no diversity. needs static tests.
This commit is contained in:
parent
69895ffaab
commit
cc6fac6533
123
app/Main.hs
123
app/Main.hs
@ -13,33 +13,32 @@ import System.IO
|
||||
|
||||
import ArbitraryEnzymeTree
|
||||
import Environment
|
||||
import Evaluation
|
||||
|
||||
-- Example definitions
|
||||
-- -------------------
|
||||
|
||||
-- Enzymes
|
||||
|
||||
pps :: Enzyme -- uses Phosphor from Substrate to produce PP
|
||||
pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
|
||||
|
||||
fpps :: Enzyme -- PP -> FPP
|
||||
fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
|
||||
-- pps :: Enzyme -- uses Phosphor from Substrate to produce PP
|
||||
-- pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
|
||||
--
|
||||
-- fpps :: Enzyme -- PP -> FPP
|
||||
-- fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
|
||||
|
||||
-- Environment
|
||||
|
||||
exampleEnvironment :: Int -> [Enzyme] -> [(Predator,Probability)] -> [(Compound,Amount)] -> Environment
|
||||
exampleEnvironment addedC es pred tox =
|
||||
Environment
|
||||
{ soil = [ (Nitrate, 2)
|
||||
, (Phosphor, 3)
|
||||
, (Photosynthesis, 10)
|
||||
{ soil = [ (PPM, 10)
|
||||
]
|
||||
, predators = pred -- [ (greenfly, 0.1) ]
|
||||
, metabolismIteration = 100
|
||||
, maxCompound = maxCompoundWithoutGeneric + addedC
|
||||
, toxicCompounds = tox --[(Produced FPP,0.1)] ++ tox
|
||||
, possibleEnzymes = es -- [pps,fpps] ++ es
|
||||
, settings = Settings { automimicry = True
|
||||
, settings = Settings { automimicry = False
|
||||
, predatorsRandom = False
|
||||
, numPlants = 150
|
||||
}
|
||||
@ -47,29 +46,29 @@ exampleEnvironment addedC es pred tox =
|
||||
|
||||
-- Plants
|
||||
|
||||
examplePlants :: [Plant]
|
||||
examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
|
||||
where
|
||||
enzymes = [pps, fpps]
|
||||
quantity = [1,2] :: [Quantity]
|
||||
activation = [0.7, 0.9, 1]
|
||||
|
||||
genomes = do
|
||||
e <- permutations enzymes
|
||||
e' <- subsequences e
|
||||
q <- quantity
|
||||
a <- activation
|
||||
return $ (,,) <$> e' <*> [q] <*> [a]
|
||||
|
||||
defaultAbsorption = fmap ( limit Phosphor 2
|
||||
. limit Nitrate 1
|
||||
. limit Sulfur 0
|
||||
) <$> asks soil
|
||||
-- custom absorbtion with helper-function:
|
||||
limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
|
||||
limit n a (n', a')
|
||||
| n == n' = (n, min a a') -- if we should limit, then we do ;)
|
||||
| otherwise = (n', a')
|
||||
-- examplePlants :: [Plant]
|
||||
-- examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
|
||||
-- where
|
||||
-- enzymes = [pps, fpps]
|
||||
-- quantity = [1,2] :: [Quantity]
|
||||
-- activation = [0.7, 0.9, 1]
|
||||
--
|
||||
-- genomes = do
|
||||
-- e <- permutations enzymes
|
||||
-- e' <- subsequences e
|
||||
-- q <- quantity
|
||||
-- a <- activation
|
||||
-- return $ (,,) <$> e' <*> [q] <*> [a]
|
||||
--
|
||||
-- defaultAbsorption = fmap ( limit Phosphor 2
|
||||
-- . limit Nitrate 1
|
||||
-- . limit Sulfur 0
|
||||
-- ) <$> asks soil
|
||||
-- -- custom absorbtion with helper-function:
|
||||
-- limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
|
||||
-- limit n a (n', a')
|
||||
-- | n == n' = (n, min a a') -- if we should limit, then we do ;)
|
||||
-- | otherwise = (n', a')
|
||||
|
||||
-- Running the simulation
