working evolution-simulation (POC)

This commit is contained in:
Nicole Dresselhaus 2018-05-02 23:39:22 +02:00
parent 08b2cf8d43
commit 85ce37b106
Signed by: Drezil
GPG Key ID: 057D94F356F41E25
3 changed files with 224 additions and 98 deletions

View File

@ -1,6 +1,172 @@
{-# LANGUAGE TypeApplications #-}
module Main where module Main where
import Lib import Environment
import Text.Printf
import Control.Monad.Reader
import Numeric.LinearAlgebra
import Data.List
import System.Random
import Control.Concurrent
import qualified Debug.Trace as Debug
import System.IO
-- Example definitions
-- -------------------
-- Enzymes
pps :: Enzyme -- uses Phosphor from Substrate to produce PP
pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,(-1)),(Produced PP,1)) Nothing
fpps :: Enzyme -- PP -> FPP
fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
-- Predator
greenfly :: Predator -- 20% of plants die to greenfly, but the fly is
greenfly = Predator [] 0.2 -- killed by any toxic Component
-- Environment
exampleEnvironment :: Environment
exampleEnvironment =
Environment
{ soil = [ (Nitrate, 2)
, (Phosphor, 3)
, (Photosynthesis, 10)
]
, predators = [ (greenfly, 0.1) ]
, metabolismIteration = 100
, maxCompound = maxCompoundWithoutGeneric + 100
, toxicCompounds = [(Produced FPP,0.5)] --FPP kills 100% if produced amount above 0.2 units
, possibleEnzymes = [pps,fpps]
}
-- Plants
examplePlants :: [Plant]
examplePlants = (\g -> Plant g defaultAbsorption) <$> genomes
where
enzymes = [pps, fpps]
quantity = [1,2] :: [Quantity]
activation = [0.7, 0.9, 1]
genomes = do
e <- permutations enzymes
e' <- subsequences e
q <- quantity
a <- activation
return $ (,,) <$> e' <*> [q] <*> [a]
defaultAbsorption = soil <$> ask >>= return . fmap ( limit Phosphor 2
. limit Nitrate 1
. limit Sulfur 0
)
-- custom absorbtion with helper-function:
limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
limit n a (n', a')
| n == n' = (n, min a a') -- if we should limit, then we do ;)
| otherwise = (n', a')
-- Running the simulation
-- ----------------------
loop :: Int -> [Plant] -> Environment -> IO ()
loop loopAmount plants e = loop' loopAmount 0 plants e
where
loop' :: Int -> Int -> [Plant] -> Environment -> IO ()
loop' loopAmount curLoop plants e = unless (loopAmount == curLoop) $ do
putStr $ "\ESC[2J\ESC[H"
printEnvironment e
putStrLn ""
putStrLn $ "Generation " ++ show curLoop ++ " of " ++ show loopAmount ++ ":"
newPlants <- (flip runReaderT) e $ do
fs <- sequence $ fitness <$> plants
let fps = zip plants fs -- gives us plants & their fitness in a tuple
sumFitness = sum fs
pe <- possibleEnzymes <$> ask
liftIO $ printPopulation pe fps
