no diversity. needs static tests.

This commit is contained in:
Nicole Dresselhaus 2018-06-04 01:37:58 +02:00
parent 69895ffaab
commit cc6fac6533
Signed by: Drezil
GPG Key ID: 057D94F356F41E25
3 changed files with 112 additions and 86 deletions

View File

@ -13,33 +13,32 @@ import System.IO
import ArbitraryEnzymeTree
import Environment
import Evaluation
-- Example definitions
-- -------------------
-- Enzymes
pps :: Enzyme -- uses Phosphor from Substrate to produce PP
pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
fpps :: Enzyme -- PP -> FPP
fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
-- pps :: Enzyme -- uses Phosphor from Substrate to produce PP
-- pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,-1),(Produced PP,1)) Nothing
--
-- fpps :: Enzyme -- PP -> FPP
-- fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
-- Environment
exampleEnvironment :: Int -> [Enzyme] -> [(Predator,Probability)] -> [(Compound,Amount)] -> Environment
exampleEnvironment addedC es pred tox =
Environment
{ soil = [ (Nitrate, 2)
, (Phosphor, 3)
, (Photosynthesis, 10)
{ soil = [ (PPM, 10)
]
, predators = pred -- [ (greenfly, 0.1) ]
, metabolismIteration = 100
, maxCompound = maxCompoundWithoutGeneric + addedC
, toxicCompounds = tox --[(Produced FPP,0.1)] ++ tox
, possibleEnzymes = es -- [pps,fpps] ++ es
, settings = Settings { automimicry = True
, settings = Settings { automimicry = False
, predatorsRandom = False
, numPlants = 150
}
@ -47,29 +46,29 @@ exampleEnvironment addedC es pred tox =
-- Plants
examplePlants :: [Plant]
examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
where
enzymes = [pps, fpps]
quantity = [1,2] :: [Quantity]
activation = [0.7, 0.9, 1]
genomes = do
e <- permutations enzymes
e' <- subsequences e
q <- quantity
a <- activation
return $ (,,) <$> e' <*> [q] <*> [a]
defaultAbsorption = fmap ( limit Phosphor 2
. limit Nitrate 1
. limit Sulfur 0
) <$> asks soil
-- custom absorbtion with helper-function:
limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
limit n a (n', a')
| n == n' = (n, min a a') -- if we should limit, then we do ;)
| otherwise = (n', a')
-- examplePlants :: [Plant]
-- examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
-- where
-- enzymes = [pps, fpps]
-- quantity = [1,2] :: [Quantity]
-- activation = [0.7, 0.9, 1]
--
-- genomes = do
-- e <- permutations enzymes
-- e' <- subsequences e
-- q <- quantity
-- a <- activation
-- return $ (,,) <$> e' <*> [q] <*> [a]
--
-- defaultAbsorption = fmap ( limit Phosphor 2
-- . limit Nitrate 1
-- . limit Sulfur 0
-- ) <$> asks soil
-- -- custom absorbtion with helper-function:
-- limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
-- limit n a (n', a')
-- | n == n' = (n, min a a') -- if we should limit, then we do ;)
-- | otherwise = (n', a')
-- Running the simulation
-- ----------------------
@ -88,21 +87,25 @@ loop loopAmount ps env = loop' loopAmount 0 ps env
toxins :: [(Compound, Amount)]
toxins = toxicCompounds env
padded i str = take i $ str ++ repeat ' '
printEvery = 1
printEvery = 10
addedConstFitness = 0.1
loop' :: Int -> Int -> [Plant] -> Environment -> IO ()
loop' loopAmount curLoop plants e = unless (loopAmount == curLoop) $ do
loop' loopAmount curLoop plants e = unless (loopAmount+1 == curLoop) $ do
when (curLoop `mod` printEvery == 0) $ do
putStr "\ESC[2J\ESC[H"
printEnvironment e
putStrLn ""
putStrLn $ "Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ ":"
newPlants <- flip runReaderT e $ do
! fs <- fmap (+0.01) <$> fitness plants -- fitness should be at least 0.01 for mating to work
(!fs,cs) <- unzip . fmap (\(f,c) -> (f,c)) <$> fitness plants
let fps = zip plants fs -- gives us plants & their fitness in a tuple
sumFitness = sum fs
when (curLoop `mod` printEvery == 0) $ do
liftIO $ printPopulation stringe fps
liftIO $ hFlush stdout
when (curLoop `mod` printEvery == 0) $ liftIO $ do
