (Produced PP) (Produced FPP) -- Environment exampleEnvironment :: Int -> [Enzyme] -> [(Predator,Probability)] -> [(Compound,Amount)] -> Environment exampleEnvironment addedC es pred tox = Environment { soil = [ (PPM, 10) ] , predators = pred -- [ (greenfly, 0.1) ] , metabolismIteration = 100 , maxCompound = maxCompoundWithoutGeneric + addedC , toxicCompounds = tox --[(Produced FPP,0.1)] ++ tox , possibleEnzymes = es -- [pps,fpps] ++ es , settings = Settings { automimicry = False , predatorsRandom = False , numPlants = 50 } } -- Plants -- examplePlants :: [Plant] -- examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes -- where -- enzymes = [pps, fpps] -- quantity = [1,2] :: [Quantity] -- activation = [0.7, 0.9, 1] -- -- genomes = do -- e <- permutations enzymes -- e' <- subsequences e -- q <- quantity -- a <- activation -- return $ (,,) <$> e' <*> [q] <*> [a] -- -- defaultAbsorption = fmap ( limit Phosphor 2 -- . limit Nitrate 1 -- . limit Sulfur 0 -- ) <$> fromEnv soil -- -- custom absorbtion with helper-function: -- limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount) -- limit n a (n', a') -- | n == n' = (n, min a a') -- if we should limit, then we do ;) -- | otherwise = (n', a') -- Running the simulation -- ---------------------- loop :: Int -> [Plant] -> Simulation -> IO () loop loopAmount ps env = loop' loopAmount 0 ps env where -- cache enzyme colorful-strings stringe :: [(Enzyme, String)] stringe = (\e -> case Data.List.find (\(t,_) -> (t==) . fst . snd . synthesis $ e) toxins of Just (_,toxicity) -> (e,"\ESC[38;5;" ++ show (16 + 36*5 + 6*floor (5*(1-toxicity)) + 0) ++ "m" -- yellow -> red rainbow for tocixity 0 -> 1 ++ padded 50 (show (enzymeName e)) ++ "\ESC[0m") Nothing -> (e, padded 50 (show (enzymeName e))) ) <$> possibleEnzymes (snd env) toxins :: [(Compound, Amount)] toxins = toxicCompounds (snd env) padded i str = take i $ str ++ repeat ' ' printEvery = 10 loop' :: Int -> Int -> [Plant] -> Simulation -> IO () loop' loopAmount curLoop plants s = unless (loopAmount+1 == curLoop) $ do when (curLoop `mod` printEvery == 0) $ do putStr "\ESC[2J\ESC[H" printEnvironment (snd env) putStrLn "" putStrLn $ "Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ ":" newPlants <- simulate s $ do (!fs,cs) <- unzip <$> fitness plants txns <- fmap (fromEnum . fst) <$> fromEnv toxicCompounds -- [Int] of id's of toxic compounds let fps = zip plants fs -- gives us plants & their fitness in a tuple sumFitness = sum fs -- $C_{\Sigma,mu}$: Durchschnittliche Menge an produzierten Stoffen -- $C_{\Sigma,sigma}$: Durchschnittliche Varianz an produzierten Stoffen (c_sum_mu, c_sum_sigma) = meanAndVar `from` sumProducedCompounds $ cs -- - $C_{i,\mu}$: Durchschnittliche Anzahl produzierter Komponenten -- - $C_{i,\sigma}$: Zusätzlich: Betrachtung der Varianz dieser Komponenten innerhalb der Population -- (Z.B. Stoff A wird immer mit $0.5$ produziert, hat also keine Varianz, -- wogegen Stoff B *im Schnitt* mit $0.5$ produziert wird, aber dies eine extreme -- Varianz auslöst) (c_i_mu,c_i_sigma) = unzip $ meanAndVar `from` id <$> byProducts cs -- - $C_d$: Durchschnittliche Anzahl distinkter Produzierter Stoffe (sprich -- nicht-endemisch, $#i | C_{i,\sigma} > \epsilon$ ) isEndemic :: Vector Bool isEndemic = fromList $ (> 0.01) <$> c_i_sigma (c_d_mu, c_d_sigma) = meanAndVar `from` countWith isEndemic $ cs -- - $C_{\sigma,\{\mu/\sigma\}}$: Mittelwert/Varianz von $\C_{i,\sigma}$ (c_sigma_mu, c_sigma_sigma) = meanAndVar `from` id $ c_i_sigma -- - $\mathbf{E}[C_{\Sigma,plant} - C_{\Sigma,mu}]$: Durchschnittliche Abweichung der produzierten -- Stoffe gegenüber dem Schnitt der Gesamtpopulation e_hash_plant = F.mean `from` numDistinctCompounds $ cs -- mean and variance of fitness fns = meanAndVar `from` id $ fs -- - $P_\{\mu,\sigma\}$ Mittelwert/Varianz der Anteile der Stoffe in Pflanze i, die giftig sind toxs = meanAndVar `from` percentagePoisonous txns $ cs when (curLoop `mod` printEvery == 0) $ liftIO $ do printPopulation (zip ((>0.01) <$> c_i_sigma) stringe) (zip3 plants fs cs) putStrLn $ "Population statistics (mean,variance):" putStrLn $ "Amount of Components produced = " ++ (padded 50 . show $ (c_sum_mu,c_sum_sigma)) putStrLn $ "Number of distinct Components = " ++ (padded 50 . show $ (c_d_mu, c_d_sigma)) putStrLn $ "Fitness = " ++ (padded 50 . show $ fns) hFlush stdout threadDelay $ 10*1000 -- sleep x*1000ns (=x ~ ms) tell $ show curLoop ++ "," ++ show c_sum_mu ++ "," ++ show c_sum_sigma ++ "," ++ show c_d_mu ++ "," ++ show c_d_sigma ++ "," ++ show (fst fns) ++ "," ++ show (snd fns) ++ "," ++ show (fst toxs) ++ "," ++ show (snd toxs) -- generate x new plants. np <- fromEnv (numPlants . settings) sequence . flip fmap [1..np] $ \_ -> do parent' <- liftIO $ randomRIO (0,sumFitness) let -- if we only have one parent in our list, take it. findParent :: Double -> [(Plant,Double)] -> Plant findParent _ [(last,_)] = last -- otherwise count down x to find the parent in the list findParent x ((p,f):ps) | x < f = p | otherwise = findParent (x-f) ps parent = findParent parent' fps haploMate parent loop' loopAmount (curLoop+1) newPlants s main :: IO () main = do hSetBuffering stdin NoBuffering --hSetBuffering stdout NoBuffering randomCompounds <- makeHead (Substrate PPM) <$> generateTreeFromList 30 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds ds <- randoms <$> newStdGen --probs <- randomRs (0.2,0.7) <$> newStdGen let poisonedTree = poisonTree ds randomCompounds poisonCompounds = foldMap (\(a,b) -> [(b,a) | a > 0]) poisonedTree predators <- generatePredators 0.0 poisonedTree let poisonCompounds' = pruneCompounds poisonCompounds predators pruneCompounds cs ps = filter ((`elem` usedPoisons) . fst) cs where usedPoisons = concat $ irresistance <$> ps --let env = exampleEnvironment (getTreeSize randomCompounds) (generateEnzymeFromTree randomCompounds) (zip predators probs) poisonCompounds' (Just env) <- decodeStrict' <$> BS.readFile "environment2.json" let emptyPlants = replicate (numPlants . settings $ env) emptyPlant enzs <- randomRs (0,length (possibleEnzymes env) - 1) <$> newStdGen let startPlants = randomGenome 1 enzs (possibleEnzymes env) emptyPlants printEnvironment env writeFile "poison.twopi" $ generateDotFromPoisonTree "poison" 0.5 poisonedTree --writeFile "environment.json" . encode $ env putStr "\ESC[?1049h" logfile <- openFile "simulation.log" WriteMode loop 2000 startPlants (logfile,env) putStrLn "Simulation ended. Press key