-- generate 100 new plants.
sequence . (flip fmap) [1..100] $ \_ -> do
parent' <- liftIO $ randomRIO (0,sumFitness)
let
-- if we only have one parent in our list, take it.
findParent :: Double -> [(Plant,Double)] -> Plant
findParent _ [(last,_)] = last
-- otherwise count down x to find the parent in the list
findParent x ((p,f):ps)
| x < f = p
| otherwise = findParent (x-f) ps
parent = findParent parent' fps
haploMate parent
hFlush stdout
threadDelay $ 100*1000 -- sleep 100ms
loop' loopAmount (curLoop+1) newPlants e
main :: IO () main :: IO ()
main = someFunc main = do
hSetBuffering stdin NoBuffering
hSetBuffering stdout NoBuffering
let emptyPlants = replicate 100 emptyPlant
printEnvironment exampleEnvironment
putStr "\ESC[?1049h"
loop 100 emptyPlants exampleEnvironment
putStrLn "Simulation ended. Press key to exit."
_ <- getChar
putStr "\ESC[?1049l"
-- fitness <- runReaderT (sequence $ (\a -> do p <- absorbNutrients a >>= produceCompounds a; (,,) a p <$> deterPredators p) <$> emptyPlants) exampleEnvironment
-- mapM_ (printf "%15.15s, " . show . toEnum @Compound) [0..maxCompoundWithoutGeneric]
-- putStrLn "Fitness"
-- forM_ fitness $ \(p, c, f) -> do
-- mapM_ (printf "%15.2f, ") (toList c)
-- printf "%15.2f" f
-- putStr "\n"
printEnvironment :: Environment -> IO ()
printEnvironment (Environment soil pred metaIter maxComp toxic possEnz) =
do
putStrLn "Environment:"
putStrLn $ "Soil: " ++ show soil
putStrLn $ "Predators: " ++ show pred
putStrLn $ "PSM Iters: " ++ show metaIter
putStrLn $ "Compounds: " ++ show ((toEnum <$> [0..maxComp]) :: [Compound])
putStrLn $ "Toxic: " ++ show toxic
printPopulation :: [Enzyme] -> [(Plant,Double)] -> IO ()
printPopulation es ps = do
let padded i str = take i $ str ++ repeat ' '
putStr $ padded 40 "Population:"
forM_ ps $ \((_,f)) -> putStr (printColor f '█')
putStrLn colorOff
forM_ es $ \e -> do
putStr $ padded 40 (show (enzymeName e))
forM_ ps $ \((Plant g _,_)) -> do
let curE = sum $ map (\(_,q,a) -> (fromIntegral q)*a)
. filter (\(e',_,_) -> e == e')
$ g
plot x
| x > 2 = "O"
| x > 1 = "+"
| x > 0.7 = "ö"
| x > 0.5 = "o"
| x > 0 = "."
| otherwise = "_"
putStr (plot curE)
putStrLn ""
printColor :: Double -> Char -> String
printColor x c
| x*x < 0.5 = "\ESC[38;5;" ++ (show $ 16 + 36*5 + 6*(floor $ 5*2*x') + 0) ++ "m" ++ [c] ++ ""
| otherwise = "\ESC[38;5;" ++ (show $ 16 + 36*(floor $ 5*2*(1-x')) + 6*5 + 0) ++ "m" ++ [c] ++ ""
-- 32 bit
-- | x*x < 0.5 = "\ESC[38;2;255;" ++ (show . floor $ 255*2*x') ++ ";0m" ++ [c] ++ ""
-- | otherwise = "\ESC[38;2;" ++ (show . floor $ 255*2*(1-x')) ++ ";255;0m" ++ [c] ++ ""
where x' = x*x
colorOff :: String
colorOff = "\ESC[0m"