printPopulation stringe (zip3 plants fs cs)
putStrLn $ "Population statistics: VarC = " ++ (padded 50 . show . varianceOfProducedCompounds $ cs)
++ " DistC = " ++ (padded 50 . show . meanOfDistinctCompounds $ cs)
hFlush stdout
threadDelay $ 100*1000 -- sleep x*1000ns (=x ~ ms)
-- generate x new plants.
np <- asks (numPlants . settings)
sequence . flip fmap [1..np] $ \_ -> do
@ -117,16 +120,13 @@ loop loopAmount ps env = loop' loopAmount 0 ps env
| otherwise = findParent (x-f) ps
parent = findParent parent' fps
haploMate parent
hFlush stdout
when (curLoop `mod` printEvery == 0) $ do
threadDelay $ 100*1000 -- sleep x*1000ns (=x ~ ms)
loop' loopAmount (curLoop+1) newPlants e
main :: IO ()
main = do
hSetBuffering stdin NoBuffering
--hSetBuffering stdout NoBuffering
randomCompounds <- makeHead (Substrate Photosynthesis) <$> generateTreeFromList 30 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds
randomCompounds <- makeHead (Substrate PPM) <$> generateTreeFromList 20 (toEnum <$> [(maxCompoundWithoutGeneric+1)..] :: [Compound]) -- generate roughly x compounds
ds <- randoms <$> newStdGen
probs <- randomRs (0.2,0.7) <$> newStdGen
let poisonedTree = poisonTree ds randomCompounds
@ -134,14 +134,26 @@ main = do
predators <- generatePredators 0.5 poisonedTree
let env = exampleEnvironment (getTreeSize randomCompounds) (generateEnzymeFromTree randomCompounds) (zip predators probs) poisonCompounds
emptyPlants = replicate (numPlants . settings $ env) emptyPlant
enzs <- randomRs (0,length (possibleEnzymes env) - 1) <$> newStdGen
let startPlants = randomGenome 10 enzs (possibleEnzymes env) emptyPlants
printEnvironment env
writeFile "poison.twopi" $ generateDotFromPoisonTree "poison" 0.5 poisonedTree
putStr "\ESC[?1049h"
loop 200 emptyPlants env
loop 2000 startPlants env
putStrLn "Simulation ended. Press key to exit."
_ <- getChar
putStr "\ESC[?1049l"
randomGenome :: Int -> [Int] -> [Enzyme] -> [Plant] -> [Plant]
randomGenome num inds enzs [] = []
randomGenome num inds enzs (p:ps) = p { genome = genes} : randomGenome num r enzs ps
where
i' = take num inds
r = drop num inds
enzymes = (enzs!!) <$> i'
genes = (\e -> (e,1,1)) <$> enzymes
generatePredators :: Double -> EnzymeTree s (Double,Compound) -> IO [Predator]
generatePredators threshold t = do
ps <- mapM generatePredators' $ getSubTrees t
@ -152,7 +164,7 @@ generatePredators threshold t = do
let comps = foldMap (\(a,b) -> [(a,b) | a > threshold]) t
amount <- randomRIO (0,length comps + 1) :: IO Int
forM [1..amount] $ \_ -> do
impact <- randomRIO (0.1,0.2)
impact <- randomRIO (0.2,0.7)
rands <- randoms <$> newStdGen
let unresists = foldMap (\((a,b),r) -> [b | r*2 < a]) $ zip comps rands
return $ Predator unresists impact 1
@ -168,27 +180,28 @@ printEnvironment (Environment soil pred metaIter maxComp toxic possEnz settings)
putStrLn $ "Toxic: " ++ show toxic
putStrLn $ "Settings: " ++ show settings
printPopulation :: [(Enzyme,String)] -> [(Plant,Double)] -> IO ()
printPopulation :: [(Enzyme,String)] -> [(Plant,Double,Vector Amount)] -> IO ()
printPopulation es ps = do
let padded i str = take i $ str ++ repeat ' '
putStr $ padded 50 "Population:"
forM_ ps $ \(_,f) -> putStr (printColor f '█')
forM_ ps $ \(_,f,_) -> putStr (printColor f '█')
putStrLn colorOff
forM_ es $ \(e,s) -> do
putStr s
forM_ ps $ \(Plant g _,_) -> do
forM_ ps $ \(Plant g _,_,cs) -> do
let curE = sum $ map (\(_,q,a) -> fromIntegral q*a)
. filter (\(e',_,_) -> e == e')
$ g
plot x
| x > 2 = "O"
| x > 1 = "+"
| x > 0.7 = "ö"
| x > 0.5 = "o"
| x > 0 = "."
| otherwise = "_"
putStr (plot curE)
putStrLn ""
| x > 2 = 'O'
| x > 1 = '+'
| x > 0.7 = 'ö'
| x > 0.5 = 'o'
| x > 0 = '.'
| otherwise = '_'
amount = min 2 $ cs ! fromEnum (fst . snd . synthesis $ e)
putStr $ printColor (amount/2) (plot curE)
putStrLn colorOff
printColor :: Double -> Char -> String
printColor x c