|
||||
-- ----------------------
|
||||
@ -88,21 +87,25 @@ loop loopAmount ps env = loop' loopAmount 0 ps env
|
||||
toxins :: [(Compound, Amount)]
|
||||
toxins = toxicCompounds env
|
||||
padded i str = take i $ str ++ repeat ' '
|
||||
printEvery = 1
|
||||
printEvery = 10
|
||||
addedConstFitness = 0.1
|
||||
loop' :: Int -> Int -> [Plant] -> Environment -> IO ()
|
||||
loop' loopAmount curLoop plants e = unless (loopAmount == curLoop) $ do
|
||||
loop' loopAmount curLoop plants e = unless (loopAmount+1 == curLoop) $ do
|
||||
when (curLoop `mod` printEvery == 0) $ do
|
||||
putStr "\ESC[2J\ESC[H"
|
||||
printEnvironment e
|
||||
putStrLn ""
|
||||
putStrLn $ "Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ ":"
|
||||
newPlants <- flip runReaderT e $ do
|
||||
! fs <- fmap (+0.01) <$> fitness plants -- fitness should be at least 0.01 for mating to work
|
||||
(!fs,cs) <- unzip . fmap (\(f,c) -> (f,c)) <$> fitness plants
|
||||
let fps = zip plants fs -- gives us plants & their fitness in a tuple
|
||||
sumFitness = sum fs
|
||||
when (curLoop `mod` printEvery == 0) $ do
|
||||
liftIO $ printPopulation stringe fps
|
||||
liftIO $ hFlush stdout
|
||||
when (curLoop `mod` printEvery == 0) $ liftIO $ do
|
||||
printPopulation stringe (zip3 plants fs cs)
|
||||
putStrLn $ "Population statistics: VarC = " ++ (padded 50 . show . varianceOfProducedCompounds $ cs)
|
||||
++ " DistC = " ++ (padded 50 . show . meanOfDistinctCompounds $ cs)
|
||||
hFlush stdout
|
||||
threadDelay $ 100*1000 -- sleep x*1000ns (=x ~ ms)
|
||||
-- generate x new plants.
|
||||
np <- asks (numPlants . settings)
|
||||
sequence . flip fmap [1..np] $ \_ -> do
|
||||
@ -117,16 +120,13 @@ loop loopAmount ps env = loop' loopAmount 0 ps env
|
||||
| otherwise = findParent (x-f) ps
|
||||
parent = findParent parent' fps
|
||||
haploMate parent
|
||||
hFlush stdout
|
||||
when (curLoop `mod` printEvery == 0) $ do
|
||||
threadDelay $ 100*1000 -- sleep x*1000ns (=x ~ ms)
|
||||
loop' loopAmount (curLoop+1) newPlants e
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
hSetBuffering stdin NoBuffering
|
||||
--hSetBuffering stdout NoBuffering
|
||||
randomCompounds <- makeHead (Substrate Photosynthesis) <$> generateTreeFromList 30 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds
|
||||
randomCompounds <- makeHead (Substrate PPM) <$> generateTreeFromList 20 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds
|
||||
ds <- randoms <$> newStdGen
|
||||
probs <- randomRs (0.2,0.7) <$> newStdGen
|
||||
let poisonedTree = poisonTree ds randomCompounds
|
||||
@ -134,14 +134,26 @@ main = do
|
||||
predators <- generatePredators 0.5 poisonedTree
|
||||
let env = exampleEnvironment (getTreeSize randomCompounds) (generateEnzymeFromTree randomCompounds) (zip predators probs) poisonCompounds
|
||||
emptyPlants = replicate (numPlants . settings $ env) emptyPlant
|
||||
enzs <- randomRs (0,length (possibleEnzymes env) - 1) <$> newStdGen
|
||||
let startPlants = randomGenome 10 enzs (possibleEnzymes env) emptyPlants
|
||||
printEnvironment env
|
||||
writeFile "poison.twopi" $ generateDotFromPoisonTree "poison" 0.5 poisonedTree
|
||||
putStr "\ESC[?1049h"
|
||||
loop 200 emptyPlants env
|
||||
loop 2000 startPlants env
|
||||
putStrLn "Simulation ended. Press key to exit."