View File

@ -23,6 +23,7 @@ dependencies:
- base >= 4.7 && < 5 - base >= 4.7 && < 5
- hmatrix - hmatrix
- mtl - mtl
- random
library: library:
source-dirs: src source-dirs: src

View File

@ -11,7 +11,7 @@ import Control.Monad.Reader
import Data.List (permutations, subsequences) import Data.List (permutations, subsequences)
import Numeric.LinearAlgebra import Numeric.LinearAlgebra
import Text.Printf import Text.Printf
import qualified Debug.Trace as Debug import System.Random
type Probability = Double type Probability = Double
type Quantity = Int type Quantity = Int
@ -76,14 +76,6 @@ data Enzyme = Enzyme
makeSimpleEnzyme :: Compound -> Compound -> Enzyme makeSimpleEnzyme :: Compound -> Compound -> Enzyme
makeSimpleEnzyme a b = Enzyme (show a ++ " -> " ++ show b) [] ((a,-1),(b,1)) Nothing makeSimpleEnzyme a b = Enzyme (show a ++ " -> " ++ show b) [] ((a,-1),(b,1)) Nothing
--Example "enzymes" could be:
pps :: Enzyme -- uses Phosphor from Substrate to produce PP
pps = Enzyme "PPS" [(Substrate Phosphor,1)] ((Substrate Phosphor,(-1)),(Produced PP,1)) Nothing
fpps :: Enzyme -- PP -> FPP
fpps = makeSimpleEnzyme (Produced PP) (Produced FPP)
-- Evironment -- Evironment
-- ---------- -- ----------
@ -97,11 +89,6 @@ data Predator = Predator { resistance :: [Compound]
-- (~ agressiveness of the herbivore) -- (~ agressiveness of the herbivore)
} deriving (Show, Eq) } deriving (Show, Eq)
-- Exemplatory:
greenfly :: Predator -- 20% of plants die to greenfly, but the fly is
greenfly = Predator [] 0.2 -- killed by any toxic Component
-- The environment itself is just the soil and the predators. Extensions would be possible. -- The environment itself is just the soil and the predators. Extensions would be possible.
data Environment = data Environment =
@ -122,27 +109,14 @@ data Environment =
, toxicCompounds :: [(Compound,Amount)] , toxicCompounds :: [(Compound,Amount)]
-- ^ Compounds considered to be toxic in this environment. -- ^ Compounds considered to be toxic in this environment.
-- Kills 100% of Predators above Amount. -- Kills 100% of Predators above Amount.
, possibleEnzymes :: [Enzyme]
-- ^ All enzymes that can be created by genetic manipulation in this setting.
} deriving (Show, Eq) } deriving (Show, Eq)
-- helper function. Allows for [0..maxCompoundWithoutGeneric] :: [Compound] with all non-generic Compounds -- helper function. Allows for [0..maxCompoundWithoutGeneric] :: [Compound] with all non-generic Compounds
maxCompoundWithoutGeneric :: Int maxCompoundWithoutGeneric :: Int
maxCompoundWithoutGeneric = fromEnum (maxBound :: Nutrient) + fromEnum (maxBound :: Component) + 1 maxCompoundWithoutGeneric = fromEnum (maxBound :: Nutrient) + fromEnum (maxBound :: Component) + 1
-- Example:
exampleEnvironment :: Environment
exampleEnvironment =
Environment
{ soil = [ (Nitrate, 2)
, (Phosphor, 3)
, (Photosynthesis, 10)
]
, predators = [ (greenfly, 0.1) ]
, metabolismIteration = 100
, maxCompound = maxCompoundWithoutGeneric
, toxicCompounds = [(Produced FPP,0.5)] --FPP kills 100% if produced amount above 0.2 units
}
type World a = ReaderT Environment IO a type World a = ReaderT Environment IO a
-- Plants -- Plants
@ -164,35 +138,6 @@ instance Show Plant where
instance Eq Plant where instance Eq Plant where
a == b = genome a == genome b a == b = genome a == genome b
-- | The following example yields in the example-environment this population:
--
-- >>> printPopulation [pps, fpps] plants
-- Population:
-- PPS ______oöö+++______oöö+++____________oöö+++oöö+++
-- FPPS ____________oöö+++oöö+++______oöö+++______oöö+++
plants :: [Plant]
plants = (\g -> Plant g defaultAbsorption) <$> genomes
where
enzymes = [pps, fpps]
quantity = [1,2] :: [Quantity]
activation = [0.7, 0.9, 1]
genomes = do
e <- permutations enzymes
e' <- subsequences e
q <- quantity
a <- activation
return $ (,,) <$> e' <*> [q] <*> [a]
defaultAbsorption = soil <$> ask >>= return . fmap ( limit Phosphor 2
. limit Nitrate 1
. limit Sulfur 0
)
-- custom absorbtion with helper-function:
limit :: Nutrient -> Amount -> (Nutrient, Amount) -> (Nutrient, Amount)
limit n a (n', a')
| n == n' = (n, min a a') -- if we should limit, then we do ;)
| otherwise = (n', a')
-- Fitness -- Fitness
-- ------- -- -------
@ -208,7 +153,9 @@ fitness p = do
nutrients <- absorbNutrients p -- absorb soil nutrients <- absorbNutrients p -- absorb soil
products <- produceCompounds p nutrients -- produce compounds products <- produceCompounds p nutrients -- produce compounds
survivalRate <- deterPredators products -- defeat predators with produced compounds survivalRate <- deterPredators products -- defeat predators with produced compounds