View File

@ -27,6 +27,7 @@ dependencies:
- QuickCheck
- pretty-simple
- parallel
- foldl
library:
source-dirs: src

View File

@ -16,10 +16,7 @@ type Activation = Double
type Amount = Double
-- | Nutrients are the basis for any reaction and are found in the environment of the plant.
data Nutrient = Sulfur
| Phosphor
| Nitrate
| Photosynthesis
data Nutrient = PPM
deriving (Show, Enum, Bounded, Eq)
-- | Fixed, non-generic Components
@ -156,7 +153,7 @@ instance Eq Plant where
type Fitness = Double
fitness :: [Plant] -> World [Fitness]
fitness :: [Plant] -> World [(Fitness, Vector Amount)]
fitness ps = do
nutrients <- mapM absorbNutrients ps -- absorb soil
products <- sequenceA $ zipWith produceCompounds ps nutrients -- produce compounds
@ -172,18 +169,20 @@ fitness ps = do
automimicry <- asks (automimicry . settings)
popDefense <- if automimicry then
forM appearingPredators $ \p -> do
as <- mapM (deterPredator p) products -- how good can an individual deter p
as <- mapM (dieToPredator p) products -- how good can an individual deter p
return $ sum as / fromIntegral (length as) -- how good can the population deter p on average
else
return $ repeat 1
survivalRate <- mapM (deterPredators (zip appearingPredators popDefense)) products -- defeat predators with produced compounds
dieRate <- mapM (dieToPredators (zip appearingPredators popDefense)) products -- defeat predators with produced compounds
let sumEnzymes = sum . fmap (\(_,q,a) -> fromIntegral q*a) . genome <$> ps -- amount of enzymes * activation = resources "wasted"
staticCostOfEnzymes = (\x -> 1 - 0.01*x) <$> sumEnzymes -- static cost of creating enzymes
nutrientsAvailable <- fmap snd <$> asks soil
let nutrientsLeft = (\p -> [p ! i | i <- [0..fromEnum (maxBound :: Nutrient)]]) <$> products
nutrientRatio = minimum . zipWith (flip (/)) nutrientsAvailable <$> nutrientsLeft
costOfEnzymes = max 0 <$> zipWith (\s n -> s-n*0.1) staticCostOfEnzymes nutrientRatio -- cost to keep enzymes are static costs + amount of nutrient sucked out of the primary cycle
return $ zipWith (*) survivalRate costOfEnzymes
costOfEnzymes = max 0 <$> zipWith (\s n -> s-n*0.01) staticCostOfEnzymes nutrientRatio -- cost to keep enzymes are static costs + amount of nutrient sucked out of the primary cycle
survivalRate = (1-) <$> dieRate
return $ (,) <$> zipWith (*) survivalRate costOfEnzymes
<*> products
produceCompounds :: Plant -> [(Nutrient, Amount)] -> World (Vector Amount)
produceCompounds (Plant genes _) substrate = do
@ -207,16 +206,17 @@ produceCompounds (Plant genes _) substrate = do
-- so F(D) is omitted
-- A(d_hat) is ahat * numAttacks p, because ahat is only deterrence of the population
-- and does not incorporate the number of attacks, which A(d_hat) in the paper does.
deterPredators :: [(Predator, Double)] -> Vector Amount -> World Probability
deterPredators appearingPredators compounds = do
dieToPredators :: [(Predator, Double)] -> Vector Amount -> World Probability
dieToPredators [] _ = return 0 -- if no predator, no dying.
dieToPredators appearingPredators compounds = do
deters <- forM appearingPredators $ \(p,ahat) -> do
myDeter <- deterPredator p compounds
return $ exp $ negate $ numAttacks p * ahat * myDeter -- exp due to assumption that number of attacks are poisson-distributed.
myDeter <- dieToPredator p compounds