|
||||
_ <- getChar
|
||||
putStr "\ESC[?1049l"
|
||||
|
||||
randomGenome :: Int -> [Int] -> [Enzyme] -> [Plant] -> [Plant]
|
||||
randomGenome num inds enzs [] = []
|
||||
randomGenome num inds enzs (p:ps) = p { genome = genes} : randomGenome num r enzs ps
|
||||
where
|
||||
i' = take num inds
|
||||
r = drop num inds
|
||||
enzymes = (enzs!!) <$> i'
|
||||
genes = (\e -> (e,1,1)) <$> enzymes
|
||||
|
||||
|
||||
generatePredators :: Double -> EnzymeTree s (Double,Compound) -> IO [Predator]
|
||||
generatePredators threshold t = do
|
||||
ps <- mapM generatePredators' $ getSubTrees t
|
||||
@ -152,7 +164,7 @@ generatePredators threshold t = do
|
||||
let comps = foldMap (\(a,b) -> [(a,b) | a > threshold]) t
|
||||
amount <- randomRIO (0,length comps + 1) :: IO Int
|
||||
forM [1..amount] $ \_ -> do
|
||||
impact <- randomRIO (0.1,0.2)
|
||||
impact <- randomRIO (0.2,0.7)
|
||||
rands <- randoms <$> newStdGen
|
||||
let unresists = foldMap (\((a,b),r) -> [b | r*2 < a]) $ zip comps rands
|
||||
return $ Predator unresists impact 1
|
||||
@ -168,27 +180,28 @@ printEnvironment (Environment soil pred metaIter maxComp toxic possEnz settings)
|
||||
putStrLn $ "Toxic: " ++ show toxic
|
||||
putStrLn $ "Settings: " ++ show settings
|
||||
|
||||
printPopulation :: [(Enzyme,String)] -> [(Plant,Double)] -> IO ()
|
||||
printPopulation :: [(Enzyme,String)] -> [(Plant,Double,Vector Amount)] -> IO ()
|
||||
printPopulation es ps = do
|
||||
let padded i str = take i $ str ++ repeat ' '
|
||||
putStr $ padded 50 "Population:"
|
||||
forM_ ps $ \(_,f) -> putStr (printColor f '█')
|
||||
forM_ ps $ \(_,f,_) -> putStr (printColor f '█')
|
||||
putStrLn colorOff
|
||||
forM_ es $ \(e,s) -> do
|
||||
putStr s
|
||||
forM_ ps $ \(Plant g _,_) -> do
|
||||
forM_ ps $ \(Plant g _,_,cs) -> do
|
||||
let curE = sum $ map (\(_,q,a) -> fromIntegral q*a)
|
||||
. filter (\(e',_,_) -> e == e')
|
||||
$ g
|
||||
plot x
|
||||
| x > 2 = "O"
|
||||
| x > 1 = "+"
|
||||
| x > 0.7 = "ö"
|
||||
| x > 0.5 = "o"
|
||||
| x > 0 = "."
|
||||
| otherwise = "_"
|
||||
putStr (plot curE)
|
||||
putStrLn ""
|
||||
| x > 2 = 'O'
|
||||
| x > 1 = '+'
|
||||
| x > 0.7 = 'ö'
|
||||
| x > 0.5 = 'o'
|
||||
| x > 0 = '.'
|
||||
| otherwise = '_'
|
||||
amount = min 2 $ cs ! fromEnum (fst . snd . synthesis $ e)
|
||||
putStr $ printColor (amount/2) (plot curE)
|
||||
putStrLn colorOff
|
||||
|
||||
printColor :: Double -> Char -> String
|
||||
printColor x c
|
||||
|
@ -27,6 +27,7 @@ dependencies:
|
||||
- QuickCheck
|
||||
- pretty-simple
|
||||
- parallel
|
||||
- foldl
|
||||
|
||||
library:
|
||||
source-dirs: src
|
||||
|
@ -16,10 +16,7 @@ type Activation = Double
|
||||
type Amount = Double
|
||||
|
||||
-- | Nutrients are the basis for any reaction and are found in the environment of the plant.