return survivalRate let sumEnzymes = sum $ (\(_,q,a) -> (fromIntegral q)*a) <$> genome p -- amount of enzymes * activation = resources "wasted"
costOfEnzymes = 0.95 ** sumEnzymes
return $ survivalRate * costOfEnzymes
-- can also be written as, but above is more clear. -- can also be written as, but above is more clear.
-- fitness p = absorbNutrients p >>= produceCompounds p >>= deterPredators -- fitness p = absorbNutrients p >>= produceCompounds p >>= deterPredators
@ -239,52 +186,64 @@ deterPredators cs = do
-- multiply (toxicity of t with 100% effectiveness at l| for all toxins t | and t not in p's resistance-list) -- multiply (toxicity of t with 100% effectiveness at l| for all toxins t | and t not in p's resistance-list)
deter p = product [1 - min 1 (cs ! (fromEnum t) / l) | (t,l) <- ts, not (t `elem` resistance p)] deter p = product [1 - min 1 (cs ! (fromEnum t) / l) | (t,l) <- ts, not (t `elem` resistance p)]
-- multiply (probability of occurence * intensity of destruction / probability to deter predator | for all predators) -- multiply (probability of occurence * intensity of destruction / probability to deter predator | for all predators)
return . product $ [min 1 (prob * fitnessImpact p / deter p) | (p,prob) <- ps] return . product $ [min 1 ((1-prob) * fitnessImpact p / deter p) | (p,prob) <- ps]
-- Mating & Creation of diversity -- Mating & Creation of diversity
-- ------------------------------ -- ------------------------------
-- Running the simulation
-- ---------------------- -- | mate haploid
haploMate :: Plant -> World Plant
haploMate (Plant genes abs) = do
--generate some random infinite uniform distributed lists of doubles in [0,1)
r1 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r2 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r3 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r4 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
r5 <- liftIO ((randoms <$> newStdGen) :: IO [Double])
enzymes <- possibleEnzymes <$> ask
re1 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
re2 <- liftIO ((randomRs (0,length enzymes - 1) <$> newStdGen) :: IO [Int])
let
genes' = mutateGene r1 re1
. noiseActivation r2
. addGene r3 re2
. duplicateGene r4
. deleteGene r5
$ genes
deleteGene :: [Double] -> Genome -> Genome
deleteGene (r:rs) ((e,1,a):gs) = if a < 0.1 && r < 0.5 then deleteGene rs gs else (e,1,a):deleteGene rs gs
deleteGene (r:rs) ((e,q,a):gs) = if a < 0.1 && r < 0.5 then (e,q-1,a):deleteGene rs gs else (e,q,a):deleteGene rs gs
deleteGene _ [] = []
duplicateGene :: [Double] -> Genome -> Genome
duplicateGene (r:rs) ((e,q,a):gs) = if r < 0.05 then (e,q+1,a):duplicateGene rs gs else (e,q,a):duplicateGene rs gs
duplicateGene _ [] = []
addGene :: [Double] -> [Int] -> Genome -> Genome
addGene (r:rs) (s:ss) g = if r < 0.01 then ((enzymes !! s),1,1):g else g
noiseActivation :: [Double] -> Genome -> Genome
noiseActivation (r:rs) ((e,q,a):gs) = (e,q,max 0 $ min 1 $ a-0.01+0.02*r):noiseActivation rs gs
noiseActivation _ [] = []
mutateGene :: [Double] -> [Int] -> Genome -> Genome
mutateGene (r:rs) (s:ss) ((e,1,a):gs) = if r < 0.05 then ((enzymes !! s),1,a):mutateGene rs ss gs
else (e,1,a):mutateGene rs ss gs
mutateGene (r:rs) (s:ss) ((e,q,a):gs) = if r < 0.05 then (e,q-1,a):((enzymes !! s),1,a):mutateGene rs ss gs
else (e,q,a):mutateGene rs ss gs
mutateGene (r:rs) (s:ss) [] = []
return $ Plant genes' abs
main = do
putStrLn "Environment:"
print exampleEnvironment
putStrLn "Example population:"
printPopulation [pps, fpps] plants
fitness <- runReaderT (sequence $ (\a -> do p <- absorbNutrients a >>= produceCompounds a; (,) p <$> deterPredators p) <$> plants) exampleEnvironment
mapM_ (printf "%15.15s, " . show . toEnum @Compound) [0..maxCompoundWithoutGeneric]
putStrLn "Fitness"
forM_ fitness $ \(p, f) -> do
mapM_ (printf "%15.2f, ") (toList p)
printf "%15.2f" f
putStr "\n"
-- Utility Functions -- Utility Functions
-- ----------------- -- -----------------
-- | Plant with no secondary metabolism with unlimited extraction from environment.
emptyPlant :: Plant
emptyPlant = Plant [] (soil <$> ask)
getAmountOf :: Compound -> [(Compound, Amount)] -> Amount getAmountOf :: Compound -> [(Compound, Amount)] -> Amount
getAmountOf c = sum . fmap snd . filter ((== c) . fst) getAmountOf c = sum . fmap snd . filter ((== c) . fst)
printPopulation :: [Enzyme] -> [Plant] -> IO ()
printPopulation es ps = do
let padded i str = take i $ str ++ repeat ' '
putStrLn "Population:"
forM_ es $ \e -> do
putStr $ padded 40 (show (enzymeName e))
forM_ ps $ \(Plant g _) -> do
let curE = sum $ map (\(_,q,a) -> (fromIntegral q)*a)
. filter (\(e',_,_) -> e == e')
$ g
plot x
| x > 2 = "O"
| x > 1 = "+"
| x > 0.7 = "ö"
| x > 0.5 = "o"
| x > 0 = "."
| otherwise = "_"
putStr (plot curE)
putStrLn ""