return $ ahat * myDeter -- exp due to assumption that number of attacks are poisson-distributed.
return $ product deters
deterPredator :: Predator -> Vector Amount -> World Double
deterPredator p comps = do
dieToPredator :: Predator -> Vector Amount -> World Double
dieToPredator p comps = do
toxins <- asks toxicCompounds
return $ product [1 - min 1 (comps ! fromEnum t * l) | (t,l) <- toxins, t `elem` irresistance p]
@ -227,12 +227,17 @@ deterPredator p comps = do
-- | mate haploid
haploMate :: Plant -> World Plant
haploMate (Plant genes abs) = do
let digen :: IO [(Double, Int)]
digen = do
ds <- randoms <$> newStdGen
is <- randoms <$> newStdGen
return $ zip ds is
--generate some random infinite uniform distributed lists of doubles in [0,1)
r1 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r1 <- liftIO digen
r2 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r3 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r4 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r5 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r4 <- liftIO digen
r5 <- liftIO digen
enzymes <- asks possibleEnzymes
re1 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
re2 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
@ -243,29 +248,36 @@ haploMate (Plant genes abs) = do
. duplicateGene r4
. deleteGene r5
$ genes
deleteGene :: [Double] -> Genome -> Genome
deleteGene (r:rs) ((e,1,a):gs) = if r < 0.1 then deleteGene rs gs else (e,1,a):deleteGene rs gs
deleteGene (r:rs) ((e,q,a):gs) = if r < 0.1 then (e,q-1,a):deleteGene rs gs else (e,q,a):deleteGene rs gs
deleteGene :: [(Double,Int)] -> Genome -> Genome
deleteGene _ [] = []
deleteGene ((r,i):rs) g = if r < 0.05 then deleteGene rs (stay ++ go' ++ stay') else g
where
(stay, go:stay') = splitAt (i `mod` length g - 2) g
go' = case go of
(e,1,a) -> []
(e,q,a) -> [(e,q-1,a)]
duplicateGene :: [Double] -> Genome -> Genome
duplicateGene (r:rs) ((e,q,a):gs) = if r < 0.1 then (e,1,a):(e,q,a):duplicateGene rs gs else (e,q,a):duplicateGene rs gs
duplicateGene :: [(Double,Int)] -> Genome -> Genome
duplicateGene _ [] = []
duplicateGene ((r,i):rs) g = if r < 0.05 then duplicateGene rs (stay ++ (e,q+1,a):stay') else g
where
(stay, (e,q,a):stay') = splitAt (i `mod` length g - 2) g
addGene :: [Double] -> [Int] -> Genome -> Genome
addGene (r:rs) (s:ss) g = if r < 0.05 then (enzymes !! s,1,1):g else g
addGene (r:rs) (s:ss) g = if r < 0.005 then (enzymes !! s,1,1):g else g
noiseActivation :: [Double] -> Genome -> Genome
noiseActivation (r:rs) ((e,q,a):gs) = (e,q,max 0 $ min 1 $ a-0.01+0.02*r):noiseActivation rs gs
noiseActivation _ [] = []
mutateGene :: [Double] -> [Int] -> Genome -> Genome
mutateGene (r:rs) (s:ss) ((e,1,a):gs) = if r < 0.01 then ((enzymes !! s),1,a):mutateGene rs ss gs
else (e,1,a):mutateGene rs ss gs
mutateGene (r:rs) (s:ss) ((e,q,a):gs) = if r < 0.01 then (e,q-1,a):((enzymes !! s),1,a):mutateGene rs ss gs
else (e,q,a):mutateGene rs ss gs
mutateGene (r:rs) (s:ss) [] = []
mutateGene :: [(Double,Int)] -> [Int] -> Genome -> Genome
mutateGene _ _ [] = []
mutateGene ((r,i):rs) (s:ss) g = if r < 0.25 then mutateGene rs ss (stay ++ go' ++ stay') else g
where
(stay, go:stay') = splitAt (i `mod` length g - 2) g
go' = case go of
(e,1,a) -> [(enzymes !! s,1,a)]
(e,q,a) -> [(e,q-1,a),(enzymes !! s,1,a)]
return $ Plant genes' abs