|
||||
data Nutrient = Sulfur
|
||||
| Phosphor
|
||||
| Nitrate
|
||||
| Photosynthesis
|
||||
data Nutrient = PPM
|
||||
deriving (Show, Enum, Bounded, Eq)
|
||||
|
||||
-- | Fixed, non-generic Components
|
||||
@ -156,7 +153,7 @@ instance Eq Plant where
|
||||
|
||||
type Fitness = Double
|
||||
|
||||
fitness :: [Plant] -> World [Fitness]
|
||||
fitness :: [Plant] -> World [(Fitness, Vector Amount)]
|
||||
fitness ps = do
|
||||
nutrients <- mapM absorbNutrients ps -- absorb soil
|
||||
products <- sequenceA $ zipWith produceCompounds ps nutrients -- produce compounds
|
||||
@ -172,18 +169,20 @@ fitness ps = do
|
||||
automimicry <- asks (automimicry . settings)
|
||||
popDefense <- if automimicry then
|
||||
forM appearingPredators $ \p -> do
|
||||
as <- mapM (deterPredator p) products -- how good can an individual deter p
|
||||
as <- mapM (dieToPredator p) products -- how good can an individual deter p
|
||||
return $ sum as / fromIntegral (length as) -- how good can the population deter p on average
|
||||
else
|
||||
return $ repeat 1
|
||||
survivalRate <- mapM (deterPredators (zip appearingPredators popDefense)) products -- defeat predators with produced compounds
|
||||
dieRate <- mapM (dieToPredators (zip appearingPredators popDefense)) products -- defeat predators with produced compounds
|
||||
let sumEnzymes = sum . fmap (\(_,q,a) -> fromIntegral q*a) . genome <$> ps -- amount of enzymes * activation = resources "wasted"
|
||||
staticCostOfEnzymes = (\x -> 1 - 0.01*x) <$> sumEnzymes -- static cost of creating enzymes
|
||||
nutrientsAvailable <- fmap snd <$> asks soil
|
||||
let nutrientsLeft = (\p -> [p ! i | i <- [0..fromEnum (maxBound :: Nutrient)]]) <$> products
|
||||
nutrientRatio = minimum . zipWith (flip (/)) nutrientsAvailable <$> nutrientsLeft
|
||||
costOfEnzymes = max 0 <$> zipWith (\s n -> s-n*0.1) staticCostOfEnzymes nutrientRatio -- cost to keep enzymes are static costs + amount of nutrient sucked out of the primary cycle
|
||||
return $ zipWith (*) survivalRate costOfEnzymes
|
||||
costOfEnzymes = max 0 <$> zipWith (\s n -> s-n*0.01) staticCostOfEnzymes nutrientRatio -- cost to keep enzymes are static costs + amount of nutrient sucked out of the primary cycle
|
||||
survivalRate = (1-) <$> dieRate
|
||||
return $ (,) <$> zipWith (*) survivalRate costOfEnzymes
|
||||
<*> products
|
||||
|
||||
produceCompounds :: Plant -> [(Nutrient, Amount)] -> World (Vector Amount)
|
||||
produceCompounds (Plant genes _) substrate = do
|
||||
@ -207,16 +206,17 @@ produceCompounds (Plant genes _) substrate = do
|
||||
-- so F(D) is omitted
|
||||
-- A(d_hat) is ahat * numAttacks p, because ahat is only deterrence of the population
|
||||
-- and does not incorporate the number of attacks, which A(d_hat) in the paper does.
|
||||
deterPredators :: [(Predator, Double)] -> Vector Amount -> World Probability
|
||||
deterPredators appearingPredators compounds = do
|
||||
dieToPredators :: [(Predator, Double)] -> Vector Amount -> World Probability
|
||||
dieToPredators [] _ = return 0 -- if no predator, no dying.
|
||||
dieToPredators appearingPredators compounds = do
|
||||
deters <- forM appearingPredators $ \(p,ahat) -> do
|
||||
myDeter <- deterPredator p compounds
|
||||
return $ exp $ negate $ numAttacks p * ahat * myDeter -- exp due to assumption that number of attacks are poisson-distributed.
|
||||
myDeter <- dieToPredator p compounds
|
||||
return $ ahat * myDeter -- exp due to assumption that number of attacks are poisson-distributed.