to exit." _ <- getChar putStr "\ESC[?1049l" randomGenome :: Int -> [Int] -> [Enzyme] -> [Plant] -> [Plant] randomGenome num inds enzs [] = [] randomGenome num inds enzs (p:ps) = p { genome = genes} : randomGenome num r enzs ps where i' = take num inds r = drop num inds enzymes = (enzs!!) <$> i' genes = (\e -> (e,1,1)) <$> enzymes generatePredators :: Double -> EnzymeTree s (Double,Compound) -> IO [Predator] generatePredators threshold t = do ps <- mapM generatePredators' $ getSubTrees t return $ filter ((/= []) . irresistance) $ concat ps -- filter out predators that are resistant to everything because this does not make sense in our model. where generatePredators' :: EnzymeTree s (Double, Compound) -> IO [Predator] generatePredators' t = do -- not fully resistant to t, but fully resistant to everything in ts let comps = foldMap (\(a,b) -> [(a,b) | a > threshold]) t amount <- randomRIO (0,length comps + 1) :: IO Int forM [1..amount] $ \_ -> do impact <- randomRIO (0.2,0.7) rands <- randoms <$> newStdGen let unresists = foldMap (\((a,b),r) -> [b | r*2 < a]) $ zip comps rands return $ Predator unresists impact 1 printEnvironment :: Environment -> IO () printEnvironment (Environment soil pred metaIter maxComp toxic possEnz settings) = do putStrLn "Environment:" putStrLn $ "Soil: " ++ show soil putStrLn $ "Predators: " ++ show pred putStrLn $ "PSM Iters: " ++ show metaIter putStrLn $ "Compounds: " ++ show ((toEnum <$> [0..maxComp]) :: [Compound]) putStrLn $ "Toxic: " ++ show toxic putStrLn $ "Settings: " ++ show settings printPopulation :: [(Bool,(Enzyme,String))] -> [(Plant,Double,Vector Amount)] -> IO () printPopulation es ps = do let padded i str = take i $ str ++ repeat ' ' n = length ps fitnesses = (\(_,f,_) -> f) <$> ps meanFitness = sum fitnesses / fromIntegral n maxFitness = maximum fitnesses putStr $ padded 50 ("Population: (fitness: mean " ++ padded 5 (show meanFitness) ++ ", max: " ++ padded 5 (show maxFitness) ++ ")") forM_ ps $ \(_,f,_) -> putStr (printColor (f/maxFitness) '█') putStrLn colorOff forM_ es $ \(b,(e,s)) -> do if b then putStr ">" else putStr " " putStr s forM_ ps $ \(Plant g _,_,cs) -> do let curE = sum $ map (\(_,q,a) -> fromIntegral q*a) . filter (\(e',_,_) -> e == e') $ g plot x | x > 2 = 'O' | x > 1 = '+' | x > 0.7 = 'ö' | x > 0.5 = 'o' | x > 0 = '.' | otherwise = '_' amount = min 2 $ cs ! fromEnum (fst . snd . synthesis $ e) putStr $ printColor (amount/2) (plot curE) putStrLn colorOff printColor :: Double -> Char -> String printColor x c | x > 1 = "Error: " ++ show x | x*x < 0.5 = "\ESC[38;5;" ++ show (16 + 36*5 + 6*floor (5*2*x') + 0) ++ "m" ++ [c] ++ "" | otherwise = "\ESC[38;5;" ++ show (16 + 36*floor (5*2*(1-x')) + 6*5 + 0) ++ "m" ++ [c] ++ "" -- 32 bit -- | x*x < 0.5 = "\ESC[38;2;255;" ++ (show . floor $ 255*2*x') ++ ";0m" ++ [c] ++ "" -- | otherwise = "\ESC[38;2;" ++ (show . floor $ 255*2*(1-x')) ++ ";255;0m" ++ [c] ++ "" where x' = x*x colorOff :: String colorOff = "\ESC[0m" generateEnzymeFromTree :: EnzymeTree s Compound -> [Enzyme] generateEnzymeFromTree t = (makeSimpleEnzyme c . getElement <$> sts) ++ concatMap generateEnzymeFromTree sts where c = getElement t sts = getSubTrees t stepDebug a = liftIO $ print a >> void getChar