|
||||
return $ product deters
|
||||
|
||||
|
||||
deterPredator :: Predator -> Vector Amount -> World Double
|
||||
deterPredator p comps = do
|
||||
dieToPredator :: Predator -> Vector Amount -> World Double
|
||||
dieToPredator p comps = do
|
||||
toxins <- asks toxicCompounds
|
||||
return $ product [1 - min 1 (comps ! fromEnum t * l) | (t,l) <- toxins, t `elem` irresistance p]
|
||||
|
||||
@ -227,12 +227,17 @@ deterPredator p comps = do
|
||||
-- | mate haploid
|
||||
haploMate :: Plant -> World Plant
|
||||
haploMate (Plant genes abs) = do
|
||||
let digen :: IO [(Double, Int)]
|
||||
digen = do
|
||||
ds <- randoms <$> newStdGen
|
||||
is <- randoms <$> newStdGen
|
||||
return $ zip ds is
|
||||
--generate some random infinite uniform distributed lists of doubles in [0,1)
|
||||
r1 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
|
||||
r1 <- liftIO digen
|
||||
r2 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
|
||||
r3 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
|
||||
r4 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
|
||||
r5 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
|
||||
r4 <- liftIO digen
|
||||
r5 <- liftIO digen
|
||||
enzymes <- asks possibleEnzymes
|
||||
re1 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
|
||||
re2 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
|
||||
@ -243,29 +248,36 @@ haploMate (Plant genes abs) = do
|
||||
. duplicateGene r4
|
||||
. deleteGene r5
|
||||
$ genes
|
||||
deleteGene :: [Double] -> Genome -> Genome
|
||||
deleteGene (r:rs) ((e,1,a):gs) = if r < 0.1 then deleteGene rs gs else (e,1,a):deleteGene rs gs
|
||||
deleteGene (r:rs) ((e,q,a):gs) = if r < 0.1 then (e,q-1,a):deleteGene rs gs else (e,q,a):deleteGene rs gs
|
||||
deleteGene :: [(Double,Int)] -> Genome -> Genome
|
||||
deleteGene _ [] = []
|
||||
deleteGene ((r,i):rs) g = if r < 0.05 then deleteGene rs (stay ++ go' ++ stay') else g
|
||||
where
|
||||
(stay, go:stay') = splitAt (i `mod` length g - 2) g
|
||||
go' = case go of
|
||||
(e,1,a) -> []
|
||||
(e,q,a) -> [(e,q-1,a)]
|
||||
|
||||
duplicateGene :: [Double] -> Genome -> Genome
|
||||
duplicateGene (r:rs) ((e,q,a):gs) = if r < 0.1 then (e,1,a):(e,q,a):duplicateGene rs gs else (e,q,a):duplicateGene rs gs
|
||||
duplicateGene :: [(Double,Int)] -> Genome -> Genome
|
||||
duplicateGene _ [] = []
|
||||
duplicateGene ((r,i):rs) g = if r < 0.05 then duplicateGene rs (stay ++ (e,q+1,a):stay') else g
|
||||
where
|
||||
(stay, (e,q,a):stay') = splitAt (i `mod` length g - 2) g
|
||||
|
||||
addGene :: [Double] -> [Int] -> Genome -> Genome
|
||||
addGene (r:rs) (s:ss) g = if r < 0.05 then (enzymes !! s,1,1):g else g
|
||||
addGene (r:rs) (s:ss) g = if r < 0.005 then (enzymes !! s,1,1):g else g
|
||||
|
||||
noiseActivation :: [Double] -> Genome -> Genome
|
||||
noiseActivation (r:rs) ((e,q,a):gs) = (e,q,max 0 $ min 1 $ a-0.01+0.02*r):noiseActivation rs gs
|
||||
noiseActivation _ [] = []
|
||||
|
||||
mutateGene :: [Double] -> [Int] -> Genome -> Genome
|
||||
mutateGene (r:rs) (s:ss) ((e,1,a):gs) = if r < 0.01 then ((enzymes !! s),1,a):mutateGene rs ss gs
|
||||
else (e,1,a):mutateGene rs ss gs
|
||||
|
||||
mutateGene (r:rs) (s:ss) ((e,q,a):gs) = if r < 0.01 then (e,q-1,a):((enzymes !! s),1,a):mutateGene rs ss gs
|
||||
else (e,q,a):mutateGene rs ss gs
|
||||
mutateGene (r:rs) (s:ss) [] = []
|
||||
mutateGene :: [(Double,Int)] -> [Int] -> Genome -> Genome
|
||||
mutateGene _ _ [] = []
|
||||
mutateGene ((r,i):rs) (s:ss) g = if r < 0.25 then mutateGene rs ss (stay ++ go' ++ stay') else g
|
||||
where
|
||||
(stay, go:stay') = splitAt (i `mod` length g - 2) g
|
||||
go' = case go of
|
||||
(e,1,a) -> [(enzymes !! s,1,a)]
|
||||
(e,q,a) -> [(e,q-1,a),(enzymes !! s,1,a)]
|
||||
return $ Plant genes' abs
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user